
Parallel Processing Lettersfc World Scientific Publishing Company

SCHEDULING ALGORITHMS FOR DATA REDISTRIBUTION AND
LOAD-BALANCING ON MASTER-SLAVE PLATFORMS

LORIS MARCHAL, VERONIKA REHN, YVES ROBERT, FRÉDÉRIC VIVIEN

LIP, ENS Lyon, 46 allée d’ Italie
69364 Lyon, Cedex 07, France∗

Received September 2006
Revised January 2007

Communicated by Guest Editors

ABSTRACT
In this work we are interested in the problem of scheduling and redistributing data

on master-slave platforms. We consider the case were the workers possess initial loads,
some of which having to be redistributed in order to balance their completion times.
We assume that the data consists of independent and identical tasks. We prove the NP
completeness of the problem for fully heterogeneous platforms. Also, we present opti-
mal polynomial algorithms for special important topologies: a simple greedy algorithm
for homogeneous star-networks, and a more complicated algorithm for platforms with
homogeneous communication links and heterogeneous workers.

Keywords: Master-slave platform, scheduling, data redistribution, one-port model, in-
dependent tasks, divisible load theory.

1. Introduction

In this work we consider the problem of scheduling and redistributing data on
master-slave architectures in star topologies. Because of variations in the resource
performance (CPU speed or communication bandwidth), or because of unbalanced
amounts of current load on the workers, data must be redistributed between the
participating processors, so that the updated load is better balanced in terms that
the overall processing finishes earlier.

We adopt the following abstract view of our problem. There are m + 1 par-
ticipating processors P0, P1, . . . , Pm, where P0 is the master. Each processor Pk,
1 ≤ k ≤ m initially holds Lk data items. During our scheduling process we try to
determine which processor Pi should send some data to another worker Pj to equili-
brate their finishing times. The goal is to minimize the global makespan, that is the
time until each processor has finished to process its data. Furthermore we suppose
that each communication link is fully bidirectional, with the same bandwidth for
receptions and sendings. This assumption is quite realistic in practice, and does
not change the complexity of the scheduling problem, which we prove NP-complete
in the strong sense.
∗{Loris.Marchal, Veronika.Rehn, Yves.Robert, Frederic.Vivien}@ens-lyon.fr

Parallel Processing Letters

We assume that data items consist in independent and uniform (same-size)
tasks. There are many practical applications who use fixed identical and inde-
pendent tasks. A famous example is BOINC [1], the Berkeley Open Infrastructure
for Network Computing, an open-source software platform for volunteer comput-
ing. It works as a centralized scheduler that distributes tasks for participating
applications. These projects consists in the treatment of computation extensive
and expensive scientific problems of multiple domains, such as biology, chemistry
or mathematics. SETI@home [2] for example uses the accumulated computation
power for the search of extraterrestrial intelligence. In the astrophysical domain,
Einstein@home [3] searches for spinning neutron stars using data from the LIGO
and GEO gravitational wave detectors. To get an idea of the task dimensions, in
this project a task is about 12 MB and requires between 5 and 24 hours of dedi-
cated computation. Also, from a theoretical viewpoint, the scheduling problem is
obviously NP complete when tasks have different sizes (trivial reduction from 2-
PARTITION [4], which provides yet another reason to restrict to same-size tasks).

As already mentioned, we suppose that all data are initially situated on the
workers, which leads us to a kind of redistribution problem. Existing redistribu-
tion algorithms have a different objective. Neither do they care how the degree of
imbalance is determined, nor do they include the computation phase in their opti-
mizations. They expect that a load-balancing algorithm has already taken place.
After the load-balancing phase, a redistribution algorithm determines the required
communications and organizes them in minimal time. We could use such an ap-
proach: redistribute the data first, and then enter a purely computational phase.
But our problem is more complicated as we suppose that communication and com-
putation can overlap, i.e., every worker can start computing its initial data while
the redistribution process takes place.

To summarize our problem: as the participating workers are not equally charged
and/or because of different resource performance, they might not finish their com-
putation processes at the same time. We are looking for algorithms to redistribute
the loads in order to finish the whole computation process in minimal time. We
enforce the hypothesis that charged workers can compute at the same time as they
communicate.

The rest of this paper is organized as follows. The problem framework is de-
tailed in Section 2. In Section 3 we discuss the case of general platforms. We are
able to prove the NP-completeness for the general case of the problem, and the
polynomiality of a restricted instance. The following sections consider some partic-
ular platforms: an optimal algorithm for homogeneous star networks is presented
in Section 4. An optimal algorithm for platforms with homogenous communication
links and heterogeneous workers is detailed in Section 5. Section 6 briefly presents
some related work. Finally, we give some conclusions in Section 7.

2. Framework

We consider a star network S = P0, P1, . . . , Pm shown in Figure 1. The processor
P0 is the master and the m remaining processors Pi, 1 ≤ i ≤ m, are workers. The
initial data are distributed on the workers, so every worker Pi possesses a number Li

of initial tasks. All tasks are independent and identical. As we assume a linear cost

Instructions for Typesetting Camera-Ready Manuscripts

model, each worker Pi has a (relative) computing power wi for the computation of
one task: it takes X.wi time units to execute X tasks on the worker Pi. The master
P0 can communicate with each worker Pi via a communication link. A worker Pi

can send some tasks via the master to another worker Pj to decrement its execution
time. It takes X.ci time units to send X units of load from Pi to P0 and X.cj time
units to send these X units from P0 to a worker Pj . Without loss of generality we
assume that the master is not computing, and only communicating.

P1

P0

PiP2 Pm

w1 wm

cmc1

wi

cic2

w2

Fig. 1. Example of a star network.

The platforms discussed in sections 4 and 5 are a special cases of star networks:
all communication links have the same characteristics, i.e., ci = c for each processor
Pi, 1 ≤ i ≤ k. Such a platform is called a bus network as it has homogeneous
communication links.

We use the bidirectional one-port model for communication. This means that
the master can only send data to, and receive data from, a single worker at a given
time-step. But it can simultaneously receive data and send one. A given worker
cannot start an execution before it has terminated the reception of the message
from the master; similarly, it cannot start sending the results back to the master
before finishing the computation.

The objective function is to minimize the makespan, that is the time at which
all loads have been processed.

Worker c w load
P1 1 1 13
P2 8 1 13
P3 1 9 0
P4 1 10 0
Table 1. Platform parameters.

P4

t = 0 t = M

P2

P3

P1

Fig. 2. Example of an optimal schedule on a
heterogeneous platform, where a sending worker
also receives a task.

3. General platforms

3.1. NP-completeness

One of the main difficulties seems to be the fact that we cannot partition the

Parallel Processing Letters

workers into disjoint sets of senders and receivers. There exist situations where,
to minimize the global makespan, it is useful that sending workers also receive
tasks. Consider the following example. We have four workers (see Table 1 for their
parameters). An optimal solution is shown in Figure 2, with a makespan M = 12:
Workers P3 and P4 do not own any task, and they are computing very slowly. So
each of them can compute exactly one task. Worker P1, which is a fast processor and
communicator, sends them their tasks and receives later another task from worker
P2 that it can compute just in time. Note that worker P1 is both sending and
receiving tasks. Trying to solve the problem under the constraint that no worker
also sends and receives, it is not feasible to achieve a makespan of 12. Worker P2

has to send one task either to worker P3 or to worker P4. Sending and receiving
this task takes 9 time units. Consequently the processing of this task can not finish
earlier than time t = 18.

Definition 1 (Scheduling Problem SP). Let N be a star-network with one special
processor P0 called “master” and m workers. Let n be the number of identical tasks
distributed to the workers. For each worker Pi, let Li be its initial number of tasks,
and wi be its computation time for one task. Each communication link, linki, has
an associated communication time ci for the transmission of one task. Finally let
T be a deadline. The decision problem of SP is: “Is it possible to redistribute the
tasks and to process them in time T?”.

Theorem 1. SP is NP-complete in the strong sense.
For the proof we refer to the companion research report [5].

3.2. Polynomiality when computations are neglected

A major difficulty of the problem is the overlap of computation and the redistri-
bution process. In this section we provide an optimal polynomial algorithm when
neglecting the computations.

Without computations we get a classical data redistribution problem, where we
can suppose that we already know the imbalance of the system. More precisely, we
adopt the following abstract view of the new problem: the m participating workers
P1, P2, . . . Pm hold their initial uniform tasks Li, 1 ≤ i ≤ m. For a worker Pi the
chosen algorithm for the computation of the imbalance has decided that the new
load should be Li−δi. If δi > 0, this means that Pi is overloaded and it has to send
δi tasks to some other processors. If δi < 0, Pi is underloaded and it has to receive
−δi tasks from other workers. We have heterogeneous communication links and all
sent tasks pass by the master. So the goal is to determine the order of senders and
receivers to redistribute the tasks in minimal time.

Theorem 2. Knowing the imbalance δi of each processor, an optimal solution for
heterogeneous star-platforms is to order the senders by non-decreasing ci-values and
the receivers by non-increasing order of ci-values.

Proof. To prove that the scheme described by Theorem 2 returns an optimal sched-
ule, we take a schedule S′ computed by this scheme. Then we take any other sched-
ule S. We are going to transform S in two steps into our schedule S′ and prove that
the makespans of the both schedules hold the following inequality: M(S′) ≤M(S).

Instructions for Typesetting Camera-Ready Manuscripts

t t

Pi0

Pi0+1

Pi0

Pi0+1

(a) Exchange of the sending order makes tasks
available earlier on the master.

t t
idle idle

n n

tin tin

Pπ(j0)

Pπ(j0+1)

Pπ(j0)

Pπ(j0+1)

(b) Exchange of the receiving order suits bet-
ter with the available tasks on the master

t t
idle

n

tin tin

Pπ(j0)

Pπ(j0+1)

Pπ(j0)

Pπ(j0+1)

(c) Deletion of idle time due to the exchange
of the receiving order.

Fig. 3. Schedule transformation.

In the first step we take a look at the senders. The sending from the master can
not start before tasks are available on the master. We do not know the ordering
of the senders in S but we know the ordering in S′: all senders are ordered in
non-decreasing order of their ci-values. Let i0 be the first task sent in S where the
sender of task i0 has a bigger ci-value than the sender of the (i0 + 1)-th task. We
then exchange the senders of task i0 and task (i0 + 1) and call this new schedule
Snew. Obviously the reception time for the second task is still the same. But as
you can see in Figure 3(a), the time when the first task is available on the master
has changed: after the exchange, the first task is available earlier and ditto ready
for reception. Hence this exchange improves the availability on the master (and
reduces possible idle times for the receivers). We use this mechanism to transform
the sending order of S in the sending order of S′ and at each time the availability
on the master is improved. Hence at the end of the transformation the makespan
of Snew is smaller than or equal to that of S and the sending order of Snew and S′

is the same.
In the second step of the transformation we take care of the receivers (cf. Fig-

ures 3(b) and 3(c)). Having already changed the sending order of S by the first
transformation of S into Snew, we start here directly by the transformation of Snew.
Using the same mechanism as for the senders, we call j0 the first task such that
the receiver of task j0 has a smaller ci-value than the receiver of task j0 + 1. We
exchange the receivers of the tasks j0 and j0 + 1 and call the new schedule Snew(1) .
j0 is sent at the same time than previously, and the processor receiving it, receives
it earlier than it received j0+1 in Snew. j0+1 is sent as soon as it is available on
the master and as soon as the communication of task j0 is completed. The first
of these two conditions had also to be satisfied by Snew. If the second condition
is delaying the beginning of the sending of the task j0 + 1 from the master, then
this communication ends at time tin + cπ′(j0) + cπ′(j0+1) = tin + cπ(j0+1) + cπ(j0)

and this communication ends at the same time than under the schedule Snew (
here π(j0) (π′(j0)) denotes the receiver of task j0 in schedule Snew (Snew(1) , re-
spectively)). Hence the finish time of the communication of task j0 + 1 in schedule
Snew(1) is less than or equal to the finish time in the previous schedule. In all cases,
M(Snew(1)) ≤ M(Snew). Note that this transformation does not change anything

Parallel Processing Letters

for the tasks received after j0+1 except that we always perform the scheduled com-
munications as soon as possible. Repeating the transformation for the rest of the
schedule Snew we reduce all idle times in the receptions as far as possible. We get
for the makespan of each schedule Snew(k) : M(Snew(k)) ≤ M(Snew) ≤ M(S). As
after these (finite number of) transformations the order of the receivers will be in
non-decreasing order of the ci-values, the receiver order of Snew(∞) is the same as
the receiver order of S′ and hence we have Snew(∞) = S′. Finally we conclude that
the makespan of S′ is smaller than or equal to any other schedule S and hence S′

is optimal.

4. An algorithm for scheduling on homogeneous star platforms: the
best-balance algorithm

In this section we present the Best-Balance Algorithm (BBA), an algo-
rithm to schedule on homogeneous star platforms. We use a bus network with
communication speed c, but additionally we suppose that the computation powers
are homogeneous as well. So we have wi = w for all i, 1 ≤ i ≤ m.

The idea of BBA is simple: in each iteration, we look if we could finish earlier if
we redistribute a task. If so, we schedule the task, if not, we stop redistributing. The
algorithm has polynomial run-time. It is a natural intuition that BBA is optimal
on homogeneous platforms, but the formal proof is rather complicated.

4.1. Notations used in BBA

BBA schedules one task per iteration i. Let L
(i)
k denote the number of tasks of

worker k after iteration i, i.e., after i tasks were redistributed. The date at which
the master has finished receiving the i-th task is denoted by m in(i). In the same
way we call m out(i) the date at which the master has finished sending the i-th
task. Let end

(i)
k be the date at which worker k would finish processing the load it

would hold if exactly i tasks are redistributed. The worker k in iteration i with
the biggest finish time end

(i)
k , who is chosen to send one task in the next iteration,

is called sender. We call receiver the worker k with smallest finish time end
(i)
k in

iteration i who is chosen to receive one task in the next iteration.
In iteration i = 0 we are in the initial configuration: All workers own their initial

tasks L
(0)
k = Lk and the makespan of each worker k is the time it needs to compute

all its tasks: end
(0)
k = L

(0)
k × w. m in(0) = m out(0) = 0.

4.2. The Best Balance Algorithm - BBA

We first sketch BBA:
In each iteration i do: Compute the time end

(i−1)
k it would take worker k to process

L
(i−1)
k tasks. A worker with the biggest finish time end

(i−1)
k is arbitrarily chosen as

sender, he is called sender. Compute the temporary finish times ẽnd
(i)

k of each worker
if it would receive from sender the i-th task. A worker with the smallest temporary

finish time ẽnd
(i)

k will be the receiver, called receiver. If there are multiple workers

Instructions for Typesetting Camera-Ready Manuscripts

with the same temporary finish time ẽnd
(i)

k , we take the worker with the smallest
finish time end

(i−1)
k . If the finish time of sender is strictly larger than the temporary

finish time ẽnd
(i)

sender of sender, sender sends one task to receiver and iterate. Otherwise
stop.
Lemma 1. On homogeneous star-platforms, in iteration i the Best-Balance Al-
gorithm (Algorithm 1) always chooses as receiver a worker which finishes process-
ing the first in iteration i− 1.

Proof. As the platform is homogeneous, all communications take the same time
and all computations take the same time. In Algorithm 1 the master chooses as
receiver in iteration i the worker k that would end the earliest the processing of the
i-th task sent. To prove that worker k is also the worker which finishes processing
in iteration i− 1 first, we have to consider two cases:
1. Task i arrives when all workers are still working.

As all workers are still working when the master finishes to send task i, the
master chooses as receiver a worker which finishes processing the first, because this
worker will also finish processing task i first, as we have homogeneous conditions.
2. Task i arrives when some workers have finished working.

If some workers have finished working when the master can finish to send task
i, all these workers could start processing task i at the same time. Our algorithm
chooses in this case a worker which finished processing first.

In the following lemma we will show that schedules, where sending workers also
receive tasks, can be transformed in a schedule where this effect does not appear.
Lemma 2. On a platform with homogeneous communications, if there exists a
schedule S with makespan M , then there also exists a schedule S′ with a makespan
M ′ ≤M such that no worker both sends and receives tasks.

Proof. We will prove that we can transform a schedule where senders might receive
tasks in a schedule with equal or smaller makespan where senders do not receive
any tasks.

If the master receives its i-th task from processor Pj and sends it to processor
Pk, we say that Pk receives this task from processor Pj .

Whatever the schedule, if a sender receives a task we have the situation of a
sending chain: at some step of the schedule a sender si sends to a sender sk, while
in another step of the schedule the sender sk sends to a receiver rj . So the master is
occupied twice. As all receivers receive in fact their tasks from the master, it does
not make a difference for them which sender sent the task to the master. So we
can break up the sending chain in the following way: We look for the earliest time,
when a sending worker, sk, receives a task from a sender, si. Let rj be a receiver
that receives a task from sender sk. There are two possible situations:
1. Sender si sends to sender sk and later sender sk sends to receiver rj , see Fig-
ure 4(a). This case is simple: As the communication from si to sk takes place
first and we have homogeneous communication links, we can replace this commu-
nication by an emission from sender si to receiver rj and just delete the second
communication.

Parallel Processing Letters

2. Sender sk sends to receiver rj and later sender si sends to sender sk, see Fig-
ure 4(b). In this case the reception on receiver rj happens earlier than the emission
of sender si, so we can not use exactly the same mechanism as in the previous case.
But we can use our hypothesis that sender sk is the first sender that receives a task.
Therefore, sender si did not receive any task until sk receives. So at the moment
when sk sends to rj , we know that sender si already owns the task that it will send
later to sender sk. As we use homogeneous communications, we can schedule the
communication si → rj when the communication sk → rj originally took place and
delete the sending from si to sk.

As in both cases we gain in communication time, but we keep the same compu-
tation time, we do not increase the makespan of the schedule, but we transformed it
in a schedule with one less sending chain. By repeating this procedure for all send-
ing chains, we transform the schedule S in a schedule S′ without sending chains
while not increasing the makespan.

rj

si

sk

time time

(a) Sender si sends to receiving sender sk

and then sender sk sends to receiver rj .

rj

si

sk

time time

(b) Sender sk sends first to receiver rj and
then receives from sender si.

Fig. 4. How to break up sending chains, dark colored communications are emissions, light colored
communications represent receptions.

Proposition 1. Best-Balance Algorithm (Algorithm 1) calculates an optimal
schedule S on a homogeneous star network, where all tasks are initially located on
the workers and communication capabilities as well as computation capabilities are
homogeneous and all tasks have the same size.

Proof. To prove that BBA is optimal, we take a schedule Salgo calculated by
Algorithm 1. Then we take an optimal schedule Sopt. (Because of Lemma 2 we can
assume that in the schedule Sopt no worker both sends and receives tasks.) We are
going to transform by induction this optimal schedule into our schedule Salgo.

As we use a homogeneous platform, all workers have the same communication
time c. Without loss of generality, we can assume that both algorithms do all
communications as soon as possible.So we can divide our schedule Salgo in sa steps
and Sopt in so steps. A step corresponds to the emission of one task, and we number
in this order the tasks sent. Accordingly the s-th task is the task sent during step s
and the actual schedule corresponds to the load distribution after the s first tasks.
We start our schedule at time T = 0.

Let S(i) denote the worker receiving the i-th task under schedule S. Let i0 be
the first step where Sopt differs from Salgo, i.e., Salgo(i0) 6= Sopt(i0) and ∀i < i0,
Salgo(i) = Sopt(i). We look for a step j > i0, if it exists, such that Sopt(j) = Salgo(i0)
and j is minimal.

We are in the following situation: schedule Sopt and schedule Salgo are the same
for all tasks [1..(i0−1)]. As worker Salgo(i0) is chosen at step i0, then, by definition

Instructions for Typesetting Camera-Ready Manuscripts

Fig. 5. Best-Balance Algorithm

i← 0; m in(i) ← 0; m out(i) ← 0 ;
∀kL

(0)
k ← Lk; end

(0)
k ← L

(0)
k × w;

while true do
sender← maxk end

(i)
k ; m in(i+1) ← m in(i) + c;

task arr worker = max(m in(i+1),m out(i)) + c;
foreach k do

ẽnd
(i+1)

k ← max(end
(i+1)
k , task arr worker) + w

select receiver such that ẽnd
(i+1)

receiver = mink ẽnd
(i+1)

k and if there are several

processors with the same minimum ẽnd
(i+1)

k , choose one with smallest
end

(i)
k ;

if end
(i)
sender ≤ ẽnd

(k+1)

receiver then
break; /* we cannot improve the makespan */

else
/* we improve the makespan by sending the task to the receiver */

m out(i+1) ← task arr worker;
end

(i+1)
sender ← end

(i)
sender − w; L

(i+1)
sender ← L

(i)
sender − 1;

end
(i+1)
receiver ← ẽnd

(i+1)

receiver; L
(i+1)
receiver ← L

(i)
receiver + 1;

foreach j 6= receiver and j 6= sender do
end

(i+1)
j ← end

(i)
j ; L

(i+1)
j ← L

(i)
j ;

i← i + 1

of Algorithm 1, this means that this worker finishes first its processing after the
reception of the (i0 − 1)-th tasks (cf. Lemma 1). As Sopt and Salgo differ in step
i0, we know that Sopt chooses worker Sopt(i0) that finishes the schedule of its load
after step (i0 − 1) no sooner than worker Salgo(i0).

Case 1: Let us first consider the case where there exists such a step j So Salgo(i0) =
Sopt(j) and j > i0. We know that worker Sopt(j) under schedule Sopt does not
receive any task between step i0 and step j as j is chosen minimal.

We use the following notations for the schedule Sopt, depicted on Figures 6, 7,
and 8:
Tj: the date at which the reception of task j is finished on worker Sopt(j), i.e.,
Tj = j × c + c (the time it takes the master to receive the first task plus the time
it takes him to send j tasks).
Ti0 : the date at which the reception of task i0 is finished on worker Sopt(i0), i.e.,
Ti0 = i0 × c + c.
Fpred(j): time when computation of task pred(j) is finished, where task pred(j)
denotes the last task which is computed on worker Sopt(j) before task j is computed.
Fpred(i0): time when computation of task pred(i0) is finished, where task pred(i0)
denotes the last task which is computed on worker Sopt(i0) before task i0 is com-

Parallel Processing Letters

puted.
We have to consider two sub-cases:

Tj ≤ Fpred(i0) (Figure 6(a)).
This means that we are in the following situation: the reception of task j on worker
Sopt(j) has already finished when worker Sopt(i0) finishes the work it has been
scheduled until step i0 − 1.

In this case we exchange the tasks i0 and j of schedule Sopt and we create the
following schedule S′opt:
S′opt(i0) = Sopt(j) = Salgo(i0),
S′opt(j) = Sopt(i0)
and ∀i 6= i0, j, S′opt(i) = Sopt(i). The schedule of the other workers is kept un-
changed. All tasks are executed at the same date than previously (but maybe not
on the same processor).

Sopt(i0)

Salgo(i0) = Sopt(j)

Ti0

Fpred(j)

Tj

Fpred(i0)

j + 1

i0i0

j + 1

i0 + k

j

j

i0 + k

i0

(a) Before the exchange.

Fpred(i0)

Sopt(i0)

Salgo(i0) = Sopt(j)

Ti0
Tj

Tpred(j)

j

j + 1

i0

i0

j i0 + k

i0 + k

j + 1

i0

(b) After exchange.

Fig. 6. Schedule Sopt before and after exchange of tasks i0 and j.

Now we prove that this kind of exchange is possible.
We know that worker Sopt(j) is not scheduled any task later than step i0−1 and

before step j, by definition of j. So we know that this worker can start processing
task j when task j has arrived and when it has finished processing its amount of
work scheduled until step i0 − 1. We already know that worker Sopt(j) = Salgo(i0)
finishes processing its tasks scheduled until step i0−1 at a time earlier than or equal
to that of worker Sopt(i0) (cf. Lemma 1). As we are in homogeneous conditions,
communications and processing of a task takes the same time on all processors. So
we can exchange the destinations of steps i0 and j and keep the same moments of
execution, as both tasks will arrive in time to be processed on the other worker:
task i0 will arrive at worker Sopt(j) when it is still processing and the same for task
j on worker Sopt(i0). Hence task i0 will be sent to worker Sopt(j) = Salgo(i0) and
worker Sopt(i0) will receive task j. So schedule Sopt and schedule Salgo are the same
for all tasks [1..i0] now. As both tasks arrive in time and can be executed instead
of the other task, we do not change anything in the makespan M . And as Sopt is
optimal, we keep the optimal makespan.
Tj ≥ Fpred(i0) (Figure 7(a)).
In this case we have the following situation: task j arrives on worker Sopt(j), when
worker Sopt(i0) has already finished processing its tasks scheduled until step i0− 1.
In this case we exchange the schedule destinations i0 and j of schedule Sopt beginning
at tasks i0 and j (see Figure 7). In other words we create a schedule S′opt:

Instructions for Typesetting Camera-Ready Manuscripts

∀i ≥ i0 such that Sopt(i) = Sopt(i0): S′opt(i) = Sopt(j) = Salgo(i0)
∀i ≥ j such that Sopt(i) = Sopt(j): S′opt(i) = Sopt(i0)
and ∀i ≤ i0 S′opt(i) = Sopt(i). The schedule Sopt of the other workers is kept

unchanged. We recompute the finish times F
(s)
Sopt

(j) of workers Sopt(j) and Sopt(i0)
for all steps s > i0.

Ti0

Fpred(j)

Tj

Fpred(i0)

Salgo(i0) = Sopt(j)

Sopt(i0)

i0 i0 + k

i0 i0 + k

j

j + 1j

j + 1

(a) Before exchange.

Tj

Fpred(i0)Fpred(j)

Ti0

Sopt(i0)

Salgo(i0) = Sopt(j)

i0

j + 1

i0 + k

j

i0j j + 1

i0 + ki0

(b) After exchange.

Fig. 7. Schedule Sopt before and after exchange of lines i0 and j.

Now we prove that this kind of exchange is possible. First of all we know that
worker Salgo(i0) is the same as the worker chosen in step j under schedule Sopt

and so Salgo(i0) = Sopt(j). We also know that worker Sopt(j) is not scheduled
any tasks later than step i0 − 1 and before step j, by definition of j. Because of
the choice of worker Salgo(i0) = Sopt(j) in Salgo, we know that worker Sopt(j) has
finished working when task j arrives: at step i0 worker Sopt(j) finishes earlier than
or at the same time as worker Sopt(i0) (Lemma 1) and as we are in the case where
Tj ≥ Fpred(i0), Sopt(j) has also finished when j arrives. So we can exchange the
destinations of the workers Sopt(i0) and Sopt(j) in the schedule steps equal to, or
later than, step i0 and process them at the same time as we would do on the other
worker. As we have shown that we can start processing task j on worker Sopt(i0)
at the same time as we did on worker Sopt(j), and the same for task i0, we keep the
same makespan. And as Sopt is optimal, we keep the optimal makespan.

Case 2: If there does not exist a j, i.e., we can not find a schedule step j > i0 such
that worker Salgo(i0) is scheduled a task under schedule Sopt, so we know that no
other task will be scheduled on worker Salgo(i0) under the schedule Sopt. As our
algorithm chooses in step s the worker that finishes task s+1 the first, we know that
worker Salgo(i0) finishes at a time earlier or equal to that of Sopt. Worker Salgo(i0)
will be idle in the schedule Sopt for the rest of the algorithm, because otherwise we
would have found a step j. As we are in homogeneous conditions, we can simply
displace task i0 from worker Sopt(i0) to worker Salgo(i0) (see Figure 8). As we
have Sopt(i0) 6= Salgo(i0) and with Lemma 1 we know that worker Salgo(i0) finishes
processing its tasks until step i0 − 1 at a time earlier than or equal to Sopt(i0), and
we do not downgrade the execution time because we are in homogeneous conditions.

Once we have done the exchange of task i0, the schedules Sopt and Salgo are the
same for all tasks [1..i0]. We restart the transformation until Sopt = Salgo for all
tasks [1..min(sa, so)] scheduled by Salgo.

Parallel Processing Letters

Ti0

F
(pred(i0))
Salgo

(Salgo(i0)) F
pred((i0))
Sopt

(Sopt(i0))

Sopt(i0)

Salgo(i0)

i0

i0 + ki0

i0 + ki0

(a) Before displacing

Ti0

F
(pred(i0))
Sopt

(Sopt(i0))

Sopt(i0)

Salgo(i0)

F
(pred(i0))
Salgo

(Salgo(i0))

i0i0 + k

i0 + k

i0

i0

(b) After displacing

Fig. 8. Schedule Sopt before and after displacing task i0.

Now we will prove by contradiction that the number of tasks scheduled by Salgo,
sa, and Sopt, so, are the same. After min(sa, so) transformation steps Sopt = Salgo

for all tasks [1..min(sa, so)] scheduled by Salgo. So if after these steps Sopt = Salgo

for all n tasks, both algorithms redistributed the same number of tasks and we have
finished.

We now consider the case sa 6= so. In the case of sa > so, Salgo schedules more
tasks than Sopt. At each step of our algorithm we do not increase the makespan.
So if we do more steps than Sopt, this means that we scheduled some tasks without
changing the global makespan. Hence Salgo is optimal.

If sa < so, this means that Sopt schedules more tasks than Salgo does. In this
case, after sa transformation steps, Sopt still schedules tasks. If we take a look at the
schedule of the (sa+1)-th task in Sopt: regardless which receiver Sopt chooses, it will
increase the makespan as we prove now. In the following we will call salgo the worker
our algorithm would have chosen to be the sender, ralgo the worker our algorithm
would have chosen to be the receiver. sopt and ropt are the sender and receiver
chosen by the optimal schedule. Indeed, in our algorithm we would have chosen
salgo as sender such that it is a worker which finishes last. So the time worker salgo

finishes processing is Fsalgo
= M(Salgo). Salgo chooses the receiver ralgo such that

it finishes processing the received task the earliest of all possible receivers and such
that it also finishes processing the receiving task at the same time or earlier than the
sender would do. As Salgo did not decide to send the (sa + 1)-th task, this means,
that it could not find a receiver which fitted. Hence we know, regardless which
receiver Sopt chooses, that the makespan will strictly increase (as Salgo = Sopt for
all [1..sa]). We take a look at the makespan of Salgo if we would have scheduled the
(sa+1)-th task. We know that we can not decrease the makespan anymore, because
in our algorithm we decided to keep the schedule unchanged. So after the emission
of the (sa + 1)-th task, the makespan would become M(Salgo) = Fralgo

≥ Fsalgo
.

And Fralgo
≤ Fropt , because of the definition of receiver ralgo. As M(sopt) ≥ Fropt ,

we have M(Salgo) ≤M(Sopt). But we decided not to do this schedule as M(Salgo)
is smaller before the schedule of the (sa +1)-th task than afterwards. Hence we get
that M(Salgo) < M(Sopt). So the only possibility why Sopt sends the (sa + 1)-th
task and still be optimal is that, later on, ropt sends a task to some other processor
rk. (Note that even if we choose Sopt to have no such chains in the beginning, some
might have appeared because of our previous transformations). In the same manner
as we transformed sending chains in Lemma 2, we can suppress this sending chain,

Instructions for Typesetting Camera-Ready Manuscripts

by sending task (sa + 1) directly to rk instead of sending to ropt. With the same
argumentation, we do this by induction for all tasks k, (sa + 1) ≤ k ≤ so, until
schedule Sopt and Salgo have the same number so = sa and so Sopt = Salgo and
hence M(Sopt) = M(Salgo).

Complexity: The initialization phase is in O(m), as we have to compute the
finish times for each worker. The while loop can be run at maximum n times, as
we can not redistribute more than the n tasks of the system. Each iteration is in
the order of O(m), which leads us to a total run time of O(m× n).

5. Scheduling on platforms with homogeneous communication links and
heterogeneous computation capacities

In this section we present an algorithm for star-platforms with homogeneous
communications and heterogeneous workers, the Moore Based Algorithm (MBA).
As the name says, this algorithm is based on Moore’s algorithm [6], [7], whose
aim is to maximize the number of tasks to be processed in-time, i.e., before tasks
exceed their deadlines. Moore’s algorithm gives a solution to the 1||

∑
Uj problem

when the maximum number, among n tasks, has to be processed in time on a single
machine. Each task k, 1 ≤ k ≤ n, has a processing time wk and a deadline dk,
before which it has to be processed.

For a given makespan, we compute if there exists a possible schedule to finish
all work in time. If there is one, we optimize the makespan by a binary search.

5.1. Framework and notations for MBA

We keep the star network of Section with homogeneous communication links.
In contrast to Section we suppose m heterogeneous workers who own initially a
number Li of identical independent tasks.

Let M denote the objective makespan for the searched schedule σ and fi the
time needed by worker i to process its initial load. During the algorithm execution
we divide all workers in two subsets, where S is the set of senders (si ∈ S if fi > M)
and R the set of receivers (ri ∈ R if fi < M). As our algorithm is based on Moore’s,
we need a notation for deadlines. Let d

(k)
ri be the deadline to receive the k-th task

on receiver ri. lsi denotes the number of tasks sender i sends to the master and
lri stores the number of tasks receiver i is able to receive from the master. With
help of these values we can determine the total amount of tasks that must be sent
as Lsend =

∑
si

lsi
. The total amount of tasks if all receivers receive the maximum

amount of tasks they are able to receive is Lrecv =
∑

ri
lri . Finally, let Lsched be

the maximal amount of tasks that can be scheduled by the algorithm.

5.2. Moore based algorithm - MBA

Principle of the algorithm: Considering the given makespan we determine
overcharged workers, which can not finish all their tasks within this makespan.
These overcharged workers will then send some tasks to undercharged workers,
such that all of them can finish processing within the makespan. The algorithm
solves the following two questions: Is there a possible schedule such that all workers

Parallel Processing Letters

Fig. 9. Moore Based Algorithm

initialize fi for all workers i, fi = Li × wi;
compute R and S, order S by non-decreasing values ci such that
cs1 ≤ cs2 ≤ . . . ;
foreach si ∈ S do

lsi ←
⌈

fsi
−T

wsi

⌉
;

if
⌊

T
csi

⌋
< lsi

then
return (false, ∅); /* M too small */

total number of tasks to send: Lsend ←
∑

si
lsi

;
D ← ∅;
foreach ri ∈ R do

lri ← 0;
while fri ≤M − (lri + 1)× wri do

lri
← lri

+ 1; d
(lri

)
ri ←M − (lri

× wri
);

D ← D ∪ (d(lri
)

ri , ri);

of tasks that can be received: Lrecv ←
∑

ri
lri

;
senders send in non-decreasing order of values csi ;
order deadline-list D by non-decreasing values of deadlines dri and rename
the deadlines in this order from 1 to Lrecv;
σ ← ∅; t← cs1 ; Lsched = 0;
for i = 1 to Lrecv do

(di, ri)← i-th element (d(j)
rk , rk) of D;

σ ← σ ∪ {ri}; t← t + cri ; Lsched ← Lsched + 1;
if t > di then

Find (dj , rj) in σ s.t. crj
value is largest;

σ ← σ\{(dj , rj)}; t← t− crj ; Lsched ← Lsched − 1;

return ((Lsched ≥ Lsend), σ);

can finish in the given makespan? In which order do we have to send and receive
to obtain such a schedule?

The algorithm can be divided into four phases:
Phase 1 decides which of the workers will be senders and which receivers,

depending of the given makespan (see Figure 10). Senders are workers which are
not able to process all their initial tasks in time, whereas receivers are workers which
could treat more tasks in the given makespan M than they hold initially.

Phase 2 fixes how many transfers have to be scheduled from each sender such
that the senders all finish their remaining tasks in time. Sender si will have to send
an amount of tasks lsi =

⌈
fsi

−T

wsi

⌉
(i.e., the number of light colored tasks of a sender

in Figure 10).
Phase 3 computes for each receiver the deadline of each of the tasks it can

Instructions for Typesetting Camera-Ready Manuscripts

T = 0 T = M

r1

s1

r2

ru

sv

tasks which can not be computed in time

tasks which can be computed in time

Fig. 10. Initial distribution of the tasks to the workers.

receive, i.e., a pair (d(i)
rj , rj) that denotes the i-th deadline of receiver rj . See Figure

11 for an example.

computation of initial tasks Lri

Frj

receiver rj

T − 1× wrj
T − (lrj

− 1)× wrj

T − lrj
× wrj

T − 2× wrj

MT = 0

d
(lrj)
rj d

(lrj−1)
rj d

(1)
rjd

(2)
rj

Fig. 11. Computation of the deadlines d
(k)
rj

for worker rj .

Phase 4 is the proper scheduling step: The master decides which tasks have to
be scheduled on which receivers and in which order. If the schedule is able to send
at least Lsend tasks the algorithm succeeds, otherwise it fails.

Algorithm 2 describes MBA in pseudo-code. Note that the algorithm is written
for heterogeneous conditions, but here we study it for homogeneous communication
links.
Theorem 3. MBA (Algorithm 2) succeeds to build a schedule σ for a given makespan
M , if and only if there exists a schedule with makespan less than or equal to M ,
when the platform is made of one master, several workers with heterogeneous com-
putation power but homogeneous communication capabilities.

Moore’s Algorithm constructs a maximal set σ of early jobs on a single machine
scheduling problem. In [5] we show that our algorithm can be reduced to this
problem.
Proposition 2. Performing a binary search with precision = 1

λ , where λ =
lcm{βi, δi}, 1 ≤ i ≤ m, on Algorithm 2 returns in polynomial time an optimal
schedule σ for the following scheduling problem: minimizing the makespan on a
star-platform with homogeneous communication links and heterogeneous workers
where the initial tasks are located on the workers.

For the proof we refer to the companion research report [5].

6. Related work

To the best of our knowledge, there are no papers dealing with the same type of
data redistribution algorithms which can be overlapped by computations (provided
that enough data is available locally).

However, Redistribution algorithms have been well studied in the litera-
ture. Unfortunately already simple redistribution problems are NP complete [8].
For this reason, optimal algorithms can be designed only for particular cases, as it

Parallel Processing Letters

is done in [9]. In their research, the authors restrict the platform architecture to ring
topologies, both uni-directional and bidirectional. In the homogeneous case, they
were able to prove optimality, but the heterogenous case is still an open problem.
In spite of this, other efficient algorithms have been proposed. For topologies like
trees or hypercubes some results are presented in [10].

The load balancing problem is not directly dealt with in this paper. Any-
way we want to quote some key references to this subject, as the results of these
algorithms are the starting point for the redistribution process. Generally load bal-
ancing techniques can be classified into two categories. Dynamic load balancing
strategies and static load balancing. Dynamic techniques might use the past for
the prediction of the future as it is the case in [11] or they suppose that the load
varies permanently [12]. That is why for our problem static algorithms are more
interesting: we are only treating star-platforms and as the amount of load to be
treated is known a priori we do not need prediction. For homogeneous platforms,
the papers in [13] survey existing results. Heterogeneous solutions are presented
in [14] or [15]. This last paper is about a dynamic load balancing method for data
parallel applications, called the working-manager method: the manager is sup-
posed to use its idle time to process data itself. So the heuristic is simple: when the
manager does not perform any control task it has to work, otherwise it schedules.

7. Conclusion

We have dealt with the problem of scheduling and redistributing independent
and identical tasks on heterogeneous master-slave platforms. We have proved the
NP completeness (in the strong sense) of the problem for fully heterogeneous plat-
forms. We have also proved that this problem is polynomial when computations
are negligible, which shows the additional complexity induced by the overlap be-
tween communications and computations in the general case. Also, we were able to
present optimal polynomial algorithms for special important topologies: a simple
greedy algorithm for homogeneous star-networks, and a more complicated algorithm
for platforms with homogeneous communication links and heterogeneous workers.
The proof of optimality for both algorithms turned out rather complicated. On the
more practical side, examples and simulations to compare the performance of the
different algorithms are available in [5].

A natural extension of this work would be to derive approximation algorithms,
i.e., heuristics whose worst-case is guaranteed within a certain factor to the optimal,
for the fully heterogeneous case. However, it is often the case in scheduling problems
for heterogeneous platforms that approximation ratios contain the quotient of the
largest platform parameter by the smallest one, thereby leading to very pessimistic
results in practical situations.

More generally, much work remains to be done along the same lines of load-
balancing and redistributing while computation goes on. We can envision dynamic
master-slave platforms whose characteristics vary over time, or even where new
resources are enrolled temporarily in the execution. We can also deal with more
complex interconnection networks, allowing slaves to circumvent the master and
exchange data directly.

Instructions for Typesetting Camera-Ready Manuscripts

[1] BOINC: Berkeley Open Infrastructure for Network Computing. http://boinc.
berkeley.edu.

[2] SETI. URL: http://setiathome.ssl.berkeley.edu.
[3] Einstein@Home. http://einstein.phys.usm.edu.
[4] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, 1979.
[5] Loris Marchal, Veronika Rehn, Yves Robert, and Frdric Vivien. Scheduling and data

redistribution strategies on star platforms. Research Report 2006-23, LIP, ENS Lyon,
France, June 2006.

[6] Peter Brucker. Scheduling Algorithms. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2004.

[7] J.M. Moore. An n job, one machine sequencing algorithm for minimizing the number
of late jobs. Management Science, 15(1), September 1968.

[8] U. Kremer. NP-Completeness of dynamic remapping. In Proceedings of the Fourth
Workshop on Compilers for Parallel Computers, Delft, The Netherlands, 1993. also
available as Rice Technical Report CRPC-TR93330-S.

[9] H. Renard, Y. Robert, and F. Vivien. Data redistribution algorithms for heterogeneous
processor rings. Research Report RR-2004-28, LIP, ENS Lyon, France, May 2004.
Available at the url http://graal.ens-lyon.fr/∼yrobert.

[10] M-Y. Wu. On runtime parallel scheduling for processor load balancing. IEEE Trans.
Parallel and Distributed Systems, 8(2):173–186, 1997.

[11] M. Cierniak, M.J. Zaki, and W. Li. Customized dynamic load balancing for a network
of workstations. Journal of Parallel and Distributed Computing, 43:156–162, 1997.

[12] M. Hamdi and C.K. Lee. Dynamic load balancing of data parallel applications on a
distributed network. In 9th International Conference on Supercomputing ICS’95,
pages 170–179. ACM Press, 1995.

[13] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and load balancing in
parallel and distributed systems. IEEE Computer Science Press, 1995.

[14] M. Nibhanupudi and B. Szymanski. Bsp-based adaptive parallel processing. In
R. Buyya, editor, High Performance Cluster Computing. Volume 1: Architecture
and Systems, pages 702–721. Prentice-Hall, 1999.

[15] Alessandro Bevilacqua. A dynamic load balancing method on a heterogeneous cluster
of workstations. Informatica, 23(1):49–56, 1999.

