
Divisible load theory

Loris Marchal, material from Frédéric Vivien

12 février 2009

1/ 24



2/ 24

Overview

Summary of the first lecture

Adaptation to tree-shaped platforms

Multi-round algorithms

With bounded memory

Case study : article from Veeravali and Robertazzi

Conclusion



3/ 24

Overview

Summary of the first lecture

Adaptation to tree-shaped platforms

Multi-round algorithms

With bounded memory

Case study : article from Veeravali and Robertazzi

Conclusion



4/ 24

Summary of the first lecture

I Key assumption : work is divisible in rational quantities

I Renders many problems tractable

I Underlying idea : since the number of tasks is large, rounding
to integer values after computing optimal schedule is negligible

I A schedule is described by :
I the set of participating processor,
I the order of the sending operations,
I the quantity of work sent to each processor

I Basic problem : star network, linear costs, one-round,
I All workers participate
I Send work to workers with largest bandwidth first
I All workers terminate at the same time :

we are able to compute the amount of work done by each
worker

Many possible generalizations.



5/ 24

Overview

Summary of the first lecture

Adaptation to tree-shaped platforms

Multi-round algorithms

With bounded memory

Case study : article from Veeravali and Robertazzi

Conclusion



6/ 24

Adaptation to tree-shaped platforms

I Each single level tree can be replaced by a single node, with
total computing capacity W , with w =

∑
αi, where α is the

solution of the previous linear program
I Constructive solution for the tree :

1. Traverse the tree from bottom to top, replacing each
single-level node by a equivalent processor

2. Solve the star problem obtained
3. Traverse the tree from top to bottom, undo each

transformation, order the children, and distribute the load.

I Global solution : order the children by non-decreasing
bandwidth, and then write the complete linear program.



7/ 24

Overview

Summary of the first lecture

Adaptation to tree-shaped platforms

Multi-round algorithms

With bounded memory

Case study : article from Veeravali and Robertazzi

Conclusion



8/ 24

One round vs. multi-round

TfT2 Tp

...

T1

αpwp

α2w2

α1w1

α1g α2g αpg

Pp

P2

P1

Network

One round
; long idle-times

R0 R1 Rk

Pp

P2

P1

Network

Multi-round
Efficient when Wtotal large

Intuition : Start with small rounds, then increase chunk sizes.
Problem with current model : leads to an absurd solution with
infinite number of infinitely small messages.

I Either change the model in order to allow simultaneous
communication and computation on the same data

I Or add latency to the communication the model



9/ 24

Notations

I A set P1, ..., Pp of processors

I P1 is the master processor : initially, it holds all the data.

I The overall amount of work : Wtotal.

I Processor Pi receives an amount of work αiWtotal

with
∑

i ni = Wtotal with αiWtotal ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi : wi.
Computation time on Pi : niwi.

I Time needed to send a message of size αi P1 to Pi :
Li + ci × αi.
One-port model : P1 sends and receives a single message at a
time.



10/ 24

Complexity

Definition (One round, ∀i, ci = 0)

Given Wtotal, p workers, (Pi)1≤i≤p, (Li)1≤i≤p, and a rational
number T ≥ 0, and assuming that bandwidths are infinite, is it
possible to compute all Wtotal load units within T time units ?

Theorem

The problem with one-round and infinite bandwidths is
NP-complete.

What is the complexity of the general problem with finite
bandwidths and several rounds ?

The general problem is NP-hard, but does not appear to be in NP
(no polynomial bound on the number of activations).



11/ 24

Fixed activation sequence

Hypotheses

1. Number of activations : Nact ;

2. Whether Pi is the processor used during activation j : χ
(j)
i

Minimize T,under the constraints

Nact∑
j=1

p∑
i=1

χ
(j)
i α

(j)
i = Wtotal

∀k ≤ Nact, ∀l :

 k∑
j=1

p∑
i=1

χ
(j)
i (Li + α

(j)
i ci)

+
Nact∑
j=k

χ
(j)
l α

(j)
l wl ≤ T

∀i, j : α(j)
i ≥ 0

(1)

Can be solved in polynomial time.



12/ 24

Fixed number of activations

Minimize T,under the constraints

Nact∑
j=1

p∑
i=1

χ
(j)
i α

(j)
i = Wtotal

∀k ≤ Nact,∀l :

 k∑
j=1

p∑
i=1

χ
(j)
i (Li + α

(j)
i ci)

+
Nact∑
j=k

χ
(j)
l α

(j)
l wl ≤ T

∀k ≤ Nact :
p∑

i=1

χ
(k)
i ≤ 1

∀i, j : χ(j)
i ∈ {0, 1}

∀i, j : α(j)
i ≥ 0

(2)

Exact but exponential

Can lead to branch-and-bound algorithms



13/ 24

Uniform multi-round

In a round : all workers have same
computation time

Geometrical increase of rounds
size

No idle time in communications :
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

.

.

.

.

.

.

Transfer

Compute

Transfer

Compute

Transfer

Compute

Worker 1

Worker 2

round j

TA

time

Transfer
Worker i

round j + 2round j + 1

TB T
C

Li

Worker p

α
(j+1)
1 ciα

(j)
1 ci

α
(j)
1 w1

α
(j)
i ci

Compute

α
(j)
p cp

α
(j)
i wi = α

(j)
1 w1

α
(j+1)
i ci

α
(j+1)
p cp

α
(j)
p wp = α

(j)
1 w1

α
(j)
i wi =

p∑
k=1

(Lk + α
(j+1)
k ck).

Heuristic processor selection : by decreasing bandwidths

No guarantee...



14/ 24

Periodic schedule

Tp

Ln αncn Ln αncn Ln αncn

..
.

α1w1

α2w2

α3w3

αnwn

α1c1
α1w1

α2w2

α3w3

αnwn

α1w1

α2w2

α3w3

αnwn

α1c1 α1c1

L2 L2 L2α2c2 α2c2 α2c2

L3 L3 L3α3c3 α3c3 α3c3

L1 L1 L1

Compute

Transfer

Compute

Transfer

Compute

Transfer

Compute

Transfer

How to choose Tp ? Which resources to select ?



15/ 24

With no overlap (1/4)

Equations

I Divide total execution time T into k periods of duration Tp.

I I ⊂ {1, . . . , p} participating processors.

I Bandwidth limitation :∑
i∈I

(Li + αici) ≤ Tp.

I No overlap :

∀i ∈ I, Li + αi(ci + wi) ≤ Tp.



16/ 24

With no overlap (2/4)

Normalization

I βi average number of tasks processed by Pi during one time
unit.

I Linear program :

Maximize
∑p

i=1 βi{
∀i ∈ I, βi(ci + wi) ≤ 1− Li

Tp∑
i∈I βici ≤ 1−

P
i∈I Li

Tp

.

Relaxed version
Maximize

∑p
i=1 xi ∀1 ≤ i ≤ p, xi(ci + wi) ≤ 1−∑p

i=1 xici ≤ 1−
Pp

i=1 Li

Tp

.



16/ 24

With no overlap (2/4)

Normalization

I βi average number of tasks processed by Pi during one time
unit.

I Linear program :

Maximize
∑p

i=1 βi{
∀i ∈ I, βi(ci + wi) ≤ 1− Li

Tp∑
i∈I βici ≤ 1−

P
i∈I Li

Tp

.

Relaxed version
Maximize

∑p
i=1 xi ∀1 ≤ i ≤ p, xi(ci + wi) ≤ 1− Li

Tp∑p
i=1 xici ≤ 1−

Pp
i=1 Li

Tp

.



16/ 24

With no overlap (2/4)

Normalization

I βi average number of tasks processed by Pi during one time
unit.

I Linear program :

Maximize
∑p

i=1 βi{
∀i ∈ I, βi(ci + wi) ≤ 1− Li

Tp∑
i∈I βici ≤ 1−

P
i∈I Li

Tp

.

Relaxed version
Maximize

∑p
i=1 xi ∀1 ≤ i ≤ p, xi(ci + wi) ≤ 1−

Pp
i=1 Li

Tp∑p
i=1 xici ≤ 1−

Pp
i=1 Li

Tp

.



17/ 24

With no overlap (3/4)

Bandwidth-centric solution

I Sort : c1 ≤ c2 ≤ . . . ≤ cp.

I Let q be the largest index so that
∑q

i=1
ci

ci+wi
≤ 1.

I If q < p, ε = 1−
∑q

i=1
ci

ci+wi
.

I Optimal solution to relaxed program :

∀1 ≤ i ≤ q, xi =
1−

Pp
i=1 Li

Tp

ci + wi

and (if q < p) :

xq+1 =
(

1−
∑p

i=1 Li

Tp

)(
ε

cq+1

)
,

and xq+2 = xq+3 = . . . = xp = 0.



18/ 24

With no overlap (4/4)

Asymptotic optimality

I Let Tp =
√
T ∗max and αi = xiTp for all i.

I Then T ≤ T ∗max +O(
√
T ∗max).

I Closed-form expressions for resource selection and task
assignment provided by the algorithm.



19/ 24

With overlap

Key points

I Still sort resources according to the ci.

I Greedily select resources until the sum of the ratios ci
wi(

instead of ci
ci+wi

)
exceeds 1.



20/ 24

Overview

Summary of the first lecture

Adaptation to tree-shaped platforms

Multi-round algorithms

With bounded memory

Case study : article from Veeravali and Robertazzi

Conclusion



21/ 24

Divisible load scheduling with bounded memory

I Assume the memory is bounded on each worker

I Problem is NP-complete with affine costs (reduction from
3-partition)



22/ 24

Overview

Summary of the first lecture

Adaptation to tree-shaped platforms

Multi-round algorithms

With bounded memory

Case study : article from Veeravali and Robertazzi

Conclusion



23/ 24

Overview

Summary of the first lecture

Adaptation to tree-shaped platforms

Multi-round algorithms

With bounded memory

Case study : article from Veeravali and Robertazzi

Conclusion



24/ 24

Que retenir de tout ça ?

I Idée de base simple : une solution approchée est amplement
suffisante.

I Les temps de communication jouent un plus grand rôle que les
vitesses de calcul.


	Summary of the first lecture
	Adaptation to tree-shaped platforms
	Multi-round algorithms
	With bounded memory
	Case study: article from Veeravali and Robertazzi
	Conclusion

