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Context of the study

I Scientific computing : large needs in computation or storage
resources.

I Need to use systems with “several processors” :
I Parallel computers with shared memory
I Parallel computers with distributed memory
I Clusters
I Heterogeneous clusters
I Clusters of clusters
I Network of workstations
I The Grid

I Problematic : to take into account the heterogeneity at the
algorithmic level.
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New platforms, new problems

Execution platforms : Distributed heterogeneous platforms
(network of workstations, clusters, clusters of clusters, grids, etc.)

New sources of problems

I Heterogeneity of processors (computational power, memory,
etc.)

I Heterogeneity of communications links.

I Irregularity of interconnection network.

I Non dedicated platforms.

We need to adapt our algorithmic approaches and our scheduling
strategies : new objectives, new models, etc.
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An example of application : seismic tomography of the Earth

I Model of the inner structure
of the Earth

I The model is validated by comparing the propagation time of
a seismic wave in the model to the actual propagation time.

I Set of all seismic events of the year 1999 : 817101
I Original program written for a parallel computer :

if (rank = ROOT)
raydata ← read n lines from data file ;

MPI Scatter(raydata, n/P, ..., rbuff, ...,
ROOT, MPI COMM WORLD) ;

compute work(rbuff) ;
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Applications covered by the divisible loads model

Applications made of a very (very) large number of fine grain
computations.

Computation time proportional to the size of the data to be
processed.

Independent computations : neither synchronizations nor
communications.
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Bus-like network
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I The links between the master and the slaves all have the same
characteristics.

I The slave have different computation power.
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Notations

I A set P1, ..., Pp of processors

I P1 is the master processor : initially, it holds all the data.

I The overall amount of work : Wtotal.

I Processor Pi receives an amount of work : ni ∈ N with∑
i ni = Wtotal.

Length of a unit-size work on processor Pi : wi.
Computation time on Pi : niwi.

I Time needed to send a unit-message from P1 to Pi : c.
One-port bus : P1 sends a single message at a time over the
bus, all processors communicate at the same speed with the
master.



11/ 59

Behavior of the master and of the slaves (illustration)

0

P2

P3

P4

P1

temps

Calcul Communication Inactif

fin
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Behavior of the master and of the slaves (hypotheses)

I The master sends its chunk of ni data to processor Pi in a
single sending.

I The master sends their data to the processors, serving one
processor at a time, in the order P2, ..., Pp.

I During this time the master processes its n1 data.

I A slave does not start the processing of its data before it has
received all of them.
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Equations

I P1 : T1 = n1.w1

I P2 : T2 = n2.c+ n2.w2

I P3 : T3 = (n2.c+ n3.c) + n3.w3

I Pi : Ti =
∑i

j=2 nj .c+ ni.wi for i ≥ 2

I Pi : Ti =
∑i

j=1 nj .cj + ni.wi for i ≥ 1 with c1 = 0 and cj = c
otherwise.



14/ 59

Execution time

T = max
1≤i≤p

 i∑
j=1

nj .cj + ni.wi



We look for a data distribution n1, ..., np which minimizes T .
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Execution time : rewriting

T = max

n1.c1 + n1.w1, max
2≤i≤p

 i∑
j=1

nj .cj + ni.wi



T = n1.c1 + max

n1.w1, max
2≤i≤p

 i∑
j=2

nj .cj + ni.wi


An optimal solution for the distribution of Wtotal data over p
processors is obtained by distributing n1 data to processor P1 and
then optimally distributing Wtotal − n1 data over processors P2 to
Pp.
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Algorithm

1: solution[0, p]← cons(0,NIL) ; cost[0, p]← 0
2: for d← 1 to Wtotal do
3: solution[d, p]← cons(d,NIL)
4: cost[d, p]← d · cp + d · wp

5: for i← p− 1 downto 1 do
6: solution[0, i]← cons(0, solution[0, i + 1])
7: cost[0, i]← 0
8: for d← 1 to Wtotal do
9: (sol ,min)← (0, cost[d, i + 1])

10: for e← 1 to d do
11: m← e · ci + max(e · wi, cost[d− e, i + 1])
12: if m < min then
13: (sol ,min)← (e, m)

14: solution[d, i]← cons(sol , solution[d− sol , i + 1])
15: cost[d, i]← min
16: return (solution[Wtotal, 1], cost[Wtotal, 1])
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Complexity

I Theorical complexity

O(W 2
total · p)

I Complexity in practice
If Wtotal = 817101 and p = 16, on a Pentium III running at
933 MHz : more than two days...
(Optimized version ran in 6 minutes.)
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Disadvantages

I Cost

I Solution is not reusable

I Solution is only partial (processor order is fixed)

We do not need the solution to be so precise
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Notations

I A set P1, ..., Pp of processors

I P1 is the master processor : initially, it holds all the data.

I The overall amount of work : Wtotal.

I Processor Pi receives an amount of work αiWtotal

with αiWtotal ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi : wi.
Computation time on Pi : αiwi.

I Time needed to send a unit-message from P1 to Pi : c.
One-port model : P1 sends a single message at a time, all
processors communicate at the same speed with the master.
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Equations

For processor Pi (with c1 = 0 and cj = c otherwise) :

Ti =
i∑

j=1

αjWtotal.cj + αiWtotal.wi

T = max
1≤i≤p

 i∑
j=1

αjWtotal.cj + αiWtotal.wi



We look for a data distribution α1, ..., αp which minimizes T .
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Properties of load-balancing

Lemma

In an optimal solution, all processors end their processing at the
same time.
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Demonstration of lemma 1

Two slaves i and i+ 1 with Ti < Ti+1.
(the same results holds with i− 1 and i)
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P1

temps

fin

We decrease αi+1 by ε.
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Demonstration of lemma 1

Two slaves i and i+ 1 with Ti < Ti+1.
(the same results holds with i− 1 and i)

0

P2

P3

P4

P1

temps

fin

The communication time for the following processors is unchanged.
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Demonstration of lemma 1

Two slaves i and i+ 1 with Ti < Ti+1.
(the same results holds with i− 1 and i)

0

P2

P3

P4

P1

temps

fin

We end up with a better solution !
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Demonstration of lemma 1 (continuation and conclusion)

I Ideal : T ′i = T ′i+1.
We choose ε such that :

(αi + ε)Wtotal(c+ wi) =
(αi + ε)Wtotalc+ (αi+1 − ε)Wtotal(c+ wi+1)

I The master stops before the slaves : absurde.

I The master stops after the slaves : we decrease P1 by ε.
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Property for the selection of ressources

Lemma

In an optimal solution all processors work.

Demonstration : this is just a corollary of lemma 1...
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Resolution

T = α1Wtotalw1.

T = α2(c+ w2)Wtotal. Therefore α2 = w1
c+w2

α1.

T = (α2c+ α3(c+ w3))Wtotal. Therefore α3 = w2
c+w3

α2.

αi = wi−1

c+wi
αi−1 for i ≥ 2.

∑n
i=1 αi = 1.

α1

(
1 +

w1

c+ w2
+ ...+

j∏
k=2

wk−1

c+ wk
+ ...

)
= 1
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Impact of the order of communications

How important is the influence of the ordering of the processor on
the solution ?

?
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No impact of the order of the communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi : αi(c+ wi)Wtotal = T . Therefore αi = 1
c+wi

T
Wtotal

.

Processor Pi+1 : αicWtotal + αi+1(c+ wi+1)Wtotal = T .
Thus αi+1 = 1

c+wi+1
( T

Wtotal
− αic) = wi

(c+wi)(c+wi+1)
T

Wtotal
.

Processors Pi and Pi+1 :

αi + αi+1 =
c+ wi + wi+1

(c+ wi)(c+ wi+1)
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Choice of the master processor

We compare processors P1 and P2.

Processor P1 : α1w1Wtotal = T . Then, α1 = 1
w1

T
Wtotal

.

Processor P2 : α2(c+ w2)Wtotal = T . Thus, α2 = 1
c+w2

T
Wtotal

.

Total volume processed :

α1 + α2 =
c+ w1 + w2

w1(c+ w2)
=
c+ w1 + w2

cw1 + w1w2

Minimal when w1 < w2.
Master = the most powerfull processor (for computations).
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Conclusion

I Closed-form expressions for the execution time and the
distribution of data.

I Choice of the master.

I The ordering of the processors has no impact.

I All processors take part in the work.
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Star-like network
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I The links between the master and the slaves have different
characteristics.

I The slaves have different computational power.
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Notations

I A set P1, ..., Pp of processors

I P1 is the master processor : initially, it holds all the data.

I The overall amount of work : Wtotal.

I Processor Pi receives an amount of work αiWtotal

with
∑

i ni = Wtotal with αiWtotal ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi : wi.
Computation time on Pi : niwi.

I Time needed to send a unit-message from P1 to Pi : ci.
One-port model : P1 sends a single message at a time.
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Ressource selection

Lemma

In an optimal solution, all processors work.

We take an optimal solution. Let Pk be a processor which does not
receive any work : we put it last in the processor ordering and we
give it a fraction αk such that αk(ck + wk)Wtotal is equal to the
processing time of the last processor which received some work.

Why should we put this processor last ?
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Load-balancing property

Lemma

In an optimal solution, all processors end at the same time.
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Demonstration of lemma 4

I Most existing proofs are false.

Minimize T,
subject to

∑n
i=1 αi = 1

∀i, αi ≥ 0
∀i,

∑i
k=1 αkck + αiwi ≤ T

I The constraints define a polyhedron
I One of the optimal solution is a vertex of the polyhedron, that

is at least n among the 2n inequalities are equalities,
I It can not be a lower bound, because all processors

participate, thus this point is an optimal solution
I Assume there is another optimal solution ; it lies within the

polyhedron
I We can build a linear combination of both optimal solution

(with optimal objective), such that one variable is zero, which
contradicts the previous result.
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Impact of the order of communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi : αi(ci + wi)Wtotal = T . Thus, αi = 1
ci+wi

T
Wtotal

.

Processor Pi+1 : αiciWtotal + αi+1(ci+1 + wi+1)Wtotal = T .
Thus, αi+1 = 1

ci+1+wi+1
(1− ci

ci+wi
) T

Wtotal
= wi

(ci+wi)(ci+1+wi+1)
T

Wtotal
.

Volume processed : αi + αi+1 = ci+1+wi+wi+1

(ci+wi)(ci+1+wi+1)

Communication time : αici + αi+1ci+1 = cici+1+ci+1wi+ciwi+1

(ci+wi)(ci+1+wi+1)

Processors must be served by decreasing bandwidths.
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Conclusion

I The processors must be ordered by decreasing bandwidths

I All processors are working

I All processors end their work at the same time

I Formulas for the execution time and the distribution of data
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With return messages

I Once it has finished processing its share of the total load, a
slave sends back a result to the master.

I Problems to be solved :
I Resource selection.
I Defining an order for sending the data to the slaves.
I Defining an order for receiving the data from the slaves.
I Defining the amount of work each processor has to process.



41/ 59

Notations

I A set P1, ..., Pp of processors

I P1 is the master processor : initially, it holds all the data.

I The overall amount of work : Wtotal.

I Processor Pi receives an amount of work αiWtotal

with
∑

i ni = Wtotal with αiWtotal ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi : wi.
Computation time on Pi : niwi.

I Time needed to send a unit-message from P1 to Pi : ci.

I Time needed to send a unit-message from Pi to P1 : di.
One-port model : P1 sends and receives a single message at a
time.



42/ 59

Solutions with idle time ?

I How about waiting between the end of the reception of the
data and the start of the computation ?

Not interesting !

I How about waiting between the end of the computation and
the time the results start to be sent bask to the master ?

Mandatory if the communication link is not available.

We need to anticipate, when building a solution, the possibility of
idle times.
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Review of known results in January 2005

(the first paper on divisible loads dates back to 1988)

I Barlas
I Fixed communication times or bus-like network ci = c.
I Optimal ordering and closed-form formulas (trivial).

I Drozdowski and Wolniewicz : experimental study of LIFO and
FIFO distributions.

I Rosenberg et al. :
I Complex communication model (affine).
I Possibility to slow down a processor (to avoid idle times).
I In practice : communication capabilities are not heterogeneous.
I All FIFO distributions are equivalent and are better than any

other solution (proof made by exchange).
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Linear program for a given scenario (1)

A scenario is described by :

I which processor is given work to ;

I in which order the communications take place (sending of the
data and gathering of the results).

With a given scenario, one can suppose that :

I the master sends the data as soon as possible ;

I the slaves start working as soon as possible ;

I the slaves send their as late as possible.
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Linear program for a given scenario (2)

Pi
αi × dixiαi × wiαi × ci

Consider slave Pi :

I it starts receiving data at time trecvi =
i−1∑
j=1

αj × cj

I it starts working at time trecvi + αi × ci
I it ends processing its load at time
ttermi = trecvi + αi × ci + αi × wi

I it starts sending back its results at time

tback
i = T −

∑
j successor of i

αj × dj

I its idle time is : xi = tback
i − ttermi ≥ 0
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Linear program for a given scenario (3)

For a given value of T , we obtain the linear program :

Maximize
∑

i αi,under the constraints{
αi ≥ 0
tback
i − ttermi ≥ 0

(1)

I Optimal throughput, an ordering and the resource selection
being given.

For a given amount of work
∑

i αi = W :

Minimize T ,under the constraints
αi ≥ 0∑

i αi = W

tback
i − ttermi ≥ 0

(2)

I Minimal time, an ordering and the resource selection being
given.
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Linear program for a given scenario (4)

One cannot test all possible configurations

I Even if we decide that the order of return messages should be
the same than the order of data distribution messages (FIFO),
there still is an exponential number of scenarios to be tested.
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All processors do not always participate

P0

P1 P2 P3

d3 = 5d1 = 1

w1 = 1 w2 = 1 w3 = 5

c1 = 1
c2 = 1

c3 = 5

d2 = 1

P2

P1

P3

P2

P1

P3

LIFO, throughput ρ = 61/135 FIFO with 2 processors,
(best schedule optimal throughputρ = 1/2

with 3 processors)
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The optimal schedule may be neither LIFO nor FIFO

P0

P1 P2 P3

c2 = 8c1 = 7 c3 = 12

d1 = 7 d3 = 12

w1 = 6 w2 = 5 w3 = 5

d2 = 8

P2

P1

P3

Optimal schedule
(ρ = 38/499 ≈ 0.076)

P2

P1

P3

P2

P1

P3

Best FIFO schedule Best LIFO schedule
(ρ = 47/632 ≈ 0.074) (ρ = 43/580 ≈ 0.074)
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LIFO strategies (1)

I LIFO = Last In First Out

I The processor which receives its data first is the last to send
its results back.

I The order of the return messages is the inverse of the order in
which data are sent.

P2

P1

Pp

Pi

αici αiwi
xi

αidi



51/ 59

LIFO strategies (2)

Theorem

In the best LIFO solution :

I All processors work

I The processors are sent by increasing values of ci + di

I There is no idle time, i.e. xi = 0 for each i.

Demonstration : We change the platform : ci ← ci + di and di ← 0

P2

P1

αici αiwi
xi

αidi

Pi

Pp

→

P1

αiwiαi(di + ci) xi

P2

Pi

Pp

⇒ reduction to a classical problem without return messages.
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FIFO strategies (1)

I FIFO = First In First Out

I The order the data are sent is the same than the order the
return messages are sent.

P2

P1

Pp

xi
αidiαici αiwi

Pi

We only consider the case di = z × ci (z < 1)
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FIFO strategies (2)

Theorem

In the best FIFO solution :

I The data are sent by increasing values of : ci + di

I The set of all working processors are made of the first q
processors under this order ; q can be computed in linear time.

I There is no idle time, i.e. xi = 0 for each i.
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FIFO strategies (3)

We consider i in the schedule :

αici αiwi
xi

αidi

messages de retour suivantsprécédents envois de données

∑n
j=i+1 αj × dj

∑i−1
j=1 αj × cj

i∑
j=1

αi × ci + αi ×+wi

n∑
j=i

αi × di + xi = T

We thus have : Aα+ x = T1, where :

A =


c1 + w1 + d1 d2 d3 . . . dk

c1 c2 + w2 + d2 d3 . . . dk
... c2 c3 + w3 + d3

. . .
...

...
...

. . . dk

c1 c2 c3 . . . ck + wk + dk
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FIFO strategies (4)

We can write A = L+ 1dT , with :

L =


c1 + w1 0 0 . . . 0
c1 − d1 c2 + w2 0 . . . 0

... c2 − d2 c3 + w3
. . .

...
...

...
. . . 0

c1 − d1 c2 − d2 c3 − d3 . . . ck + wk

 and d=


d1

d2
...
...
dk


The matrix 1dt is a matrix of rank one, we can thus use
Sherman-Morrison’s formula to compute the inverse of A :

A−1 = (L+ 1dt)−1 = L−1 − L−1
1dtL−1

1 + dtL−11
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FIFO strategies (5)

With the formula which gives A−1, one can :

I show that for each processor Pi, either αi = 0 (the processor
does not work) or xi = 0 (no idle time) ;

I define analytically the throughput ρ(T ) =
∑

i αi ;

I show that the throughput is best when c1 ≤ c2 ≤ c3 . . . ≤ cn ;

I show that the throughput is best when the only working

processors are the one satisfying di ≤
1
ρopt
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FIFO strategies — special cases

I So far, we have supposed that di = z × ci, with z < 1.

I If z > 1, symmetrical solution (the data are sent by decreasing
values of di + ci, the first q processors are selected under this
order).

I z = 1 ⇒ the order has no impact (but all processors do not
always work).
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Overview

The context

Bus-like network : classical resolution

Bus-like network : resolution under the divisible load model

Star-like network

With return messages

Conclusion
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Que retenir de tout ça ?

I Idée de base simple : une solution approchée est amplement
suffisante.

I Les temps de communication jouent un plus grand rôle que les
vitesses de calcul.
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