
Scheduling streaming applications on a complex multicore
platform

Tudor David1 Mathias Jacquelin2 Loris Marchal2
1 Technical University of Cluj-Napoca, Romania

2 LIP laboratory, UMR 5668, ENS Lyon – CNRS – INRIA – UCBL – University of Lyon, France

Abstract

In this paper, we consider the problem of scheduling streaming applications described by com-
plex task graphs on a heterogeneous multi-core platform, the IBM QS 22 platform, embedding two
STI Cell BE processor. We first derive a complete computation and communication model of the
platform, based on comprehensive benchmarks. Then, we use this model to express the problem
of maximizing the throughput of a streaming application on this platform. Although the problem
is proven NP-complete, we present an optimal solution based on mixed linear programming. We
also propose simpler scheduling heuristics to compute mapping of the application task-graph on
the platform. We then come back to the platform, and propose a scheduling software to deploy
streaming applications on this platform. This allows us to thoroughly test our scheduling strate-
gies on the real platform. We thus show that we are able to achieve a good speed-up, either with
the mixed linear programming solution, or using involved scheduling heuristics.

1 Introduction

The last decade has seen the arrival of multi-core processors in every computer and electronic device,
from the personal computer to the high-performance computing cluster. Nowadays, heterogeneous
multi-core processor are emerging. Future processors are likely to embed several special-purpose
cores –like networking or graphic cores– together with general cores, in order to tackle problems like
heat dissipation, computing capacity or power consumption. Deploying an application on this kind of
platform becomes a challenging task due to the increasing heterogeneity.

Heterogeneous computing platforms such as Grids have been available for a decade or two. How-
ever, the heterogeneity is now likely to exist at a much smaller scale, that is within a single machine,
or even a single processor. Major actors of the CPU industry are already planning to include a GPU
core to their multi-core processors [3]. Classical processors are also often provided with an accelera-
tor (like GPUs, graphics processing units), or with processors dedicated to special computations (like
ClearSpeed [10] or Mercury cards [27]), thus resulting in a heterogeneous platform. The best exam-
ple is probably the IBM RoadRunner, the first supercomputer to break the petaflop barrier, which is
composed of an heterogeneous collection of classical AMD Opteron processors and Cell processors.

The STI Cell BE processor is an example of such an heterogeneous architecture, since it embeds
both a PowerPC processing unit, and up to eight simpler cores dedicated to vectorial computing.
This processor has been used by IBM to design machines dedicated to high performance computing,
like the Bladecenter QS 22. We have chosen to focus our study on this platform because the Cell
processor is nowadays widely available and affordable, and it is to our mind a good example of future
heterogeneous processors.

1

Deploying an application on such a heterogeneous platform is not an easy task, especially when
the application is not purely data-parallel. In this work, we focus on applications that exhibit some
regularity, so that we can design efficient static scheduling solutions. We thus concentrate our work
on streaming applications. These applications usually concern multimedia stream processing, like
video edition software, web radios or Video On Demand applications [34, 20]. However, streaming
applications also exist in other domains, like real time data encryption applications, or routing soft-
ware, which are for example required to manage mobile communication networks [33]. A stream
is a sequence of data that have to go through several processing tasks. The application is generally
structured as a directed acyclic task graph, ranging from a simple chain of tasks to a more complex
structure, as illustrated in the following.

To process a streaming application on a heterogeneous platform, we have to decide which tasks
will be processed onto which processing elements, that is, to find a mapping of the tasks onto the
platform. This is a complex problem since we have to take platform heterogeneity, task computing
requirements, and communication volume into account. The objective is to optimize the throughput of
the application: for example in the case of a video stream, we are looking for a solution that maximizes
the number of images processed per time-unit.

Several streaming solutions have already been developed or adapted for the Cell processor. DataCutter-
Lite [19] is an adaptation of the DataCutter framework for the Cell processor, but it is limited to
simple streaming applications described as linear chains, so it cannot deal with complex task graphs.
StreamIt [18, 31] is a language developed to model streaming applications; a version of the Streamit
compiler has been developed for the Cell processor, however it does not allow the user to specify the
mapping of the application, and thus to precisely control the application. Some other frameworks
allow to handle communications and are rather dedicated to matrix operations, like ALF (part of the
IBM Software Kit for Multicore Acceleration [22]), Sequoia [14], CellSs [7] or BlockLib [2].

2 General framework and context

Streaming applications may be complex: for example, when organized as a task graph, a simple
Vocoder audio filter can be decomposed in 140 tasks. All the data of the input stream must be pro-
cessed by this task graph in a pipeline fashion. On a parallel platform, we have to decide which
processing element will process each task. In order to optimize the performance of the application,
which is usually evaluated using its throughput, we have take into account the computation capabilities
of each resource, as well as the incurred communication overhead between processing elements. The
platform we target in this study is a heterogeneous multi-core processor, which adds to the previous
constraints a number of specific limitations (limited memory size on some nodes, specific communica-
tion constraints, etc.). Thus, the optimization problem corresponding to the throughput maximization
is a complex duty. However, the typical run time of a streaming application is long: a video encoder
is likely to run for at least several minutes, and probably several hours. Besides, we target a dedicated
environment, with stable run time conditions. Thus, it is worth taking additional time to optimize the
application throughput.

In previous work, we have developed a framework to schedule large instance of similar jobs,
known as steady-state scheduling [6]. It aims at maximizing the throughput, that is, the number of
jobs processed per time-unit. In the case of a streaming application like a video filter, a job may
well represent the complete processing of an image of the stream. Steady-state scheduling is able
to deal with complex jobs, described as directed acyclic graphs (DAG) of tasks. The nodes of this
graph are the tasks of the applications, denoted by T1, . . . , Tn, whereas edges represent dependencies

2

between tasks as well as the data associated to the dependencies: Dk,l is a data produced by task Tk
and needed to process Tl. Figure 1(a) presents the task graph of a simplistic stream application: the
stream goes through two successive filters. Applications may be much more complex, as depicted in
Figure 1(b). Computing resources consist in several processing elements PE 1, . . . ,PE p, connected
by communication links. We usually adopt the general unrelated computation model: the processing
time of a task Tk on a processing element PE i, denoted bywPE i(Tk) is not necessarily function of the
processing element speed, since some processing elements may be faster for some tasks and slower
for some others. Communication limitations are taken into account following one of the existing
communication models, usually the one-port or bounded multiport models.

input stream

output stream

T1

T2

(a) Simple streaming application.

T1

T4T3

T7T6T5

T2

T9

T8

(b) Other streaming application.

PE 4

PE 2

PE 1

PE 3T1

T4T3

T7T6T5

T2

T9

T8

(c) A possible mapping.

Figure 1: Applications and mapping.

The application consists of a single task graph, but all data sets of the stream must be processed
following this task graphs. This results in a large number of copies, or instances, of each tasks.
Consider the processing of the first data set (e.g., the first image of a video stream) for the application
described in Figure 1(b). A possible mapping of all these tasks to processing elements is described on
Figure 1(c), which details on which processing element each task will be computed. For the following
data sets, there is two possibilities. A possibility is that all data sets use the same mapping, that
it, on this example, all tasks T1 will be processed by processing element PE 1, etc. In this case, a
single mapping is used for all instances. Another possibility is that some instances may be processed
using different mappings. This multiple-mapping solution allows to split the processing of T1 among
different processors, and thus can usually achieve a larger throughput. However, the control overhead
for a multiple-mapping solution is much larger than for a single-mapping solution.

The problem of optimizing the steady-state throughput of an application on heterogeneous plat-
form has been studied in the context of Grid computing. It has been proven that the general problem,
with multiple mappings, is NP-complete on general graphs, but can be solved in polynomial time pro-
vided that the application graph has a limited depth [5]. Nevertheless, the control policy that would be
needed by a multiple-mapping solution would be far to complex for a heterogeneous multi-core pro-
cessor: each processor would need to process a large number of different tasks, store a large number
of temporary files, and route messages to multiple destinations depending on their type and instance
index. In particular, the limited memory of the Synergistic Processing Element makes it impossible to
implement such a complex solution.

3

Thus, single-mapping solutions are more suited for the targeted platform. These solution have
also been studied in the context of Grid computing. We have proven that the general solution is NP-
complete, but can be computed using a mixed integer linear program; several heuristics have also been
propose to compute an efficient mapping of the application onto the platform [15]. The present paper
aims at studying the ability of adapting the former solution for heterogeneous multi-core processors,
and illustrates this on the Cell processor and the QS 22. The task is challenging as it requires to solve
the following problems:
• Derive a model of the platform that both allows to accurately predict the behavior of the appli-

cation, and to compute an efficient mapping using steady-state scheduling techniques.
• As far as possible, adapt the solutions presented in [15] for the obtained model: optimal solution

via mixed linear programming and heuristics.
• Develop a light but efficient scheduling software that allows to implement the proposed schedul-

ing policies and test them in real life conditions.

3 Adaptation of the scheduling framework to the QS 22 architecture

In this section, we present the adaptation of the steady-state scheduling framework in order to cope
with streaming applications on the Cell processor and the QS 22 platform. As outlined, the main
changes concern the computing platform. We first briefly present the architecture, and we propose
a model for this platform based on communication benchmarks. Then, we detail the application
model and some features related to stream applications. Based on these models, we adapt the optimal
scheduling policy from [15] using mixed linear programing.

3.1 Platform description and model

We detail here the multi-core processor used in this study, and the platform which embeds this pro-
cessor. In order to adapt our scheduling framework to this platform, we need a communication model
which is able to predict the time taken to perform a set of transfer between processing elements. As
outlined below, no such model is available to the best of our knowledge. Thus, we perform some
communications benchmarks on the QS 22, and we derive a model which is suitable for our study.

3.1.1 Description of the QS 22 architecture

The IBM Bladecenter QS 22 is a bi-processor platform embedding two Cell processors and up to
32 GB of DDR2 memory [29]. This platform offers a high computing power for a limited power
consumption. The QS 22 has already been used for high performance computing: it is the core of IBM
RoadRunner platform, leader of the Top500 from November 2008 to June 2009, the first computer to
reach one petaflop [4].

As mentioned in the introduction, the Cell processor is a heterogeneous multi-core processor. It
has jointly been developed by Sony Computer Entertainment, Toshiba, and IBM [23], and embeds the
following components:

• Power Processing Element (PPE) core. This two-way multi-threaded core follows the Power
ISA 2.03 standard. Its main role is to control the other cores, and to be used by the operating
system due to its similarity with existing Power processors.

• Synergistic Processing Elements (SPE) cores. These cores constitute the main innovation of
the Cell processor and are small 128-bit RISC processors specialized in floating point, SIMD

4

operations. These differences induce that some tasks are by far faster when processed on a SPE,
while some other tasks can be slower. Each SPE has its own local memory (called local store)
of size LS = 256 kB, and can access other local stores and main memory only through explicit
asynchronous DMA calls.

• Main memory. Only PPEs have a transparent access to main memory. The dedicated memory
controller is integrated in the Cell processor and allows a fast access to the requested data. Since
this memory is by far larger than the SPE’s local stores, we do not consider its limited size as a
constraint for the mapping of the application. The memory interface supports a total bandwidth
of bw = 25 GB/s for read and writes combined.

• Element Interconnect Bus (EIB). This bus links all parts of the Cell processor to each other.
It is composed of 4 unidirectional rings, 2 of them in each direction. The EIB has an aggregated
bandwidth BW = 204.8 GB/s, and each component is connected to the EIB through a bidirec-
tional interface, with a bandwidth bw = 25 GB/s in each direction. Several restrictions apply
on the EIB and its underlying rings:

– A transfer cannot be scheduled on a given ring if data has to travel more than halfway
around that ring

– Only one transfer can take place on a given portion of a ring at a time
– At most 3 non-overlapping transfers can take place simultaneously on a ring.

• FLEXIO Interfaces. The Cell processor has two FLEXIO interfaces (IOIF 0 and IOIF 1).
These interfaces are used to communicate with other devices. Each of these interfaces offers an
input bandwidth of bwioin = 26 GB/s and an output bandwidth of bwioout = 36.4 GB/s.

Both Cell processors of the QS 22 are directly interconnected through their respective IOIF 0 in-
terface.We will denote the first processor by Cell0, and the second processor Cell1. Each of these pro-
cessors is connected to a bank of DDR memory; these banks are denoted by Memory0 and Memory1.
A processor can access the other bank of memory, but then experiences a non-uniform memory access
time.

EIB EIB

M
em

or
y
0

P
P
E

0

IO
IF

1
IO

IF
0

SPE 3SPE 1 SPE 5 SPE 7

SPE 4 SPE 6SPE 2SPE 0

M
em

ory
1

P
P
E

1

IO
IF

1
IO

IF
0

SPE 11 SPE 9SPE 13SPE 15

SPE 12SPE 14 SPE 10 SPE 8

Figure 2: Schematic view of the QS 22.

Since we are considering a bi-processor Cell platform, there are nP = 2 PPE cores, denoted by
PPE 0 and PPE 1. Furthermore, each Cell processor embedded in the QS 22 has eight SPEs, we thus
consider nS = 16 SPEs in our model, denoted by SPE 0, . . . ,SPE 15 (SPE 0, . . . ,SPE 7 belong to
the first processor). To simplify the following computations, we gather all processing elements under
the same notation PE i, so that the set of PPEs is {PE 0,PE 1}, while {PE 2, . . . ,PE 17} is the set of
SPEs (again, PE 2 to PE 9 are the SPEs of the first processor). Let n be the total number of processing
elements, i.e., n = nP + nS = 18. All processing elements and their interconnection are depicted

5

on Figure 2. We have two classes of processing elements, which fall under the unrelated computation
model: a PPE can be fast for a given task Tk and slow for another one Tl, while a SPE can be slower
for Tk but faster for Tl. Each core owns a dedicated communication interface (a DMA engine for
the SPEs and a memory controller for the PPEs), and communications can thus be overlapped with
computations.

3.1.2 Benchmarks and model of the QS 22

We need a precise performance model for the communication within the Bladecenter QS 22. More
specifically, we want to predict the time needed to perform any pattern of communication among the
computing elements (PPEs and SPEs). However, we do not need this model to be precise enough to
predict the behavior of each packet (DMA request, etc.) in the communications elements. We want
a simple (thus tractable) and yet accurate enough model. To the best of our knowledge, there does
not exists such a model for irregular communication patterns on the QS 22. Existing studies generally
focus on the aggregated bandwidth obtained with regular patterns, and are limited to a single Cell
processor [25]. This is why, in addition to the documentation provided by the manufacturer, we
perform communication benchmarks. We start by simple scenarios with communication patterns
involving only two communication elements, and then move to more complex scenarios to evaluate
communication contention.

To do so, we have developed a communication benchmark tool, which is able to perform and
time any pattern of communication: it launches (and pins) threads on all the computing elements
involved in the communication pattern, and make them read/write the right amount of data from/to
a distant memory or local store. For all these benchmarks, each test is repeated a number of times
(usually 10 times), and only the average performance is reported. We report the execution times of
the experiments, either in nanoseconds (ns) or in cycles: since the time-base frequency of the QS 22
Bladecenter is 26.664 MHz, a cycle is about 37.5 ns long.

In this section, we will first present the timing result for single communications. Then, since
we need to understand communication contention, we present the results when performing several
simultaneous communications. Thanks to these benchmarks, we are finally able to propose a complete
and tractable model for communications on the QS 22.

Note that for any communication between two computing elements PE i and PE j , we have to
choose between two alternatives: (i) PE j reads data from PE i local memory, or (ii) PE i writes
data into PE j local memory. In order to keep our scheduling framework simple, we have chosen to
implement only one of these alternatives. When performing the tests presented in this section, we have
noticed a slightly better performance for read operations. Thus, we focus only on read operations: the
following benchmarks are presented only for read operations, and we will use only these operations
when implementing the scheduling framework. However, write operations would most of the time
behave similarly.

Single transfer performances. First, we deal with the simplest kind of transfers: SPE to SPE data
transfers. In this test, we choose a pair of SPE in the same Cell, and we make one read in the local
store of the other, by issuing the corresponding DMA call. We present in Figure 3.1.2 the duration of
such a transfer for various data sizes, ranging from 8 bytes, to 16 kB (the maximum size for a single
transfer). When the size of the data is small, the duration is 112 ns (3 cycles), which we consider as
the latency for this type of transfers. For larger data sizes, the execution time increases quasi-linearly.
For 16 kB, the bandwidth obtained (around 25 GB/s) is close the theoretical one.

6

0 2000 4000 6000 8000 10000 12000 14000 16000

Data size (bytes)

0

100

200

300

400

500

600

700

Tr
an

sf
er

du
ra

tio
n

(n
s)

Figure 3: Data transfer time between two SPE from the same Cell

When performing the same tests among SPEs from both Cells of the QS 22, the results are not
the same. The results can be summarized as follows: when a SPE from Cell0 reads from a local store
located in Cell1, the average latency of the transfer is 444 ns, and the average bandwidth is 4.91 GB/s.
When on the contrary, a SPE from Cell1 reads some data in local store of Cell0, then the average
latency is 454 ns, and the average bandwidth is 3.38 GB/s. This little asymmetry can explained by the
fact that both Cells do not play the same role: the data arbiter and address concentrators of Cell0 act
as masters for communications involving both Cells, which explains why communications originating
from different Cells are handled differently.

When we involve both Cells in the data transfer, the performances fall again. We make an SPE
of Cell0 read data from a local store in Cell1, and measure a latency of 12 cycles (448 ns) and
a bandwidth of 5 GB/s. For the converse scenario when a SPE of Cell1 reads from a local store of
Cell0, then the latency is similar, but the bandwidth is only 3 GB/s. We notice that all communications
initiated by Cell1 takes longer, because the DMA request must go through the data arbiter on Cell0
before being actually performed.

Finally, we have to study the special case of a PPE reading from a SPE’s local store. This transfer
is particular, since it involves multiple transfers: in order to perform the communication, the PPE adds
an DMA instruction in the transfer queue of the corresponding SPE. Then, the DMA engine of the
SPE reads this instruction and perform the copy into the main memory. Then, in order for the data to
be loaded available for the PPE, it is loaded in its private cache. Due to this multiple transfers, and to
the fact that DMA instructions issued by the PPE have a smaller priority than the local instructions,
the latency of these communications is particularly large, about 300 cycles (11250 ns). With such a
high latency, the effect of the size of the data on the transfer time is almost negligible, which makes it
difficult to compute a maximal bandwidth.

Concurrent transfers. The previous benchmarks gives us an insight of the performances for a sin-
gle transfer. However, when performing several transfers at the same time, other effect may appear:
concurrent transfers may be able to reach a larger aggregated bandwidth, but each of them may also
suffers from the contention and have its bandwidth reduced. In the following, we try to both exhibit
the maximum bandwidth of each connecting element, and to understand how the available bandwidth
is shared between concurrent flows.

In a first step, we try to see if the bandwidths measured for single transfers and presented above

7

can be increased when using several transfers instead of one. For SPE-SPE transfers, this is not the
case: when performing several read operations on different SPEs from the same local store (on the
same Cell), the 25 GB/s limitation makes it impossible to go beyond the single transfer performances.

The Element Interconnect Bus (EIB) has a theoretical capacity of 204.8 GB/s. However, its struc-
ture consisting of two bi-directional rings makes certain communication pattern more efficient than
others. For patterns which are made of short-distance transfers, and for which can be performed with-
out overlap within one ring, we can almost get 200GB/s out of the EIB. On the other hand, if we
concurrently schedule several transfers between elements that are far away from each other, the whole
pattern cannot be scheduled on the rings without overlapping some transfers, and the bandwidth is
reduced substantially.

We illustrate this phenomenon by two examples. Consider the layout of the SPEs as depicted
by Figure 2. In the first scenario, we perform the following transfers (SPE i ← SPE j means
“SPE i reads from SPE j”): SPE 1 ← SPE 3, SPE 3 ← SPE 1, SPE 5 ← SPE 7, SPE 7 ← SPE 5,
SPE 0 ← SPE 2, SPE 2 ← SPE 0, SPE 4 ← SPE 6, and SPE 6 ← SPE 4. Then, the aggregated
bandwidth is 200 GB/s, that is all transfers get their maximal bandwidth (25 GB/s). Then, we per-
form another transfer pattern: SPE 0 ← SPE 7, SPE 7 ← SPE 0, SPE 1 ← SPE 6, SPE 6 ← SPE 1,
SPE 2 ← SPE 5, SPE 5 ← SPE 2, SPE 3 ← SPE 4, and SPE 4 ← SPE 3. In this case, the aggre-
gated bandwidth is only 80 GB/s, because of the large overlap between all transfers. However, these
cases are extreme ones; Figure 4 shows the distribution of the aggregated bandwidth when we run one
hundred random transfer patterns. The average bandwidth is 149 GB/s.

0 50 100 150 200

aggregated bandwidth (GB/s)

0

5

10

15

20

Fr
eq

ue
nc

y
(%

)

Figure 4: Bandwidth distribution

We have measured earlier that the bandwidth of a single transfer between the two Cells (through
the FlexIO) was limited to either 4.91 GB/s or 3.38 GB/s depending on the direction of the trans-
fer. When we aggregate several transfer through the FlexIO, a larger bandwidth can be obtained:
when several SPEs from Cell0 reads from local stores on Cell1, the maximal cumulated bandwidth
is 13 GB/s, where as it is 11.5 GB/s for the converse scenario. Finally, we have measured the overall
bandwidth of the FlexIO, when performing transfers in both direction. The cumulated bandwidth is
only 19 GB/s, and it is interesting to note that all transfers initiated by Cell0 gets an aggregated band-
width of 10 GB/s, while all transfers initiated by Cell1 gets 9 GB/s. Excepted for the last scenario,
bandwidth is always shared quite fairly among the different flows.

8

Toward a communication model for the QS 22. We are now able to propose a communication
model of the Cell processor and its integration in the Bladecenter QS 22. This model has to be a trade-
off between accuracy and tractability. Our ultimate goal is to estimate the time needed to perform a
whole pattern of transfers. The pattern is described by the amount of data exchanged between any
pair of processing elements. Given two processing elements PE i and PE j , we denote by datai,j the
size (in GB) of the data which is read by PE j from PE i’s local memory. If PE i is a SPE, its local
memory is naturally its local store, and for the sake of simplicity, we consider that the local memory
of a PPE is the main memory of the same Cell. Note that the quantity datai,j may well be zero if no
communication happens between PE i and PE j . We denote by T the time needed to complete the
whole transfer pattern.

We will use this model to optimize the schedule of a stream of task graphs, and this purpose has
an impact on the model design. In our scheduling framework, we try to overlap communications with
computations: a computing resource process a tasks while it receives the data for the next task, as
outlined later when we discuss about steady-state scheduling. Thus, we are more concerned by the
capacity of the interconnection network, and the bandwidth of different resources underlined above,
than by the latencies. In the following, we approximate the total completion time T by the maximum
occupation time of all communication resources. For the sake of simplicity, all communication times
will be expressed linearly with the data size. This restriction may lower the accuracy of our model, as
the behavior of communication in the Cell may not always follow linear laws: this is especially true
in the case of multiple transfers. However, a linear model renders the optimization of the schedule
tractable. A more complex model would result in more complex, thus harder, scheduling problem.
Instead, we consider that a linear model is a very good trade-off between the simplicity of the solution
and its accuracy.

In the following, we denote by chip(i) the index of the Cell where processing element PE i lies
(chip(i) = 0 or 1):

chip(i) =

{
0 if i = 0 or 2 ≤ i ≤ 9

1 if i = 1 or 10 ≤ i ≤ 17

We first consider the capacity of the input port of every processing element (either PPE or SPE),
which is limited to 25 GB/s:

∀PE i,

17∑
j=0

δi,j ×
1

25
≤ T (1)

The output capacity of the processing elements and the main memory is also limited to 25 GB/s.

∀PE i,

17∑
j=0

δj,i ×
1

25
≤ T (2)

When a PPE is performing a read operation, the maximum bandwidth of this transfer cannot exceed
2 GB/s.

∀PE i such that 0 ≤ i ≤ 1), ∀PE j , δi,j ×
1

2
≤ T (3)

The average aggregate capacity of the EIB of one Cell is limited to 149 GB/s.

∀Cellk,
∑

0≤i,j≤17 with
chip(i)=k or chip(j)=k

δi,j ×
1

149
≤ T (4)

9

When a SPE of Cell0 reads from a local memory in Cell1, the bandwidth of the transfer is to
4.91 GB/s.

∀PE i such that chip(i) = 0,
∑

j, chip(j)=1

δj,i ×
1

4.91
≤ T (5)

Similarly, we a SPE of Cell1 reads from a local memory in Cell0, the bandwidth is limited to
3.38 GB/s.

∀PE i such that chip(i) = 1,
∑

j, chip(j)=0

δj,i ×
1

3.38
≤ T (6)

On the whole, all processing elements of Cell0 cannot read data from Cell1 at a rate larger than
13 GB/s. ∑

PE i,PE j ,
chip(i)=0andchip(j)=1

δj,i ×
1

13
≤ T (7)

Similarly, all processing elements of Cell1 cannot read data from Cell0 at rate larger than 11.5 GB/s/∑
PE i,PE j ,

chip(i)=1andchip(j)=0

δj,i ×
1

11.5
≤ T (8)

The overall capacity of the FlexIO between both Cells is limited to 19 GB/s.∑
PE i,PE j

chip(i) 6=chip(j)

δi,j ×
1

19
≤ T (9)

We have tested this model on about one hundred random transfer patterns, comprising between
2 and 49 concurrent transfers. We developed a simple testing tool which enables us to transfer a
given amount of (random) data between any two pair of nodes (PPE or SPE), and more generally
to perform any pattern of communications. For each randomly generated transfer pattern, using this
tool, we measured the time texp needed to perform all communications. This time is compared with the
theoretical time tth predicted by the previous constraints, and the ratio tth/texp is computed. Figure 5
presents the distribution of this ratio for all transfer patterns. This figure shows that on average,
the predicted communication time is close to the experimental one (the average absolute between
the theoretical and the experimental time is 13%). We can also notice that our model is slightly
pessimistic (the average ratio is 0.89). This is because the congestion constraints presented above
correspond to scenarios where all transfers must go through the same interface, which is unlikely.
In practice, communications are scattered among all communication units, so that the total time for
communications is slightly less than what is predicted by the model. However, we choose to keep our
conservative model, to prevent an excessive usage of communications.

3.1.3 Communications and DMA calls

The Cell processor has very specific constraints, especially on communications between cores. Even
if SPEs are able to receive and send data while they are doing some computation, they are not multi-
threaded. The computation must be interrupted to initiate a communication (but the computation
is resumed immediately after the initialization of the communication). Due to the absence of auto-
interruption mechanism, the thread running on each SPE has regularly to suspend its computation and

10

0 0.5 1 1.5 2

Ratio between theoretical and experimental communication times

0

5

10

15

20

25

30

Fr
eq

ue
nc

y
(%

)

Figure 5: Model accuracy

check the status of current DMA calls. Moreover, the DMA stack on each SPE has a limited size.
A SPE can issue at most 16 simultaneous DMA calls, and can handle at most 8 simultaneous DMA
calls issued by the PPEs. Furthermore, when building a steady-state schedule, we do not want to
precisely order communications among processing elements. Indeed, such a task would require a lot
of synchronizations. On the contrary, we assume that all the communications of a given period may
happen simultaneously. These communications correspond to edgesDk,l of the task graph when tasks
Tk and Tl are not mapped on the same processing element. With the previous limitation on concurrent
DMA calls, this induces a strong limitation on the mapping: each SPE is able to receive at most 16
different data, and to send at most 8 data to PPEs per period.

3.2 Mapping a streaming application on the Cell

Thanks to the model obtained in the previous section, we are now able to design an efficient strategy to
map a streaming application on the target platform. We first recall how we model the application. We
then detail some specificities of the implementation of a streaming application on the Cell processor.

3.2.1 Complete application model

As presented above, we target complex streaming applications, as the one depicted on Figure 1(b).
These applications are commonly modeled with a Directed Acyclic Graph (DAG) GA = (VA, EA).
The set VA of nodes corresponds to tasks T1, . . . , TK . The set EA of edges models the dependencies
between tasks, and the associated data: the edge from Tk to Tl is denoted by Dk,l. A data Dk,l, of
size datak,l (in bytes), models a dependency between two task Tk and Tl, so that the processing of
the ith instance of task Tl requires the data corresponding to the ith instance of data Dl,k produced
by Tk. Moreover, it may well be the case that Tl also requires the results of a few instances following
the ith instance. In other words, Tl may need information on the near future (i.e., the next instances)
before actually processing an instance. For example, this happens in video encoding softwares, when
the program only encodes the difference between two images. We denote by peekk the number of
such instances. More formally, instances i, i+ 1, . . . , i+ peekk of Dk,l are needed to process the ith
instance of Tl. This number of following instances is important not only when constructing the actual

11

schedule and synchronizing the processing elements, but also when computing the mapping, because
of the limited size of local memories holding temporary data.

D1,3

T3

T2

T1

PE 2

PE 1

D1,2

peek 3 =1

(a) Application and
mapping. peek1 =
peek2 = 0 and peek3 = 1

period

T1

D
1,2

D
1,3

T3T2

T1

D
1,2

D
1,3

T3T2

T1

D
1,2

D
1,3

T1

T2

T1

D
1,2

D
1,3

T1

D
1,2

D
1,3

0 1 2 3 4

PE 2

PE 1

T

5

T2

(b) Periodic schedule.

Figure 6: Mapping and schedule

Given an application, our goal is to determine the best mapping of the tasks onto the processing
element. Once the mapping is chosen, a periodic schedule is automatically constructed as illustrated
on Figure 6. After a few periods for initialization, each processing element enters a steady state phase.
During this phase, a processing element in charge of a task Tk has to simultaneously perform three
operations. First it has to process one instance of Tk. It has to send the result Dk,l of the previous
instance to the processing element in charge of each successor task Tl. Finally, it has to receive the
data Dj,k of the next instance from the processing element in charge of each predecessor task Tj .
The exact construction of this periodic schedule is detailed in [5] for general mappings. In our case,
the construction of the schedule is quite straightforward: a processing element PE i in charge of a
task Tk simply processes it as soon as its input data is available. In other words, as soon as PE i

has received the data for the current instance and potentially the peekk following ones. For the sake
of simplicity, we do not consider the precise ordering of communications within a period. On the
contrary, we assume that all communications can happen simultaneously in one period as soon as the
communication constraints expressed in the previous section are satisfied.

3.2.2 Determining buffer sizes

Since SPEs have only 256 kB of local store, memory constraints on the mapping are tight. We need
to precisely model them by computing the exact buffer sizes required by the application.

Mainly for technical reasons, the code of the whole application is replicated in the local stores of
SPEs (of limited size LS) and in the memory shared by PPEs. We denote by code the size of the code
deployed on each SPE, so that the available memory for buffers is LS − code. A SPE processing a
task Tk has to devote a part of its memory to the buffers dedicated to hold incoming data Dj,k, as well
as for outgoing data Dk,l. Note that both buffers have to be allocated into the SPE’s memory even if
one of the neighbor tasks Tj or Tl is mapped on the same SPE. In a future optimization, we could save
memory by avoiding the duplication of buffers for neighbor tasks mapped on the same SPE.

As presented above, before computing an instance of a task Tk, a processing element has to
receive all the corresponding data, that is the data Dj,k produced by each predecessor task Tj , both
for the current instance and for the peekk following instances. Moreover processing elements are not
synchronized on the same instance. Thus, the results of several instances need to be stored during the
execution. In order to compute the number of stored data, we first compute the index of the period

12

in the schedule when the first instance of Tk is processed. The index of this period is denoted by
firstPeriod(Tk), and is expressed by:

firstPeriod(Tk) =

{
0 if Tk has no predecessor,
max
Dj,k

(
firstPeriod(Tj)

)
+ peekk + 2 otherwise.

All predecessors of an instance of task Tk are processed after maxDj,k

(
firstPeriod(Tj)

)
+ 1 pe-

riods. We have also to wait for peekk additional periods if some following instances are needed.
An additional period is added for the communication from the processing element handling the
data, hence the result. By induction on the structure of the task graph, this allows to compute
firstPeriod for all tasks. For example, with the task graph and mapping described on Figure 6,
we have firstPeriod(1) = 0, firstPeriod(2) = 2, and firstPeriod(3) = 4. Again, we could have
avoided the additional period dedicated for communication when tasks are mapped on the same pro-
cessor (e.g., we could have firstPeriod(3) = 3). However, we left this optimization as a future work
to keep our scheduling framework simple.

Once the firstPeriod(Tk) value of a task Tk is known, buffer sizes can be computed. For a given
data Dk,l, the number of temporary instances of this data that have to be stored in the system is
firstPeriod(Tl)− firstPeriod(Tk). Thus, the size of the buffer needed to store this data is tempk,l =
datak,l × (firstPeriod(Tl)− firstPeriod(Tk)).

3.3 Optimal mapping through mixed linear programming

In this section, we present a mixed linear programming approach that allows to compute a theoretically
optimal mapping. We recall that our objective is map the task of the application on the available
processing elements to get the largest throughput for the application, that is to maximize the number
of instances that can be processed by time-unit. Typically, for a visual application, our goal is to
deliver the maximum number of images per second.

The solution proposed in this section allows to compute a mapping of the tasks onto the processing
elements which achieve the optimal throughput according to the model presented in the previous sec-
tion. It is derived from [15], but takes into account the specific constraints of the QS 22 platform. The
problem is expressed as a linear program where integer and rational variables coexist. Although the
problem remains NP-complete, in practice, some software are able to solve such linear programs [11].
Indeed, thanks to the limited number of processing elements in the QS 22, we are able to compute the
optimal solution for task graphs of reasonable size (up to a few hundreds of tasks).

Our linear programming formulation makes use of both integer and rational variables. The integer
variables are described below. They can only take values 0 or 1.
• α’s variables which characterize where each task is processed: αk

i = 1 if and only if task Tk is
mapped on processing element PE i.
• β’s variables which characterize the mapping of data transfers: βk,li,j = 1 if and only if data Dk,l

is transferred from PE i to PE j (note that the same processing element may well handle both
task if i = j).

Obviously, these variables are related. In particular, βk,li,j = αk
i × αl

j , but this redundancy al-
lows us to express the problem as a set of linear constraints. The objective of the linear program
is to minimize the duration T of a period, which corresponds to maximizing the throughput ρ =
1/T . The constraints of the linear program are detailed below. Remember that processing elements
PE 0, . . . ,PEnP−1 are PPEs whereas PEnP , . . . ,PEn are SPEs.

13

• α and β are integers.

∀Dk,l,∀PE i and PE j , αk
i ∈ {0, 1}, β

k,l
i,j ∈ {0, 1} (10)

• Each task is mapped on one and only one processing element.

∀Tk,
∑n−1

i=0 α
k
i = 1 (11)

• The processing element computing a task holds all necessary input data.

∀Dk,l, ∀j, 0 ≤ j ≤ n− 1,
∑n−1

i=0 (β
k,l
i,j) ≥ αl

j (12)

• A processing element can send the output data of a task only if it processes the corresponding
task.

∀Dk,l, ∀i, 0 ≤ i ≤ n− 1,
∑n−1

j=0 (β
k,l
i,j) ≤ αk

i (13)

• The computing time of each processing element (PPE or SPE) is no larger that T .

∀i, 0 ≤ i < nP ,
∑

Tk
(αk

iwPPE(Tk)) ≤ T (14)

∀i, nP ≤ i < n,
∑

Tk
(αk

iwSPE(Tk)) ≤ T (15)

• All temporary buffers allocated on the SPEs fit into their local stores.

∀i, nP ≤ i < n,
∑

Tk

(
αk
i

(∑
Dk,l

tempk,l +
∑

Dl,k
templ,k

))
≤ LS − code (16)

• A SPE can perform at most 16 simultaneous incoming DMA calls, and at most eight simulta-
neous DMA calls are issued by PPEs on each SPE.

∀j, nP ≤ j < n,
∑

0≤i<n,i 6=j

∑
Dk,l

βk,li,j ≤ 16 (17)

∀i, nP ≤ i < n,
∑

0≤j<nP

∑
Dk,l

βk,li,j ≤ 8 (18)

• The amount of data communicated among processing elements during one period can be de-
duced from β.

∀PE i and PE j , δi,j =
∑
Dk,l

βk,li,j datak,l (19)

Using this definition, Equations (1), (2), (3), (4), (5), (6), (7), (8), and (9) ensure that all
communications are performed within period T .

The size of the linear program depends on the size of the task graphs: it counts n |VA|+n2 |EA|+1
variables.

We denote by ρopt = 1/Topt the optimal throughput, where Topt is the value of T in any optimal
solution of the linear program.This linear program computes a mapping of the application that reaches
the maximum achievable throughput. By construction, α is a valid mapping, and all possible mappings
can be described as α and β variables, which obey the constraints of the linear program.

14

4 Low-complexity heuristics

For large task graphs, solving the linear program may not be possible, or may take a very long time.
This is why we propose in this section heuristics with lower complexity to find a mapping of the task
graph on the QS 22. As explained in Section 3.2.1, the schedule which takes into account precedence
constraints, naturally derives from the mapping. We start with straightforward greedy mapping algo-
rithms, and then move to more involved strategies. Heuristics are briefly described in this section. We
refer the interested reader to the companion research report [13] for complete algorithms.

We recall a few useful notations for this section: wPPE(Tk) denotes the processing time of task Tk
on any PPE, whilewSPE(Tk) is its processing time on a SPE. For data dependencyDk,l between tasks
Tk and Tl, we have computed tempk,l, the number of temporary data that must be stored in steady
state. Thus, we can compute the overall buffer capacity needed for a given task Tk, which corresponds
to the buffers for all incoming and outgoing data: buffers[k] =

∑
j 6=k(tempj,k + tempk,j).

4.1 Communication-unaware load-balancing heuristic

The first heuristic is a greedy load-balancing strategy, which is only concerned with computation, and
does not take communication into account. Usually, such algorithms offer reasonable solutions while
having a low complexity.

This strategy first consider SPEs, since they hold the major part of the processing power of the
platform. The tasks are sorted according to their affinity with SPEs, and the tasks with larger affinity
are load-balanced among SPEs. Tasks that do not fit in the local store of SPEs are mapped on PPEs.
After this first step, some PPE might be underutilized. In this case, we then move some tasks which
have affinity with PPEs from SPEs to PPEs, until the load is globally balanced. This heuristic will be
referred to as GREEDY in the following.

4.2 Prerequisites for communication-aware heuristics

When considering complex task graphs, handling communications while mapping tasks onto proces-
sors is a hard task. This is especially true on the QS 22, which has several heterogeneous commu-
nication links, and even within each of its Cell processors. The previous heuristic ignore commu-
nications for the sake of simplicity. However, being aware of communications while mapping tasks
onto processing element is crucial for performance. We present here a common framework to handle
communications in our heuristics.

4.2.1 Partitioning the Cell in clusters of processing elements

As presented above, the QS 22 is made of several heterogeneous processing elements. In order to
handle communications, we first simplify its architecture and aggregate these processing elements
into coarse-grain groups sharing common characteristics.

If we take a closer look on the QS 22, we can see that some of the communication links are likely
to become bottlenecks. This is the case for the link between the PPEs and their respective set of
SPEs, and for the link between both Cell chips. Based on this observation, the QS 22 can therefore be
partitioned into four sets of processing elements, as shown in Figure 7. The communications within
each set are supposed to be fast enough. Therefore, their optimization is not crucial for performance,
and only the communications among the sets will be taken into account.

In order to estimate the performance of any candidate mapping of a given task graph on this
platform, it is necessary to evaluate both communication and computation times. We adopt a similar

15

PPE 1

PPE 2 C2

C1

tcomm
C1→PPE 1

tcomm
C1→C2

tcomm
PPE 1→C1

tcomm
C2→C1

tcomm
C2→PPE 2

tcomm
PPE 2→C2

Figure 7: Partition of the processing elements within the Cell

view as developed above for the design of the linear program. Given a mapping, we estimate the time
taken by all computations and communications, and we compute the period as the maximum of all
processing times.

As far as computations are concerned, we estimate the computation time tcomp
P of each part P of

processing element as the maximal workload of any processing element within the set. The workload
of a processing element PE is given by

∑
Tk∈S wSPE(Tk) in case of SPE, and by

∑
Tk∈S wPPE(Tk)

in case of a PPE, where S is the set of tasks mapped on the processing element.
For communications, we need to estimate the data transfer times on every links interconnecting

the sets of processing elements, as represented on Figure 7. For each unidirectional communication
link between two parts P1 and P2, we define tcomm

P1→P2
as the time required to transfer every data going

through that link. We adopt a linear cost model, as in the previous section. Hence, the communication
time is equal to the amount of data divided by the bandwidth of the link. We rely on the previous
benchmarks for the bandwidths:
• The links links between the two Cell chips have a bandwidth of 13 GB/s (C1 → C2) and

11.5 GB/s (C2 → C1), as highlighted in Equations (7) and (8);
• The links from a PPE to the accompanying set of SPEs (PPE 1 → C1 and PPE 2 → C2),

which correspond to a read operation from the main memory, have a bandwidth of 25 GB/s (see
Equation (2)).

The routing in this simplified platform is straightforward: for instance, the data transiting between
PPE 1 and PPE 2 must go through links PPE 1 → C1, C1 → C2 and finally C2 → PPE 2. Formally,
when DP1→P2 denotes the amount of data transferred from part P1 to part P2, the communication
time of link C1 → C2 is given by:

tcomm
C1→C2

=
DC1→C2 +DPPE1→C2 +DC1→PPE2 +DPPE1→PPE2

13

4.2.2 Load-balancing procedure among the SPEs of a given Cell

All heuristics that will be introduced in the following need to know whether the load-balancing of a
given task list across a set of SPEs is feasible or not, and what is the expected computation time. We
thus propose a handy greedy mapping policy which balances the load on each SPE, and will be used
in more complex heuristics. The provided task list L is first sorted using task weights wSPE(Tk).
Then we map the heaviest task Tk on the least loaded SPE SPE i, provided that it has enough memory

16

left to host Tk. If there is no such SPE, we return an error. Otherwise, we repeat this step until every
tasks are mapped onto a given SPE.

4.3 Clustering and mapping

A classical approach when scheduling a complex task graph on a parallel platform with both commu-
nication and computation costs is two use a two-step strategy. In a first set, the tasks are grouped into
clusters without considering the platform. In a second step, these clusters are mapped onto the actual
computation resources. In our case, the computing resources are the groups of processing elements
determined in the previous sections: PPE 1, PPE 2, C1, and C2.

The classical greedy heuristic due to Sarkar [30] is used to build up task clusters. The rationale
of this heuristic is to consider each expensive communication, and when it is interesting, to group the
tasks involved in this communication. This is achieved by merging the clusters containing the source
and destination tasks. The merging decision criterion is based on the makespan obtained for a single
instance of the task graph. To estimate this makespan, it is assumed that each cluster is processed by a
dedicated resource. The processing time of task Tk on a resource is set to (wSPE(Tk)+wPPE(Tk))/2,
and that the communication bandwidth between these resources is set to bw = 10GB/s (the available
bandwidth between both Cell chips). In addition, when building clusters, the memory footprint of each
cluster is bounded so that it can be mapped onto any resource (PPE or set of SPEs). In a second step,
this heuristic maps the clusters onto the real resources by load-balancing cluster loads across PPEs
and sets of SPEs.

4.4 Iterative refinement using DELEGATE

In this Section, we present an iterative strategy to build an efficient allocation. This method, called
DELEGATE, is adapted from the heuristic introduced [15]. It consists in iteratively refining an al-
location by moving some work from a highly loaded resource to a less loaded one, until the load is
equally balanced on all resources. Here, resources can be either PPEs (PPE 1 or PPE 2) or set of SPEs
(C1 or C2). In the beginning, all tasks are mapped on one of the PPE (PPE 1). Then, a (connected)
subset of tasks is selected and its processing is delegated to another resource. The new mapping is
selected if it respects memory constraints and improves the performance. This refinement procedure
is then repeated until no more transfer is possible. If the selected resource for a move is a PPE, it
is straightforward to compute the new processing time. If it is a set of SPEs, then the procedure
CELLGREEDYSET is used to check memory constraints and compute the new processing time.

As in [15], at each step, a large number of moves are considered: for each task, all d-neighborhoods
of this task are generated (with d = 1, 2 . . . dmax), and mapped onto each available resource. Among
this large set of moves, we select the one with best performance. This heuristic needs a more involved
way to compute the performance than simply using the period. Consider for example that both PPEs
are equally loaded, but all SPEs are free. Then no move can directly decrease the period, but two
moves are needed to decrease the load of both PPEs. Thus, for a given mapping, we compute all con-
tributions to the period: the load of each resource, and the time needed for communications between
any pair of resources (the period is the maximum of all contributions). The list of these contributions
is sorted by non-increasing value. To compare two mappings, the one with the smallest contribution
list in lexicographical order is selected.

17

5 Experimental validation

This section presents the experiments conducted to validate the scheduling framework introduced
above. We first present the scheduling software developed to run steady-state schedules on the QS 22,
then the application graphs in use, and finally report and comment the results.

5.1 Scheduling software

In order to run steady-state schedules on the QS 22, a complex software framework is needed: it has
to map tasks on different types of processing elements and to handle all communications. Although
there already exists some frameworks dedicated to streaming applications [18, 19], none of them is
able to deal with complex task graphs while allowing to statically select the mapping. Thus, we have
decided to develop our own framework1. Our scheduler requires the description of the task graph,
its mapping on the platform, and the code of each task. Even if it was designed to use the mapping
returned by the linear program, it can also use any other mapping, such as the ones dictated by the
previously described heuristic strategies.

For now, our scheduling framework is able to handle only one PPE. For the following, we thus
consider nP = 1 PPE and nP = 16 SPE.

Once all tasks are mapped onto the right processing elements and the process is properly initial-
ized, the scheduling procedure is divided into two main phases: the computation phase, when the
scheduler selects a task and processes it, and the communication phase, when the scheduler performs
asynchronous communications. These steps, depicted on Figure 8, are executed by every processing
elements. Moreover, since communications have to be overlapped with computations, our scheduler
cyclically alternates between those two phases.

Select a Task

Wait for Resources

Process Task

Signal new Data

Communicate

C
om

pu
ta

tio
n

Ph
as

e

Communicate

(a) Computation Phase.

No more comm.

No

No

C
om

m
un

ic
at

io
n

Ph
as

e

Compute

For each inbound comm.

Check input data

Watch DMA

Check input buffers

Get Data

(b) Communication Phase.

Figure 8: Scheduler state machine.

The computation phase, which is shown on Figure 8(a), begins with the selection of a runnable task
according to the provided schedule, and waits for the required resources (input data and output buffers)
to be available. If all required resources are available, the selected task is processed, otherwise, it
moves to the communication phase. Whenever a new data is produced, the scheduler signals it to every
dependent processing elements. Note that in our framework, computation tasks are not implemented

1An experimental version of our scheduling framework is available online, at http://graal.ens-lyon.fr/
~mjacquel/cell_ss.html

18

http://graal.ens-lyon.fr/~mjacquel/cell_ss.html
http://graal.ens-lyon.fr/~mjacquel/cell_ss.html

as OS tasks but rather as function calls. One computing thread is launched on each processing element
(PPE or SPEs). Each thread then internally chooses the next function (or node of the task graph) to
run according to the provided schedule. This allows us to avoid fine task scheduling at the OS level.

The communication phase, depicted in Figure 8(b), aims at performing every incoming commu-
nication, most often by issuing DMA calls. Therefore, the scheduler starts watching every previously
issued DMA calls in order to unlock the output buffer of the sender as soon as data had been received.
Then, the scheduler checks whether there is new incoming data. In that case, and if enough input
buffers are available, it issues the proper “Get” command.

Libnuma [26] is used for both thread and memory affinity. Since a PPE can simultaneously handle
two threads, the affinity of every management threads is set to the first multi-threading unit, while PPE
computing thread’s affinity is set to the second multi-threading unit. Therefore, management threads
and computing thread runs on different multi-threading units, and do not interfere. Moreover, the data
used by a given thread running on a PPE is always allocated on the memory bank associated to that
PPE.

To obtain a valid and efficient implementation of this scheduler, we had to overcome several
issues due to the very particular nature of the Cell processor. First, the main issue is heterogeneity:
the Cell processor is made of two different types of cores, which induces additional challenges for the
programmer:
• SPE are 32-bit processors whereas the PPE is a 64-bit architecture;
• Different communication mechanisms have to be used depending on which types of processing

elements are implied in the communication. To properly issue our “Get” operations, we made
use of three different intrinsics: mfc_get for SPE to SPE communications, spe_mfcio_put
for SPE to PPE communication, and memcpy for communication between PPE and main mem-
ory.

Another difficulty lies in the large number of variables that we need to statically initialize in each local
store before starting the processing of the stream: the information on the mapping, the buffer for data
transfer, and some control variables such as addresses of all memory blocks used for communications.
This initialization phase is again complicated by the different data sizes between 32-bit and 64-bit
architectures, and the run-time memory allocation.

All these issues show that the Cell processor is not designed for such a complex and decentralized
usage. However, our success in designing a complex scheduling framework proves that it is possible
to use such a heterogeneous processor for something else than pure data-parallelism.

5.2 Application scenarios

We test our scheduling framework on 25 random task graphs, obtained with the DagGen genera-
tor [32]. This allows us to test our strategy against task graphs with different depths, widths, and
branching factors.

The smallest graph has 20 tasks while the largest has 135 tasks. The smallest graph is a simple
chain of tasks, and the largest graph is depicted on Figure 9(a). On the communication side, the
number of edges goes from 19 to 204, the graph with 204 edges is depicted on Figure 9(b).

We classified the generated graphs into two sets, one for the smaller graphs, having up to 59 tasks,
and one for the larger graphs (87 - 135 tasks).

For all graphs, we generated 10 variants with different Communication-to-Computation Ratio
(CCR), resulting in 250 different random applications and 230 hours of computation. We define
the CCR of a scenario as the total number of transferred elements divided by the total number of

19

operations on these elements. In the experiments, the CCR ranges from 0.001 (computation-intensive
scenario) to 0.1 (communication-intensive scenario).

1

2

3

4

5

135

6 7

8

9

10 11 12 13 14 15 16

17

18

19

20

21

22 23 24 25

26

27 28 29

30

31

32

33

34

36

35 37 38 39 40

41

42

43

44

45

46

47

48 49

50

51

52

53

54
55

56
57

58 59 60 61

62

63

64 65

66

67

68

69 70

71

73

72

75

74

76

77

78

79

80

81 82

83

84

85

86

87 88 89 90 91

92

93

94

95 96

97

98
99

100

101

102

103

105

104

106 107

108

109

110

111

114

112

113
115

116

117

118

119

120

121 122

123

124

125

126

127

128

129

130

131

132 133 134

(a) Graph with largest number of tasks

1

2

3 4

133

5

6

7 9

8

10

11

1415 16

12 1318 21

17

19

20

22 23

27

2534 28

2429 30

31

26 32

333538 37 36

45

47

414640

43 44

3942 48

5150 49

54 57586053

56

59

52

55

6265 6366 67 6461

72

68

75

77

70 69

7178

73

79 7476

80 8487

90

81

8689

838891 85

82

93 94

92 95

98

102 103104

100 97 99

96 101105

107

109 108 106

111

112115

116

113 114

110

118

123119 121 125 120 122124 127 128126 130

117129

132131

(b) Graph with largest number of edges

Figure 9: Largest task graphs used in the experiments

In the experiments, we denote by MIP the scheduling strategy using Mixed Integer Programming
to compute an optimal mapping, and described in Section 3.3. ILOG CPLEX [11] is used to solve
the linear program with rational and integer variables. To reduce the computation time for solving the
linear program, we used the ability of CPLEX to stop its computation as soon as its solution is within
5% of the optimal solution. While this significantly reduces the average resolution time, it still offers
a very good solution.

5.3 Experimental results

In this section, we present the performance obtained by the scheduling framework presented above.
We first focus on the initialization phase of streaming applications using our framework, showing
that steady-state operation is reached for a reasonably small length of stream. Then, we compare
the throughput obtained by the heuristics introduced in Section 4 and the algorithm MIP, both using
the model of the QS 22 and using experiments on a real platform. Finally, we discuss the impact of
the communication-to-computation ration, and estimate the time required to compute mappings using
each strategy. Note that except when we study the influence of the number of SPEs, all the results
presented below are computed using all 16 SPEs in the QS 22.

5.3.1 Entering steady-state

First, we show that our scheduling framework succeeds in reaching steady-state, and that the through-
put is then similar to the one predicted by the linear program. Figure 10 shows the throughput obtained
with streams of different sizes: for a short stream containing few data sets, or instances, the start-up
cost is important, and the overall throughput is small. However, as soon as the number of instances
reaches a few thousands, the obtained throughput is stable. Note that the input data of one instance
consists only of a few bytes, so the duration of the transient phase before reaching the steady-state

20

throughput is small compared to the total duration of the stream. In steady state, the experimental
throughput achieves 95% of the theoretical throughput predicted by the linear program. The small
gap is explained by the overhead of our framework, and the synchronizations induced when commu-
nications are performed. The schedules given by other mappings, computed using heuristics, also
reaches steady state after a comparable transient phase. We discuss their steady-state throughput
below.

T
hr

ou
gh

pu
t(

in
st

an
ce

/s
ec

)

1500 1750 2000 2250

Number of instances

0

1

2

3

4

5

6

7

8

9

10

11

12

0 250 500 750 1000 1250

GREEDY

Experimental MIP
DELEGATE

Using a single PPE
CLUSTER

Theoretical MIP

Figure 10: Throughput achieved depending on the length of the stream, using the task graph described
in Figure 9(b), with a CCR of 0.004, on the QS 22 using all 16 SPEs.

In Table 1, we present the number of instances that are required to reach steady state, that is, to
reach 99% of the maximum (experimental) throughput, for all possible scenarios. The average value
is around 2000 instances, but the mapping computed using MIP reaches steady state faster than the
other solutions. We have observed the same behavior on small and large task graphs. This shows that
our scheduling framework is able to reach steady-state operation for any mapping within a reasonable
amount of instances compared to the usual length of streaming applications.

Algorithm Min. Max. Average Std. dev.
GREEDY 300 18,500 2,234 2,589

DELEGATE 250 16,500 2,249 2,381
CLUSTER 300 14,600 2,214 2,586

MIP 300 14,500 2,050 2,182

Table 1: Number of instances required to reach steady state for all scenarios.

Figure 11(a) presents the distribution of the ratio ρMIP
exp /ρ

MIP
th , where ρMIP

exp is the experimental
throughput of MIP, and ρMIP

th is the theoretical throughput (the one predicted by the linear program).
The average ratio is 0.91, but we can observe that the experimental throughput is sometimes very
different from the theoretical one (as less as 20% or as much as 597%). Cases when the experimental
throughput is 5 times smaller than the predicted one mainly happen for small task graphs, when the
very few tasks are scheduled on each processing elements, which leads to a high synchronization cost.
Figure 11(b) shows the results for large task graphs, when the accuracy of the predicted throughput
is larger (the average ratio is 1.10). There still remain some cases with a high ratio (the experimental
throughput is larger than the predicted throughput). This corresponds to communication-intensive

21

scenarios: in a few cases, our communication model is very pessimistic for communications and
overestimates bandwidth contention.

1 2 3 4 5 6

0

5

10

15

20

25

30

Fr
eq

ue
nc

y
(%

)

Experimental/theoretical MIP throughput

(a) All task graphs

1 1.5 2 2.5 3 3.5 4

0

10

20

30

40

50

60

Fr
eq

ue
nc

y
(%

)

Experimental/theoretical MIP throughput

(b) Large task graphs

Figure 11: Distribution of the ratio between experimental and theoretical throughputs for the MIP
strategy.

5.3.2 Theoretical comparison of heuristics with MIP

We first start by comparing the expected throughput of the heuristics described in Section 4 with
the theoretical throughput of MIP, detailed in Section 3.3. This allows to measure the quality of
the mapping produced by heuristics without the particularities of the scheduling framework, and the
inaccuracies of the QS 22 model.

For this purpose, we first compute the theoretical throughput of all mappings produced by the
heuristics. A mapping is first described using the α and β variables from the linear program presented
in Section 3.3. The expected period of the mapping can then be computed using Constraints (14)
and (15) (for computations) and Constraints (1), (2), (3), (4), (5), (6), (7), (8), and (9) (for communi-
cations).

This theoretical comparison also helps to assess the limitation of the constraints on DMA calls.
In the design of the MIP strategy, the limited number of simultaneous DMA calls for PPEs and
SPEs is taken into account with two Constraints (Equations (17) and (18)). This limitation is not
taken into account while designing heuristics, because we want to keep their design simple. Our
scheduling framework assigns DMA calls dynamically to communication requests, and is able to deal
with any number of communications. Of course, when the number of simultaneous communications
exceeds the bounds, communications are delayed, thus impacting the throughput. The comparison of
theoretical throughput of mappings allows us to measure the limitation on the expected throughput
induced by these constraints, which only exist for MIP.

We hence compute the ratio ρH
th/ρ

MIP
th , where ρHth is the predicted throughput of any heuristic H,

and ρMIP
th is the predicted throughput of MIP. Detailed results are given in Table 2.

These results show that in some cases, the limitation on the number of DMA calls has an impact
on the throughput: there are cases when the CLUSTER strategy finds a mapping with an expected
throughput twice the one of MIP. The MIP strategy is able to reach the best throughput among all
strategies in only 80% of the scenarios, due to this limitation. However, MIP still gives a better
average throughput than all other strategies. Thus, this limitation has a little impact on performance.

Among heuristics, the DELEGATE strategy ranks first: it is almost within 25% of the performance
of MIP, and on average gives the same results, and gives the best performance on 60% of the scenar-

22

All task graphs
Algorithm Min. Max. Average Std. dev. Best cases
GREEDY 0.55 1.49 0.82 0.12 6%

DELEGATE 0.75 1.05 0.97 0.07 60%
CLUSTER 0.00 2.46 0.32 0.28 1%

MIP 1.00 1.00 1.00 0.00 80%

Small task graphs
Algorithm Min. Max. Average Std. dev. Best cases
GREEDY 0.55 1.49 0.82 0.13 8%

DELEGATE 0.87 1.05 0.99 0.04 71%
CLUSTER 0.05 2.46 0.32 0.26 1%

MIP 1.00 1.00 1.00 0.00 78%

Large task graphs
Algorithm Min. Max. Average Std. dev. Best cases
GREEDY 0.63 0.98 0.79 0.10 0%

DELEGATE 0.75 1.04 0.91 0.09 27%
CLUSTER 0.00 0.81 0.33 0.33 0%

MIP 1.00 1.00 1.00 0.00 88%

Table 2: Predicted throughput of heuristics normalized to the predicted throughput of MIP

ios. (Note that several heuristics may give the best throughput for a scenario, hence leading to a sum
larger than 100%). Quite surprisingly, the CLUSTER strategy gives very poor results: on average its
throughput is only one third of the MIP throughput, whereas the simple GREEDY strategy performs
better, with an average throughput around 80% of the MIP throughput. All heuristics perform better
on small task graphs, and have more difficulties to tackle the higher complexity of large task graphs.

The bad performance of CLUSTER is surprising because this heuristics takes communication into
account, as opposed to GREEDY. However, the communications are considered only when building
clusters in the first phase. In the second phase, when clusters are mapped on the resources, communi-
cations are totally neglected. However, all communications do not have the same impact, because the
communication graph has heterogeneous links. Moreover, since clusters have been made to cancel
out the impact of large communications, the load balancing procedure in the second phase has less
freedom, and is unable to reach a well balanced mapping. This explains why the mapping produced
by CLUSTER are usually worse than the one given by DELEGATE or GREEDY.

5.3.3 Experimental comparison of heuristics with MIP

We move to the experimental comparison of heuristics and MIP, when all mappings are scheduled
with our scheduling software on the real QS 22 platform. For the sake of comparison, all throughputs
are normalized by the throughput of MIP, and we present in Table 3 the ratio ρH

exp/ρ
MIP
exp , where ρH

exp

is the experimental throughput of any heuristic H, and ρMIP
exp is the experimental throughput of MIP.

The comparison between heuristics and MIP is close to the one with expected throughputs. How-
ever, the gap between MIP and each heuristic is smaller: heuristics perform somewhat better on
the real platform that on the model. The average throughput of DELEGATE is very close to MIP’s

23

All task graphs
Algorithm Min. Max. Average Std. dev. Best cases
GREEDY 0.32 3.28 0.91 0.39 8%

DELEGATE 0.75 2.63 1.06 0.27 48%
CLUSTER 0.00 1.80 0.41 0.28 0%

MIP 1.00 1.00 1.00 0.00 54%

Small task graphs
Algorithm Min. Max. Average Std. dev. Best cases
GREEDY 0.32 3.28 0.93 0.43 11%

DELEGATE 0.78 2.63 1.10 0.28 56%
CLUSTER 0.08 1.80 0.44 0.26 0%

MIP 1.00 1.00 1.00 0.00 46%

Large task graphs
Algorithm Min. Max. Average Std. dev. Best cases
GREEDY 0.64 1.73 0.85 0.21 0%

DELEGATE 0.75 1.89 0.95 0.20 23%
CLUSTER 0.00 0.82 0.33 0.34 0%

MIP 1.00 1.00 1.00 0.00 80%

Table 3: Experimental throughput of heuristics normalized to the experimental throughput of MIP

throughput (larger for small task graphs, but smaller for large task graphs), and GREEDY gets around
90% of the MIP’s throughput. Once again, CLUSTER gives a very limited average throughput, with
only 41% of the MIP’s throughput. On large task graphs, MIP is above all heuristics, and reaches the
best throughput in 80% of the cases. However, on average, DELEGATE is able to achieve 95% of the
MIP’s throughput.

5.3.4 Scaling and influence of the communication-to-computation ratio

In this section, we present the speed-up obtained by MIP and heuristics. We also study the influence of
the Communication-to-Computation Ratio (CCR), both on the duration of the transient phase before
reaching steady state, and on the accuracy of the model.

We first present the performance obtained by all strategies, with different number of SPEs. In
the MIP solution, the number of SPEs is a parameter, which may vary between 0 and 16. For all
heuristics developed above, it is quite straightforward to adapt them to deal with a variable number
of SPEs. Figure 12 present the average speed-up of each heuristic obtained for different number of
SPEs. We observe that all heuristics are able to take advantage of an increasing number of SPEs.
When the CCR is high, the resulting speed-up is smaller than when the CCR is low, because large
communications make it more difficult to distribute tasks among processing elements. This is also
outlined by Figure 13(b), which presents the variation of the average speed-up of heuristics (for 16
SPEs) with the CCR. For a CCR smaller than 0.02, the average speed-up is almost constant, while it
decreases for a larger CCR. We can observe that DELEGATE is a little less sensitive to the increase
of the CCR than MIP. For some strategies, the speed-up slightly increases when the CCR increases
from 0.001 to 0.02. This is because to increase the CCR, we first decrease the computation amount of

24

0 2 4 6 8 10 12 14 16

Number of SPE used

0

1

2

3

4

5

6

A
ve

ra
ge

sp
ee

du
p

GREEDY

Experimental MIP
DELEGATE

CLUSTER

(a) With CCR=0.001

0 2 4 6 8 10 12 14 16

Number of SPE used

0

1

2

3

4

5

6

A
ve

ra
ge

sp
ee

du
p

GREEDY

Experimental MIP
DELEGATE

CLUSTER

(b) With CCR=0.1

Figure 12: Average speed-up vs. number of SPEs in use.

tasks, which makes the overhead of the scheduling software (launching tasks, checking buffers, etc.)
more visible when all tasks are scheduled on the PPE.

All task graphs, CCR of 0.001
Algorithm Min. Max. Average Std. dev.
GREEDY 300 400 367 38

DELEGATE 300 400 367 42
CLUSTER 300 400 361 40

MIP 300 400 375 35

All task graphs, CCR of 0.1
Algorithm Min. Max. Average Std. dev.
GREEDY 200 4750 788 974

DELEGATE 200 4200 750 850
CLUSTER 150 2950 702 681

MIP 150 3200 646 670

Table 4: Number of instances required to reach steady state

All mapping heuristics produce a periodic schedule, which needs to be initialized: the first data
of the stream have to be processed specifically before the periodic schedule can be started. Table 4
presents the number of instances that are processed in this transient phase, for the two extreme values
of CCR: 0.001 (computation-intensive scenario) and 0.1 (communication-intensive scenario). We
observe that the larger the CCR, the longer the duration of the transient phase: when communications
are predominant, it is more difficult to reach a steady state phase even if communications are well
overlapped with computations.

Figure 13(a) presents the evolution of the ratio between the experimental throughput of MIP over
its predicted throughput in function of the CCR. We notice that for all CCR smaller than 0.05, our
model is slightly optimistic, and predicts a throughput at most 30% larger than the one obtained in
the experiments. For larger CCRs, corresponding to communication-intensive scenarios, the model is
pessimistic and larger throughputs are obtained in the experiments. Our model is thus best suited for
average values of the CCR. In case of extreme values, it is necessary to modify the model, either by
taking into account synchronization costs, when CCR is very small, or by better modeling contention
between communications, in case of a very large CCR.

5.3.5 Time required to compute schedules

When considering streaming application, it is usually assumed that streams have very long durations.
This is why it is worth spending some time to optimize the schedule before the real data process-
ing. Yet, since we are using mixed linear programming, we report the time needed to compute the

25

0.001 0.01 0.1

CCR

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

E
xp

er
im

en
ta

l/P
re

di
ct

ed
M

IP
T

hr
ou

gh
pu

t

(a) Model accuracy vs. CCR

0.001 0.01 0.1

CCR

0

2

4

6

8

10

A
ve

ra
ge

sp
ee

du
p

GREEDY

Experimental MIP
DELEGATE

CLUSTER

(b) Average speed-up vs. CCR

Figure 13: Evolution of the model accuracy and the speedup with the CCR.

schedules, to prove that this is done in reasonable time.
Table 5 presents the time required to compute mappings using each algorithm. On average, the

MIP strategy requires twice as much time than all heuristics, and runs for less than two minutes.
In some cases, corresponding to large graphs, the run time of MIP can reach 12 minutes, whereas
DELEGATE need at most 3 minutes. These running, although large, are very reasonable in the context
of streaming applications that are supposed to run for several minutes or hours.

Algorithm Min. Max. Average
GREEDY 2.7 189 39
CLUSTER 2.6 190 39

DELEGATE 2.9 205 48
MIP 3.6 706 80

Table 5: Scheduling time in seconds

6 Related Work

Streaming applications. Scheduling streaming applications is the subject of a vast literature. Sev-
eral models and frameworks had been introduced like StreamIt [31], Brook [12] or Data Cutter
Lite [8]. However, our motivation for this work was rather to extract a simple and yet relevant model
for the Cell processor, so as to be able to provide a way to compute interesting mapping for pipeline
applications. To the best of our knowledge, this has never been considered for the Cell processor, nor
for another multi-core architecture that exhibits a similar heterogeneity. Note that the small scale of
the target architecture makes the problem very particular, and that it was not clear that such complex
mapping techniques could result in a feasible and competitive solution for streaming applications. To
the best of our knowledge, none of the existing frameworks which target the Cell processor make it
is possible to implement our own static scheduling strategies. The main two limitations of existing
frameworks are the restriction to simple pipeline applications (chain task graphs), whereas we target
any DAG, and the fact that only SPEs are used for computation, the PPE being restricted to control,
whereas we take advantage of the heterogeneity.

26

It is worth mentioning that the problem studied in this paper is close to some research in the
Digital Signal Processing (DSP) community. For example, Hoang et al. consider the problem of
scheduling a flow graph on such a parallel DSP platform [21]. The advance of multicore DSP [24]
makes the problems even closer. However, in DSP literature, it is usually assumed that the program to
be implemented on the platform is at hand, and can be modified when needed: code can be rewritten to
split tasks, etc., whereas we consider a fixed task graph. Moreover, DSP literature is often concerned
with other constraints like energy consumption and heat dissipation for mobile devices or real-time
constraints.

Task graph scheduling. When scheduling tasks which have dependencies between them, it is nat-
ural to model the resulting problem as a Directed Acyclic Graph (DAG). There are a lot of DAG
scheduling studies that are related to the present paper, especially the ones targeting a heterogeneous
environment. The most used techniques are list scheduling [9], clustering [28], and task duplica-
tion [1]. However, these studies usually consider a single DAG, and try to minimize the completion
time of this DAG, whereas we consider a pipelined version of the problem, when several instances of
a common DAG have to be processed.

Memory access and computation overlap. Hiding memory accesses latencies is a crucial need
when considering the Cell processor. In [17], the authors introduce an improvement to the Decoupled
Threaded Architecture [16] consisting in a prefetch mechanism. They propose an implementation
of this mechanism on the Cell processor through the use of DMA calls and extensions to compiler
instructions set, which interest is demonstrated through simulation (no real implementation seems to
be available). In our scheduler, we propose a real implementation of a similar prefetch mechanism.

7 Conclusion

In this paper, we have studied the scheduling of streaming applications on a heterogeneous platform:
the IBM Bladecenter QS 22, made of two heterogeneous multi-core Cell processors. The first chal-
lenge was to come up with a realistic and yet tractable model of the Cell processor. We have designed
such a model, and we have used it to express the optimization problem of finding a mapping with max-
imal throughput. This problem has been proven NP-complete, and we have designed a formulation of
the problem as a mixed linear program. By solving this linear program with appropriate tools, we can
compute a mapping with optimal throughput. We have also proposed a set of scheduling heuristics to
avoid the complexity of mixed linear programing.

In a second step, we have implemented a complete scheduling framework to deploy streaming
applications on the QS 22. This framework, available for public use, allows the user to deploy any
streaming application, described by a potentially complex task graph, on a QS 22 platform or single
Cell processor, given any mapping of the application to the platform. Thanks to this scheduling
framework, we have been able to perform a comprehensive experimental study of all our scheduling
strategies. We have shown that our MIP strategy usually reaches 90% of the throughput predicted by
the linear program, that it has a good and scalable speed-up when using up to 16 SPEs. Some of the
proposed heuristics, in particular DELEGATE, are also able to reach very good performance. When
the task graph to schedule is large, MIP is the one which offers the best performance, but DELEGATE

achieves 95% of its throughput on average. We have shown that considering load-balancing among
processing elements, and carefully estimating communications between the different components of
this bi-Cell platform, is the key to performance.

27

Overall, this demonstrates that scheduling a complex application on a heterogeneous multi-core
processor is a challenging task, but that scheduling tools can help to achieve good performance.

This work has several natural extensions, which includes refining the model presented for the
QS 22 to more complex platform, for example to consider a cluster of QS 22, or other multi-core
platform.

References

[1] Ishfaq Ahmad and Yu-Kwong Kwok. On exploiting task duplication in parallel program schedul-
ing. IEEE Trans. Parallel Distrib. Syst., 9(9):872–892, 1998.

[2] M. Ålind, M. Eriksson, and C. Kessler. BlockLib: a skeleton library for Cell broadband engine.
In IWMSE ’08: Proceedings of the 1st international workshop on Multicore software engineer-
ing, pages 7–14. ACM, 2008.

[3] AMD Fusion. http://fusion.amd.com.

[4] Kevin J. Barker, Kei Davis, Adolfy Hoisie, Darren J. Kerbyson, Mike Lang, Scott Pakin, and
Jose C. Sancho. Entering the petaflop era: the architecture and performance of roadrunner. In
SC ’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pages 1–11, 2008.

[5] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Steady-state scheduling on heterogeneous
clusters. International Journal of Foundations of Computer Science, 16(2):163–194, 2005.

[6] Olivier Beaumont and Loris Marchal. Steady-state scheduling. In Introduction to Scheduling,
pages 159–186. Chapman and Hall/CRC Press, 2010.

[7] Pieter Bellens, Josep M. Pérez, Felipe Cabarcas, Alex Ramírez, Rosa M. Badia, and Jesús
Labarta. CellSs: Scheduling techniques to better exploit memory hierarchy. Scientific Pro-
gramming, 17(1-2):77–95, 2009.

[8] Michael D. Beynon, Tahsin M. Kurç, Ümit V. Çatalyürek, Chialin Chang, Alan Sussman, and
Joel H. Saltz. Distributed processing of very large datasets with datacutter. Parallel Computing,
27(11):1457–1478, 2001.

[9] P. Chrétienne, E. G. Coffman Jr., J. K. Lenstra, and Z. Liu, editors. Scheduling Theory and its
Applications. John Wiley and Sons, 1995.

[10] ClearSpeed technology. http://www.clearspeed.com/technology/index.php.

[11] ILOG CPLEX: High-performance software for mathematical programming and optimization.
http://www.ilog.com/products/cplex/.

[12] William J. Dally, Francois Labonte, Abhishek Das, Patrick Hanrahan, Jung-Ho Ahn, Jayanth
Gummaraju, Mattan Erez, Nuwan Jayasena, Ian Buck, Timothy J. Knight, and Ujval J. Kapasi.
Merrimac: Supercomputing with streams. In SC ’03: Proceedings of the 2003 ACM/IEEE
conference on Supercomputing, page 35, Washington, DC, USA, 2003. IEEE Computer Society.

[13] Tudor David, Mathias Jacquelin, and Loris Marchal. Scheduling streaming applications on a
complex multicore platform. Research report RR2010-25, LIP, ENS Lyon, France, 20010. avail-
able online at graal.ens-lyon.fr/~lmarchal/.

28

http://fusion.amd.com
http://www.clearspeed.com/technology/index.php
http://www.ilog.com/products/cplex/
graal.ens-lyon.fr/~lmarchal/

[14] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem, Mike Houston,
Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken, William J. Dally, and Pat Hanra-
han. Memory - sequoia: programming the memory hierarchy. In SC ’06: Proceedings of the
ACM/IEEE conference on Supercomputing, page 83, 2006.

[15] Matthieu Gallet, Loris Marchal, and Frédéric Vivien. Efficient scheduling of task graph collec-
tions on heterogeneous resources. In IEEE International Parallel and Distributed Processing
Symposium, 2009.

[16] Roberto Giorgi, Zdravko Popovic, and Nikola Puzovic. Dta-c: A decoupled multi-threaded
architecture for cmp systems. In SBAC-PAD, pages 263–270, 2007.

[17] Roberto Giorgi, Zdravko Popovic, and Nikola Puzovic. Exploiting DMA to enable non-blocking
execution in decoupled threaded architecture. In IEEE International Parallel and Distributed
Processing Symposium, 2009.

[18] X. Hang. A streaming computation framework for the Cell processor. Master’s thesis, Mas-
sachusetts Institute of Technology, 2007.

[19] T. Hartley and U. Catalyurek. A component-based framework for the Cell broadband engine. In
IEEE International Parallel and Distributed Processing Symposium, 2009.

[20] Stephen L. Hary and Fusun Ozguner. Precedence-constrained task allocation onto point-to-point
networks for pipelined execution. IEEE Trans. Parallel and Distributed Systems, 10(8):838–851,
1999.

[21] P.D. Hoang and J.M. Rabaey. Scheduling of dsp programs onto multiprocessors for maximum
throughput. Signal Processing, IEEE Transactions on, 41(6):2225 –2235, June 1993.

[22] IBM software kit for multicore acceleration. http://www.ibm.com/chips/techlib/
techlib.nsf/products/IBM_SDK_for_Multicore_Acceleration.

[23] James A. Kahle, Michael N. Day, H. Peter Hofstee, Charles R. Johns, Theodore R. Maeurer,
and David J. Shippy. Introduction to the cell multiprocessor. IBM Journal of Research and
Development, 49(4-5):589–604, 2005.

[24] L.J. Karam, I. AlKamal, A. Gatherer, G.A. Frantz, D.V. Anderson, and B.L. Evans. Trends in
multicore dsp platforms. Signal Processing Magazine, IEEE, 26(6):38 –49, 2009.

[25] Michael Kistler, Michael Perrone, and Fabrizio Petrini. Cell multiprocessor communication
network: Built for speed. IEEE Micro, 26(3):10–23, 2006.

[26] Andreas Kleen. A numa api for linux. http://andikleen.de/, 2005.

[27] Mercury technology. http://www.mc.com/technologies/technology.aspx.

[28] Michael A. Palis, Jing-Chiou Liou, and David S. L. Wei. Task clustering and scheduling for
distributed memory parallel architectures. IEEE Trans. Parallel Distrib. Syst., 7(1):46–55, 1996.

[29] IBM BladeCenter QS 22. http://www-03.ibm.com/systems/bladecenter/
hardware/servers/qs22/.

29

http://www.ibm.com/chips/techlib/techlib.nsf/products/IBM_SDK_for_Multicore_Acceleration
http://www.ibm.com/chips/techlib/techlib.nsf/products/IBM_SDK_for_Multicore_Acceleration
http://andikleen.de/
http://www.mc.com/technologies/technology.aspx
http://www-03.ibm.com/systems/bladecenter/hardware/servers/qs22/
http://www-03.ibm.com/systems/bladecenter/hardware/servers/qs22/

[30] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT Press,
Cambridge, MA, USA, 1989.

[31] StreamIt project. http://groups.csail.mit.edu/cag/streamit/index.
shtml.

[32] F. Suter. DAG generation program. http://www.loria.fr/~suter/dags.html.

[33] William Thies. Language and Compiler Support for Stream Programs. PhD thesis, Mas-
sachusetts Institute of Technology, 2001.

[34] Q. Wu, J. Gao, M. Zhu, N.S.V. Rao, J. Huang, and S.S. Iyengar. On optimal resource utilization
for distributed remote visualization. IEEE Trans. Computers, 57(1):55–68, 2008.

30

http://groups.csail.mit.edu/cag/streamit/index.shtml
http://groups.csail.mit.edu/cag/streamit/index.shtml
http://www.loria.fr/~suter/dags.html

	1 Introduction
	2 General framework and context
	3 Adaptation of the scheduling framework to the QS 22 architecture
	3.1 Platform description and model
	3.1.1 Description of the QS 22 architecture
	3.1.2 Benchmarks and model of the QS 22
	3.1.3 Communications and DMA calls

	3.2 Mapping a streaming application on the Cell
	3.2.1 Complete application model
	3.2.2 Determining buffer sizes

	3.3 Optimal mapping through mixed linear programming

	4 Low-complexity heuristics
	4.1 Communication-unaware load-balancing heuristic
	4.2 Prerequisites for communication-aware heuristics
	4.2.1 Partitioning the Cell in clusters of processing elements
	4.2.2 Load-balancing procedure among the SPEs of a given Cell

	4.3 Clustering and mapping
	4.4 Iterative refinement using Delegate

	5 Experimental validation
	5.1 Scheduling software
	5.2 Application scenarios
	5.3 Experimental results
	5.3.1 Entering steady-state
	5.3.2 Theoretical comparison of heuristics with MIP
	5.3.3 Experimental comparison of heuristics with MIP
	5.3.4 Scaling and influence of the communication-to-computation ratio
	5.3.5 Time required to compute schedules

	6 Related Work
	7 Conclusion

