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Motivation

@ Scheduling = Makespan minimization
Difficulty of scheduling is to chose the right processor to
assign the task to.
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e General mapping
If we are not tight on deadline, why not take our time?

e Economical + environmental reasons: Energy consumption.
o Affinities or security reasons: what if the tasks are pre-assigned
to a processor?
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Motivation

se the right processor to

e General mapping
If we are not tight on deadline, why not take our time?

e Economical + environmental reasons: Energy consumption.
o Affinities or security reasons: what if the tasks are pre-assigned
to a processor?

Goal: “efficiently” use speed scaling J
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Introduction

Task graph model

Consider a task graph (directed acyclic graph) to be executed on a
set of processors. Assume that the mapping is given.

Useful definition in a task graph

For every task T; we define

e w; its size/work
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For every task T; we define
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@ s; the speed of the processor which has task T; assigned to.
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e w; its size/work
@ s; the speed of the processor which has task T; assigned to.

@ t; the time when the computation of T; ends.
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Introduction

Task graph model

Consider a task graph (directed acyclic graph) to be executed on a
set of processors. Assume that the mapping is given.

Useful definition in a task graph

For every task T; we define

e w; its size/work

@ s; the speed of the processor which has task T; assigned to.
@ t; the time when the computation of T; ends.
o

d; the time it took to compute task T;.
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Introduction

Task graph model

Consider a task graph (directed acyclic graph) to be executed on a
set of processors. Assume that the mapping is given.

Useful definition in a task graph

For every task T; we define
e w; its size/work
@ s; the speed of the processor which has task T; assigned to.
@ t; the time when the computation of T; ends.
@ d; the time it took to compute task T;.
o

d,-s? the energy consumed on task T; by the system.
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Speed models

e CONTINUOUS: processors can have arbitrary speeds, from 0
to a maximum value s;,2x, and a processor can change its
speed at any time during execution.
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Introduction

Speed models

e CONTINUOUS: processors can have arbitrary speeds, from 0
to a maximum value s;,2x, and a processor can change its
speed at any time during execution.

When Gauss wife asked him "How much do you love me?”, he
quantified it with an irrational number.
Unfortunately a computer will never be as good as Gauss.
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Introduction

Speed models

e CONTINUOUS: processors can have arbitrary speeds, from 0
to a maximum value s;,2x, and a processor can change its
speed at any time during execution.

@ DISCRETE: processors have a set of possible speed values, or
modes, denoted as si, ..., Sy,. Speed of a processor constant
during the computation of a task, but it can change from task
to task.
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Speed models

e CONTINUOUS: processors can have arbitrary speeds, from 0
to a maximum value s;,2x, and a processor can change its
speed at any time during execution.

@ DISCRETE: processors have a set of possible speed values, or
modes, denoted as si, ..., Sy,. Speed of a processor constant
during the computation of a task, but it can change from task
to task.

@ VDD-HOPPING: a processor can run at different speeds as in
the previous model, but it can also change its speed during a
computation.
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Speed models

e CONTINUOUS: processors can have arbitrary speeds, from 0
to a maximum value s;,2x, and a processor can change its
speed at any time during execution.

@ DISCRETE: processors have a set of possible speed values, or
modes, denoted as si, ..., Sy,. Speed of a processor constant
during the computation of a task, but it can change from task
to task.

@ VDD-HOPPING: a processor can run at different speeds as in
the previous model, but it can also change its speed during a
computation.

@ INCREMENTAL: The different modes are spread regularly
between s; = sy, and s, = Spmax, instead of being arbitrarily
chosen. (sj = Smin+ 1 X9 )
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Introduction

Example

Consider this DAG, with s;,.x = 6. Suppose deadline is D = 1.5.

W1:3—>W2:2

N

W3:1—>W4:2

Figure: Execution graph for the example.
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Example

o CONTINUOUS: (Smax = 6) ES5) =~ 109.6.

With the CONTINUOUS model, the optimal speeds are non
rational values, and we obtain

2
s=30+ 35Y3) ~4.18; s =5 x =~ 2.56;

351/3

S3=5,= 5 ~ 3.83.

w3
351/3
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Goal

Example

@ DISCRETE: (s1 =2, s =5, s3 = 6) ng,’z = 170.
For the DISCRETE model, if we execute all tasks at speed
séd) = 5, we obtain an energy E = 8 x 52 = 200. A better
solution is obtained with s; = séd) =6, 5 =53= sfd) =2

and s4 = séd) =5, which turns out to be optimal.
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Introduction Models
Goal

Example

@ INCREMENTAL: (§ =2, Smin = 2, Smax = 6) E((,p)t = 128.
For the INCREMENTAL model, the reasoning is similar to the
DISCRETE case, and the optimal solution is obtained by an
exhaustive search: all tasks should be executed at

speed sg) =4,
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Goal

Example

e VDD-HOPPING: (51 =2, s =5, 53 = 6) E((,gz = 144.
(d)

With the VDD-HOPPING model, we set s; = s, ’ = 5; for the
other tasks, we run part of the time at speed séd) =5, and
part of the time at speed s{d) = 2 in order to use the idle time

and lower the energy consumption.

guillaume.aupy@ens-lyon.fr Energy trade-offs



Introduction Models
Goal

Example

CONTINUOUS: (Smax = 6) Eégg ~ 109.6.

DISCRETE: (51 =2, s =5, s3 = 6) Eg,‘,? = 170.

INCREMENTAL: (8 = 2, Smin = 2, Smax = 0) E((,,"J)t = 128.

VDD-HOPPING: (51 =2, 5p =5, s3 = 6) Eégz = 144,
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Introduction

Optimization goal

Energy-Performance-oriented objective

@ Constraint on Deadline

@ Minimize Energy Consumption:
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Introduction

Optimization goal

Energy-Performance-oriented objective

@ Constraint on Deadline t; < D for each T; € V

o Minimize Energy Consumption: > " w; x s?

Today's talk: comparison of all speed models in this regard. )

guillaume.aupy@ens-lyon.fr Energy trade-offs



Introduction

Optimization goal

Energy-Performance-oriented objective

@ Constraint on Deadline t; < D for each T; € V

o Minimize Energy Consumption: > " w; x s?

Today's talk: comparison of all speed models in this regard. )

We assume the mapping is already fixed. )
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Results Discrete speed models

Hardness

The problem of minimizing energy when the scheduled is already
fixed on p processors is:
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Results Discrete speed models

Hardness

The problem of minimizing energy when the scheduled is already
fixed on p processors is:

e CONTINUOUS: Polynomial for some special graphs, geometric
optimization in the general case.
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Results Discrete speed models

Hardness

The problem of minimizing energy when the scheduled is already
fixed on p processors is:

e CONTINUOUS: Polynomial for some special graphs, geometric
optimization in the general case.

@ DISCRETE: NP-complete (reduction from 2-partition). We
give an approximation.
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Results Discrete speed models

Hardness

The problem of minimizing energy when the scheduled is already
fixed on p processors is:

e CONTINUOUS: Polynomial for some special graphs, geometric
optimization in the general case.

@ DISCRETE: NP-complete (reduction from 2-partition). We
give an approximation.

@ INCREMENTAL: NP-complete (reduction from 2-partition).
We give an approximation.
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Results Discrete speed models

Hardness

The problem of minimizing energy when the scheduled is already
fixed on p processors is:

e CONTINUOUS: Polynomial for some special graphs, geometric
optimization in the general case.

@ DISCRETE: NP-complete (reduction from 2-partition). We
give an approximation.

@ INCREMENTAL: NP-complete (reduction from 2-partition).
We give an approximation.

e VDD-HoPPING: Polynomial (linear programming).
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© Results

@ Continuous speeds
@ VDD-HOPPING
@ Discrete speed models
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Continuous speeds
VbpD-HOPPING

Results Discrete speed models

General problem: geometric programming

Reminder

For each task T; we define
@ w; its size/work
@ s; the speed of the processor which has task T; assigned to.

@ t; the time when the computation of T; ends.

Objective function

Minimize Y7, s? x w;
subject to (i) tj + 2 < t; for each (T;, Tj) € E (1)
J
(i) t; < D for each T; € V
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Continuous speeds
VbD-HOPPING

Results Discrete speed models

Results for continuous speeds

e MINENERGY(G,D) can be solved in polynomial time when G
is a tree
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Continuous speeds
VbD-HOPPING

Results Discrete speed models

Results for continuous speeds

e MINENERGY(G,D) can be solved in polynomial time when G
is a tree

e MINENERGY(G,D) can be solved in polynomial time when G
is a series-parallel graph (assuming spmax = +00)
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© Results

@ Continuous speeds
@ VDD-HOPPING
@ Discrete speed models
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Continuous speeds
Vpp-HOPPING

Results Discrete speed models

Linear program for VDD-HOPPING

G, n tasks, D deadline;

S1,...,Sm be the set of possible processor speeds;

tj is the finishing time of the execution of task T;;

(i) is the time spent at speed s; for executing task T;
This makes us a total of n(m + 1) variables for the system.
Note that the total execution time of task T; is ij:1 Qi j)-

The objective function is:

n m
min [ > a@ys’

i=1 j=1
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Continuous speeds
VbpD-HOPPING

Results Discrete speed models

Linear program for VDD-HOPPING

The constraints are:
V1 <i<n, t; < D: the deadline is not exceeded by any task;
V1 <i,i" < nsuchthat T; — Tj, t,+z Loy St a
task cannot start before its predecessor has completed its
execution;
Vi<i<n, ZJ'":l aijy X 5 > w;: task T; is completely
executed.
Vi<i<n, t;> ijzl ojj): each task cannot finish until all
work is done;
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© Results

@ Continuous speeds
@ VDD-HOPPING
@ Discrete speed models
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Continuous speeds
VbD-HOPPING

Results Discrete speed models

NP-completeness

With the INCREMENTAL model (and hence the DISCRETE model),
finding the speed distribution that minimizes the energy
consumption while enforcing a deadline D is NP-complete.

PROOF: Reduction from 2-PARTITION,
@ 1 processor, n independent tasks of weight (a;).
@ 2speeds: s =1/2,5p=3/2
e D=2W=3%",a
o E= W((3/27+(1/2))
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Continuous speeds
VbD-HOPPING

Results Discrete speed models

Approximation results for DISCRETE and INCREMENTAL.

Proposition (Polynomial-time Approximation algorithms.)
e With the DISCRETE model, for any integer K > 0, the
MINENERGY(G,D) problem can be approximated within a
factor

« 1
1+ —)? x(1+—=)2
@+ x4
where a = maxi<j<m{Si+1 — Si}, in a time polynomial in the
size of the instance and in K.
@ With the INCREMENTAL model, the same result holds where

a =10 (s1 = Smin)-
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Continuous speeds
VbD-HOPPING

Results Discrete speed models

Approximation results for DISCRETE and INCREMENTAL.

Proposition (Comparaison to the optimal solution:)

For any integer § > 0, any instance of MINENERGY(G,D) with
the CONTINUOUS model can be approximated within a factor
(1+ %)2 in the INCREMENTAL model with speed increment .
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Conclusion

The problem of minimizing energy when the scheduled is already
fixed on p processors is:
CONTINUOUS: Polynomial for some special graphs, geometric
optimization in the general case.
Di1SCRETE and INCREMENTAL: NP-complete. However we
were able to give an approximation.
VDD-HOPPING: Polynomial (linear programming).

@ Bi-criteria Energy/Deadline optimization problem
@ Mapping already given.

@ Theoretical foundations for a comparative study of energy
models.
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Conclusion

Thanks for listening. Any questions?
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