
Scheduling
Lecture 1: Scheduling on One Machine

Loris Marchal

1 Generalities

1.1 Definition of scheduling

• allocation of limited resources to activities over time

• activities : tasks in computer environment, steps of a construction project, opera-
tions in a production process, lectures at the University, etc.
tasks, jobs,

• resources : processors, workers, machines, lecturers, rooms, etc.
processors, machines

• objective: minimize total time, energy consumption, average service time

Many variations on the model, on the resource/activity interaction and on the objec-
tive.

• Typical example: organize production of a workshop, by making a schedule for
machines. Making different objects may need different series of machines, with
different processing time. The number of objects of each type (or the ratio) may
be fixed, and we want to minimize the overall processing time (or the throughput).

• Another example: in an airport, allocate gates to airplanes, arriving at different
gates, not all gates can accomodate all planes, some gates are further than others:
how to minimize the time spent by passengers (taxiing and walking in the terminal).

• Other examples: schedule the activity of workers in a construction process, allocate
rooms for lecture at the University, etc.

• Our context: in a computing system, we have a number of machines at hand. These
machines may be close to each other, or linked with a limited communication net-
work. We want to use this platform to execute an application, composed of several
tasks. Tasks may have precedence constraints, or other type of constraints. Several
users may share the platform, which might be widely distributed, or hierarchical.
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1.2 Graham notation

Classes of scheduling problems can be specified in terms of the three-field classification
α|β|γ where

• α specifies the machine environment,

• β specifies the job characteristics,

• γ and describes the objective function(s).

We will illustrate this notation on all following scheduling problems.

2 Scheduling with a single machine

Motivations:

• understand the complexity of the problem for various objectives

• some of actual systems offers flexibility and may well be modeled by a single machine
(e.g. virtual machines)

• practice usual scheduling techniques

2.1 First example, with new objective, 1||
∑
wiCi, polynomial

(Smith-ratio)

Objectives using Ci:

• Makespan Cmax = maxCi most common objective

• Total flow time:
∑n

j=1Cj

• Weighted (total) flow time:
∑n

j=1wjCj

Let us consider the problem: 1||
∑
wiCi,

• 1 machine

• no constraints on tasks (length pi)

• Objective: weighted sum of completion times

• Intuitions:

– put high weight first

– put longer tasks last

• ⇒ Order task by non-increasing Smith ratio: w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn

Proof:
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• Consider a different optimal schedule S

• Let i and j be two consecutive tasks in this schedule such that wi/pi < wj/pj

• contribution of these tasks in S:
Si = (wi + wj)(t+ pi) + wjpj

• contribution of these tasks if switched:
Sj = (wi + wj)(t+ pj) + wipi

• we have
Si−Sj

wiwj
= pi

wi
− pj

wj

Thus we decrease the objective by switching these tasks.

2.2 Adding due-dates

Other objectives in the Graham notations, using due dates dj ((sometimes) appears in
the job characteristics):

• lateness : Lj = Cj − dj

• tardiness : Tj = max{0, Cj − dj}

• unit penalty : Uj = 0 if Cj ≤ dj, 1 otherwise

wich gives the following objectives:

• (total lateness=sum flow)

• maximum lateness: Lmax = maxLj

• total tardiness
∑
Tj

• total weighted tardiness
∑
wjTj

• number of late activities
∑
Uj

• weighted number of late activities
∑
wjUj

2.2.1 EDF for 1||Lmax

Let’s study the problem 1||Lmax: minimize the maximum lateness on one machine. The
strategy which places first the jobs with the earliest deadlines is optimal (Earliest Deadline
First). See details in http://www.seas.upenn.edu/~deepc/Courses/CO454/Lectures/

lecture5.pdf.
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2.2.2 Moore-Hodgson algorithm for 1||
∑
Ui

Example:
job 1 2 3 4 5
dj 6 7 8 9 11
pj 4 3 2 5 6

Tasks are sorted by non-decreasing di : d1 ≤ · · · ≤ dn

• A := ∅

• For i = 1 . . . n

– If p(A) + pi ≤ di, then A := A ∪ {i}
– Otherwise,

∗ Let j be the longest task in A ∪ {i}
∗ A := A ∪ {i} − {j}

Optimal solution : A = {2, 3, 5}

Proof. • Feasibility:
We first prove that the algorithm produces a feasible schedule, that is, all task of
A can be scheduled in this order without missing their deadline

– By induction: if no task is rejected, ok

– Assume that A is feasible, prove that A ∪ {i} − {j} is feasible too

∗ all tasks in A before j: no change

∗ all tasks in A after j: shorter completion

∗ task i: let k be the last task in A: p(A) ≤ dk
since task j is the longest: pi ≤ pj, thus p(A∪{i}−{j}) ≤ p(A) ≤ dk ≤ di
(because tasks are sorted)
That is, the new task i terminates earlier than k before j was rejected.
Since di ≥ dk, this is enough.

• Optimality:

Assume that there exists an optimal set O different from the set Af output by the
Moore-Hodgson algorithm

– Let j be the first task rejected by the algorithm

– We prove that there exists an optimal solution without j

– We consider the set A = {1, . . . , i− 1} at the moment when task j is rejected
from A, and i the task being added at this moment

– A+ i is not feasible, thus O does not contain {1, . . . , i}
– Let k be a task of {1, . . . , i} which is not in O
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– Since the algorithm rejects the longest task, p(O ∪ {k} − {j}) ≤ p(O), and by
the same arguments than before, O ∪ {k} − {j} is feasible

– We can suppress j from the problem instance, without modifying the behavior
of the algorithm or the objective

We can repeat this process, until we get the set of tasks scheduled by the algorithm.

2.3 Adding release dates, 1|ri|
∑
Ci

All jobs are not released at the same time, but job j is available starting at time rj.
1|ri|

∑
Ci is NP-complete (admitted)

When adding preemption, we can derive an optimal algorithm for 1|ri, pmtb|
∑
Ci,

which serves as a basis for a 2-approximation algorithm for the initial problem.
See details in http://www.seas.upenn.edu/~deepc/Courses/CO454/Lectures/lecture4.

pdf.
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