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Summary of the first lecture

I Key assumption : work is divisible in rational quantities

I Renders many problems tractable

I Underlying idea : since the number of tasks is large, rounding
to integer values after computing optimal schedule is negligible

I A schedule is described by :
I the set of participating processor,
I the order of the sending operations,
I the quantity of work sent to each processor

I Basic problem : star network, linear costs, one-round,
I All workers participate
I Send work to workers with largest bandwidth first
I All workers terminate at the same time :

we are able to compute the amount of work done by each
worker

Many possible generalizations.
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Adaptation to tree-shaped platforms

I Each single level tree can be replaced by a single node, with
total computing capacity W , with w =

∑
αi, where α is the

solution of the previous linear program
I Constructive solution for the tree :

1. Traverse the tree from bottom to top, replacing each
single-level node by a equivalent processor

2. Solve the star problem obtained
3. Traverse the tree from top to bottom, undo each

transformation, order the children, and distribute the load.

I Global solution : order the children by non-decreasing
bandwidth, and then write the complete linear program.
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One round vs. multi-round
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Intuition : Start with small rounds, then increase chunk sizes.
Problem with current model : leads to an absurd solution with
infinite number of infinitely small messages.

I Either change the model in order to allow simultaneous
communication and computation on the same data

I Or add latency to the communication the model
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Notations

I A set P1, ..., Pp of processors

I P1 is the master processor : initially, it holds all the data.

I The overall amount of work : Wtotal.

I Processor Pi receives an amount of work αiWtotal

with
∑

i ni = Wtotal with αiWtotal ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi : wi.
Computation time on Pi : niwi.

I Time needed to send a message of size αi P1 to Pi :
Li + ci × αi.
One-port model : P1 sends and receives a single message at a
time.
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Complexity

Definition (One round, ∀i, ci = 0)

Given Wtotal, p workers, (Pi)1≤i≤p, (Li)1≤i≤p, and a rational
number T ≥ 0, and assuming that bandwidths are infinite, is it
possible to compute all Wtotal load units within T time units ?

Theorem

The problem with one-round and infinite bandwidths is
NP-complete.

What is the complexity of the general problem with finite
bandwidths and several rounds ?

The general problem is NP-hard, but does not appear to be in NP
(no polynomial bound on the number of activations).
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Fixed activation sequence

Hypotheses

1. Number of activations : Nact ;

2. Whether Pi is the processor used during activation j : χ
(j)
i

Minimize T,under the constraints

Nact∑
j=1

p∑
i=1

χ
(j)
i α

(j)
i = Wtotal

∀k ≤ Nact, ∀l :

 k∑
j=1

p∑
i=1

χ
(j)
i (Li + α

(j)
i ci)

+
Nact∑
j=k

χ
(j)
l α

(j)
l wl ≤ T

∀i, j : α(j)
i ≥ 0

(1)

Can be solved in polynomial time.
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Fixed number of activations

Minimize T,under the constraints

Nact∑
j=1

p∑
i=1

χ
(j)
i α

(j)
i = Wtotal

∀k ≤ Nact,∀l :

 k∑
j=1

p∑
i=1

χ
(j)
i (Li + α

(j)
i ci)

+
Nact∑
j=k

χ
(j)
l α

(j)
l wl ≤ T

∀k ≤ Nact :
p∑

i=1

χ
(k)
i ≤ 1

∀i, j : χ(j)
i ∈ {0, 1}

∀i, j : α(j)
i ≥ 0

(2)

Exact but exponential

Can lead to branch-and-bound algorithms
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Uniform multi-round

In a round : all workers have same
computation time

Geometrical increase of rounds
size

No idle time in communications :
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α
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α
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α
(j)
p wp = α

(j)
1 w1

α
(j)
i wi =

p∑
k=1

(Lk + α
(j+1)
k ck).

Heuristic processor selection : by decreasing bandwidths

No guarantee...
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Periodic schedule

Tp
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..
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How to choose Tp ? Which resources to select ?
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With no overlap (1/4)

Equations

I Divide total execution time T into k periods of duration Tp.

I I ⊂ {1, . . . , p} participating processors.

I Bandwidth limitation :∑
i∈I

(Li + αici) ≤ Tp.

I No overlap :

∀i ∈ I, Li + αi(ci + wi) ≤ Tp.
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With no overlap (2/4)

Normalization

I βi average number of tasks processed by Pi during one time
unit.

I Linear program :

Maximize
∑p

i=1 βi{
∀i ∈ I, βi(ci + wi) ≤ 1− Li

Tp∑
i∈I βici ≤ 1−

P
i∈I Li

Tp

.

Relaxed version
Maximize

∑p
i=1 xi ∀1 ≤ i ≤ p, xi(ci + wi) ≤ 1−∑p

i=1 xici ≤ 1−
Pp

i=1 Li

Tp

.
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With no overlap (3/4)

Bandwidth-centric solution

I Sort : c1 ≤ c2 ≤ . . . ≤ cp.

I Let q be the largest index so that
∑q

i=1
ci

ci+wi
≤ 1.

I If q < p, ε = 1−
∑q

i=1
ci

ci+wi
.

I Optimal solution to relaxed program :

∀1 ≤ i ≤ q, xi =
1−

Pp
i=1 Li

Tp

ci + wi

and (if q < p) :

xq+1 =
(

1−
∑p

i=1 Li

Tp

)(
ε

cq+1

)
,

and xq+2 = xq+3 = . . . = xp = 0.
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With no overlap (4/4)

Asymptotic optimality

I Let Tp =
√
T ∗max and αi = xiTp for all i.

I Then T ≤ T ∗max +O(
√
T ∗max).

I Closed-form expressions for resource selection and task
assignment provided by the algorithm.
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With overlap

Key points

I Still sort resources according to the ci.

I Greedily select resources until the sum of the ratios ci
wi(

instead of ci
ci+wi

)
exceeds 1.
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Divisible load scheduling with bounded memory

I Assume the memory is bounded on each worker

I Problem is NP-complete with affine costs (reduction from
3-partition)
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Que retenir de tout ça ?

I Idée de base simple : une solution approchée est amplement
suffisante.

I Les temps de communication jouent un plus grand rôle que les
vitesses de calcul.
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