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Motivation

Scheduling = Makespan minimization
Difficulty of scheduling is to chose the right processor to
assign the task to.

General mapping
If we are not tight on deadline, why not take our time?

Economical + environmental reasons: Energy consumption.
Affinities or security reasons: what if the tasks are pre-assigned
to a processor?

Goal: “efficiently” use speed scaling
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Task graph model

Consider a task graph (directed acyclic graph) to be executed on a
set of processors. Assume that the mapping is given.

Useful definition in a task graph

For every task Ti we define

wi its size/work

si the speed of the processor which has task Ti assigned to.

ti the time when the computation of Ti ends.

di the time it took to compute task Ti .

di s
3
i the energy consumed on task Ti by the system.
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Speed models

Continuous: processors can have arbitrary speeds, from 0
to a maximum value smax , and a processor can change its
speed at any time during execution.

Discrete: processors have a set of possible speed values, or
modes, denoted as s1, ..., sm. Speed of a processor constant
during the computation of a task, but it can change from task
to task.

Vdd-Hopping: a processor can run at different speeds as in
the previous model, but it can also change its speed during a
computation.

Incremental: The different modes are spread regularly
between s1 = smin and sm = smax , instead of being arbitrarily
chosen. (si = smin + i × δ )
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Gauss Fact
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Unfortunately a computer will never be as good as Gauss.

Discrete: processors have a set of possible speed values, or
modes, denoted as s1, ..., sm. Speed of a processor constant
during the computation of a task, but it can change from task
to task.

Vdd-Hopping: a processor can run at different speeds as in
the previous model, but it can also change its speed during a
computation.

Incremental: The different modes are spread regularly
between s1 = smin and sm = smax , instead of being arbitrarily
chosen. (si = smin + i × δ )

guillaume.aupy@ens-lyon.fr Energy trade-offs



Contents
Introduction

Results
Conclusion

Models
Goal

Speed models

Continuous: processors can have arbitrary speeds, from 0
to a maximum value smax , and a processor can change its
speed at any time during execution.

Discrete: processors have a set of possible speed values, or
modes, denoted as s1, ..., sm. Speed of a processor constant
during the computation of a task, but it can change from task
to task.

Vdd-Hopping: a processor can run at different speeds as in
the previous model, but it can also change its speed during a
computation.

Incremental: The different modes are spread regularly
between s1 = smin and sm = smax , instead of being arbitrarily
chosen. (si = smin + i × δ )

guillaume.aupy@ens-lyon.fr Energy trade-offs



Contents
Introduction

Results
Conclusion

Models
Goal

Speed models

Continuous: processors can have arbitrary speeds, from 0
to a maximum value smax , and a processor can change its
speed at any time during execution.

Discrete: processors have a set of possible speed values, or
modes, denoted as s1, ..., sm. Speed of a processor constant
during the computation of a task, but it can change from task
to task.

Vdd-Hopping: a processor can run at different speeds as in
the previous model, but it can also change its speed during a
computation.

Incremental: The different modes are spread regularly
between s1 = smin and sm = smax , instead of being arbitrarily
chosen. (si = smin + i × δ )

guillaume.aupy@ens-lyon.fr Energy trade-offs



Contents
Introduction

Results
Conclusion

Models
Goal

Speed models

Continuous: processors can have arbitrary speeds, from 0
to a maximum value smax , and a processor can change its
speed at any time during execution.

Discrete: processors have a set of possible speed values, or
modes, denoted as s1, ..., sm. Speed of a processor constant
during the computation of a task, but it can change from task
to task.

Vdd-Hopping: a processor can run at different speeds as in
the previous model, but it can also change its speed during a
computation.

Incremental: The different modes are spread regularly
between s1 = smin and sm = smax , instead of being arbitrarily
chosen. (si = smin + i × δ )

guillaume.aupy@ens-lyon.fr Energy trade-offs



Contents
Introduction

Results
Conclusion

Models
Goal

Example

Consider this DAG, with smax = 6. Suppose deadline is D = 1.5.

p1 w1 = 3 w2 = 2

p2 w3 = 1 w4 = 2

Figure: Execution graph for the example.
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Example

Continuous: (smax = 6) E
(c)
opt ' 109.6.

With the Continuous model, the optimal speeds are non
rational values, and we obtain

s1 =
2

3
(3 + 351/3) ' 4.18; s2 = s1 ×

2

351/3
' 2.56;

s3 = s4 = s1 ×
3

351/3
' 3.83.

Discrete: (s1 = 2, s2 = 5, s3 = 6) E
(d)
opt = 170.

Incremental: (δ = 2, smin = 2, smax = 6) E
(i)
opt = 128.

Vdd-Hopping: (s1 = 2, s2 = 5, s3 = 6) E
(v)
opt = 144.
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(d)
opt = 170.

For the Discrete model, if we execute all tasks at speed

s
(d)
2 = 5, we obtain an energy E = 8× 52 = 200. A better

solution is obtained with s1 = s
(d)
3 = 6, s2 = s3 = s

(d)
1 = 2

and s4 = s
(d)
2 = 5, which turns out to be optimal.
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(d)
opt = 170.

Incremental: (δ = 2, smin = 2, smax = 6) E
(i)
opt = 128.

For the Incremental model, the reasoning is similar to the
Discrete case, and the optimal solution is obtained by an
exhaustive search: all tasks should be executed at
speed s

(i)
2 = 4.
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Incremental: (δ = 2, smin = 2, smax = 6) E
(i)
opt = 128.

Vdd-Hopping: (s1 = 2, s2 = 5, s3 = 6) E
(v)
opt = 144.

With the Vdd-Hopping model, we set s1 = s
(d)
2 = 5; for the

other tasks, we run part of the time at speed s
(d)
2 = 5, and

part of the time at speed s
(d)
1 = 2 in order to use the idle time

and lower the energy consumption.
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Optimization goal

Energy-Performance-oriented objective

Constraint on Deadline

Minimize Energy Consumption:

Today’s talk: comparison of all speed models in this regard.

We assume the mapping is already fixed.
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Hardness

The problem of minimizing energy when the scheduled is already
fixed on p processors is:

Continuous: Polynomial for some special graphs, geometric
optimization in the general case.

Discrete: NP-complete (reduction from 2-partition). We
give an approximation.

Incremental: NP-complete (reduction from 2-partition).
We give an approximation.

Vdd-Hopping: Polynomial (linear programming).
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General problem: geometric programming

Reminder

For each task Ti we define

wi its size/work

si the speed of the processor which has task Ti assigned to.

ti the time when the computation of Ti ends.

Objective function

Minimize
∑n

i=1 s2
i × wi

subject to (i) ti +
wj

sj
≤ tj for each (Ti ,Tj) ∈ E

(ii) ti ≤ D for each Ti ∈ V

(1)

guillaume.aupy@ens-lyon.fr Energy trade-offs



Contents
Introduction

Results
Conclusion

Continuous speeds
Vdd-Hopping
Discrete speed models

Results for continuous speeds

MinEnergy(G,D) can be solved in polynomial time when G
is a tree

MinEnergy(G,D) can be solved in polynomial time when G
is a series-parallel graph (assuming smax = +∞)
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Linear program for Vdd-Hopping

Definition

G , n tasks, D deadline;
s1, ..., sm be the set of possible processor speeds;
ti is the finishing time of the execution of task Ti ;
α(i ,j) is the time spent at speed sj for executing task Ti

This makes us a total of n(m + 1) variables for the system.
Note that the total execution time of task Ti is

∑m
j=1 α(i ,j).

The objective function is:

min

 n∑
i=1

m∑
j=1

α(i ,j)s3
j


guillaume.aupy@ens-lyon.fr Energy trade-offs
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Linear program for Vdd-Hopping

The constraints are:
∀1 ≤ i ≤ n, ti ≤ D: the deadline is not exceeded by any task;
∀1 ≤ i , i ′ ≤ n such that Ti → Ti ′ , ti +

∑m
j=1 α(i ′,j) ≤ ti ′ : a

task cannot start before its predecessor has completed its
execution;
∀1 ≤ i ≤ n,

∑m
j=1 α(i ,j) × sj ≥ wi : task Ti is completely

executed.
∀1 ≤ i ≤ n, ti ≥

∑m
j=1 α(i ,j): each task cannot finish until all

work is done;
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NP-completeness

Theorem

With the Incremental model (and hence the Discrete model),
finding the speed distribution that minimizes the energy
consumption while enforcing a deadline D is NP-complete.

PROOF: Reduction from 2-Partition,

1 processor, n independent tasks of weight (ai ).

2 speeds : s1 = 1/2, s2 = 3/2

D = 2W =
∑n

i=1 ai

E = W ((3/2)2 + (1/2)2)
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Approximation results for Discrete and Incremental.

Proposition (Polynomial-time Approximation algorithms.)

With the Discrete model, for any integer K > 0, the
MinEnergy(G,D) problem can be approximated within a
factor

(1 +
α

s1
)2 × (1 +

1

K
)2

where α = max1≤i<m{si+1 − si}, in a time polynomial in the
size of the instance and in K .

With the Incremental model, the same result holds where
α = δ (s1 = smin).
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Approximation results for Discrete and Incremental.

Proposition (Comparaison to the optimal solution:)

For any integer δ > 0, any instance of MinEnergy(G,D) with
the Continuous model can be approximated within a factor
(1 + δ

smin
)2 in the Incremental model with speed increment δ.
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The problem of minimizing energy when the scheduled is already
fixed on p processors is:

Continuous: Polynomial for some special graphs, geometric
optimization in the general case.
Discrete and Incremental: NP-complete. However we
were able to give an approximation.
Vdd-Hopping: Polynomial (linear programming).

Bi-criteria Energy/Deadline optimization problem

Mapping already given.

Theoretical foundations for a comparative study of energy
models.
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Thanks for listening. Any questions?
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