
Scheduling
Lecture 1: Scheduling on One Machine

Loris Marchal

October 16, 2012

1 Generalities

1.1 Definition of scheduling

• allocation of limited resources to activities over time

• activities : tasks in computer environment, steps of a construction project, opera-
tions in a production process, lectures at the University, etc.
tasks, jobs,

• resources : processors, workers, machines, lecturers, rooms, etc.
processors, machines

• objective: minimize total time, energy consumption, average service time

Many variations on the model, on the resource/activity interaction and on the objec-
tive.

• Typical example: organize production of a workshop, by making a schedule for
machines. Making different objects may need different series of machines, with
different processing time. The number of objects of each type (or the ratio) may
be fixed, and we want to minimize the overall processing time (or the throughput).

• Another example: in an airport, allocate gates to airplanes, arriving at different
gates, not all gates can accomodate all planes, some gates are further than others:
how to minimize the time spent by passengers (taxiing and walking in the terminal).

• Other examples: schedule the activity of workers in a construction process, allocate
rooms for lecture at the University, etc.

• Our context: in a computing system, we have a number of machines at hand. These
machines may be close to each other, or linked with a limited communication net-
work. We want to use this platform to execute an application, composed of several
tasks. Tasks may have precedence constraints, or other type of constraints. Several
users may share the platform, which might be widely distributed, or hierarchical.

1

1.2 Graham notation

Classes of scheduling problems can be specified in terms of the three-field classification
α|β|γ where
• α specifies the machine environment,
• β specifies the job characteristics,
• γ and describes the objective function(s).
We will illustrate this notation on all following scheduling problems.

2 Scheduling with a single machine

Motivations:
• understand the complexity of the problem for various objectives
• some of actual systems offers flexibility and may well be modeled by a single machine

(e.g. virtual machines)
• practice usual scheduling techniques
Objectives using Ci:
• Makespan Cmax = maxCi most common objective
• Total flow time:

∑n
j=1Cj

• Weighted (total) flow time:
∑n

j=1wjCj

2.1 First example, with new objective, 1||
∑
wiCi, polynomial

(Smith-ratio)

Let us consider the problem: 1||
∑
wiCi,

• 1 machine
• no constraints on tasks (length pi)
• Objective: weighted sum of completion times

Exemple:

tasks A B C D
wi 2 1 3 1
pi 2 2 4 4

wi/pi 1 0.5 0.75 0.25
• Intuitions:

– put high weight first (C, A, B, D, cost: 12 + 12 + 8 + 12 = 44)
– put longer tasks last (B, A, C, D, cost: 2 + 8 + 24 + 12 = 46)

• ⇒ Order task by non-increasing Smith ratio: w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn
(on the example A,C,B,D, cost:4 + 818 + 8 + 12 = 42)

Proof:
• Consider a different optimal schedule S
• Let i and j be two consecutive tasks in this schedule such that wi/pi < wj/pj
• contribution of these tasks in S:
Si = (wi + wj)(t+ pi) + wjpj
• contribution of these tasks if switched:
Sj = (wi + wj)(t+ pj) + wipi

2

• we have
Si−Sj

wiwj
= pi

wi
− pj

wj

Thus we decrease the objective by switching these tasks.

2.2 Adding due-dates

Other objectives in the Graham notations, using due dates dj ((sometimes) appears in
the job characteristics):
• lateness : Lj = Cj − dj
• tardiness : Tj = max{0, Cj − dj}
• unit penalty : Uj = 0 if Cj ≤ dj, 1 otherwise

wich gives the following objectives:
• (total lateness=sum flow)
• maximum lateness: Lmax = maxLj

• total tardiness
∑
Tj

• total weighted tardiness
∑
wjTj

• number of late activities
∑
Uj

• weighted number of late activities
∑
wjUj

2.2.1 EDF for 1||Lmax

Let’s study the problem 1||Lmax: minimize the maximum lateness on one machine. The
strategy which places first the jobs with the earliest deadlines is optimal (Earliest Deadline
First).

Theorem 1. EDF is optimal for 1||Lmax.

Proof. We assume that there exists an optimal schedule S which does not follow the EDF
rule. We consider the first pair of consecutive tasks k, l processed in this order and such
that dk > dl. We call S ′ the schedule obtained by exchanging k and l in S, and t the
sarting time of k in S. We call LS

i the lateness of task i in schedule S:

LS
k = t+ pk − dk

LS
l = t+ pk + pl − dl = LS

k + dk − dl > LS
k since dk > dl

In schedule S ′:

LS′

l = t+ pl − dl < LS
l

LS′

k = t+ pk + pl − dk = LS
l + dl − dk < LS

l

Thus, by exchanging k and l, we decrease their lateness and we do not change the other
tasks. We can continue with the next pair of tasks which do not follow the EDF order,
and after iterating this process, we end up with an EDF schedule with optimal Lmax.

2.2.2 Moore-Hodgson algorithm for 1||
∑
Ui

Example:
job 1 2 3 4 5
dj 6 7 8 9 11
pj 4 3 2 5 6

3

Tasks are sorted by non-decreasing di : d1 ≤ · · · ≤ dn

1. A := ∅

2. For i = 1 . . . n

(a) If p(A) + pi ≤ di, then A := A ∪ {i}
(b) Otherwise,

i. Let j be the longest task in A ∪ {i}
ii. A := A ∪ {i} − {j}

Optimal solution : A = {2, 3, 5}

Proof. • Feasibility:
We first prove that the algorithm produces a feasible schedule, that is, all task of
A can be scheduled in this order without missing their deadline

– By induction: if no task is rejected, ok

– Assume that A is feasible, prove that A ∪ {i} − {j} is feasible too

∗ all tasks in A before j: no change

∗ all tasks in A after j: shorter completion

∗ task i: let k be the last task in A: p(A) ≤ dk
since task j is the longest: pi ≤ pj, thus p(A∪{i}−{j}) ≤ p(A) ≤ dk ≤ di
(because tasks are sorted)
That is, the new task i terminates earlier than k before j was rejected.
Since di ≥ dk, this is enough.

• Optimality:

Assume that there exists an optimal set O different from the set Af output by the
Moore-Hodgson algorithm

– Let j be the first task rejected by the algorithm which is included in O (there
exists such a task since O is different from Af and the cardinality of O is larger
or equal to the cardinality of Af)

– We consider the set A at the moment when task j is rejected from A, and i
the task being added at this moment

– A ∪ {i} is not feasible, thus O does not contain A ∪ {i}
– Let k be a task of A ∪ {i} which is not in O

– Since the algorithm rejects the longest task, p(O ∪ {k} − {j}) ≤ p(O)

– In the solution of O, we can replace j by k without increasing any completion
time.

We can repeat this process, until we get the set of tasks scheduled by the algorithm.

4

2.3 Adding release dates, 1|ri|
∑
Ci

All jobs are not released at the same time, but job j is available starting at time rj.
1|ri|

∑
Ci is NP-complete (admitted)

When adding preemption, we can derive an optimal algorithm for 1|ri, pmtb|
∑
Ci,

which serves as a basis for a 2-approximation algorithm for the initial problem.

Theorem 2. Shortest Remaining Processing Time first (SRPT) is optimal for 1|ri, pmtn|
∑
Ci/

Proof. Let us consider an optimal schedule S which does not follow the SRPT rule. This
means that at a given time t a task k is being processed whereas there exists another task
l with xl < xk (xi denotes the fraction of remaining work for task i at time t). Starting at
time t, a time xk + xl must be devoted to the pair of tasks k, l. We modify the schedule
such that the first xl time units of this time are devoted to l and the remaining xk time
units are devoted to xk. Let us denote by S ′ the modified schedule. Since xl < xk, l
finishes earlier in S ′ than k in S:

C ′l ≤ Ck

Moreover, C ′l < Cl since at time t, S processes task k and S ′ processes l. Thus, C ′l =
min{Ck, Cl}. Finally, C ′k = max{Ck, Cl} and nothing changes for the other tasks. Thus,
the objective is decreased in S ′.

The algorithm A for the original problem (without preemption) is the following:

1. Solve the relaxed version with preemption using SRPT;

2. Sort the tasks by increasing completion time in this solution: CP
1 < CP

2 < · · · < CP
n

3. Process the tasks in this order without preemption. If a task is not yet available at
given time, wait for it.

Definition 3. Consider a minimization problem. Let OPT (x) denote the optimal value
of the objective for any instance x. An algorithm A is a ρ-approximation algorithm if
and only if for any instance x, A(x) ≤ ρOPT (x)).

Theorem 4. The algorithm proposed above is a 2-approximation algorithm for 1|ri|
∑
Ci.

Proof. Instead of comparing directly to the optimal solution (which we do not know), we
compare to a lower bound on this optimal solution:∑

Ci ≥
∑

CP
i ,

since the solution of the problem without preemption is a solution for the problem with
preemption. We will now prove that for each task i, Ci ≤ 2CP

i .
Let us denote by tj the time when j is started by A. We say the machine is idle at

time t is it is not processing any task at time t. In our algorithm, it can only be idle if
the next job to process has not yet be released. Let us denote by idle(t) the total idle
time of the machine before t. Note that

Cj =
∑
i≤j

pi + idle(tj).

5

First,
∑

i≤j pi ≤ CP
j since the tasks are completed in the same order in the preemptive

schedule.
Second, we now prove that there is no idel time from CP

j to tj (such that idle(tj) ≤
CP

j). By contradiction, assume that the machine is idle at t ∈ [CP
j , tj]. This is possible

only if the machine is waiting for some task k to be processed before j and which has
not been released yet (rk > t ≥ CP

j). However, the reason for this task to be processed
before j is CP

k < CP
j . Thus CP

k < rk, which contradicts the assumption.
Thus Cj ≤ 2CP

j , and A is a 2-approximation algorithm.

6

	1 Generalities
	1.1 Definition of scheduling
	1.2 Graham notation

	2 Scheduling with a single machine
	2.1 First example, with new objective, 1||wi Ci, polynomial (Smith-ratio)
	2.2 Adding due-dates
	2.2.1 EDF for 1||Lmax
	2.2.2 Moore-Hodgson algorithm for 1||Ui

	2.3 Adding release dates, 1|ri|Ci

