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algorithmic solutions can help reduce  
energy consumption in computing environs.

BY susanne aLBeRs

battery-operated devices that have 
proliferated rapidly in recent years. 
Each of us has experienced the event 
that the battery of our laptop or mobile 
phone is depleted. The issue is even 
more serious in autonomous, distrib-
uted devices such as sensor networks 
where the charging of batteries is dif-
ficult or impossible. Finally, energy 
dissipation causes thermal problems. 
Most of the energy consumed by a sys-
tem is converted into heat, resulting in 
wear and reduced reliability of hard-
ware components.

For these reasons, energy has 
become a leading design constraint 
for computing devices. Hardware engi-
neers and system designers explore 
new directions to reduce the energy 
consumption of their products. The 
past years have also witnessed consid-
erable research interest in algorithmic 
techniques to save energy. This survey 
reviews results that have been devel-
oped in the algorithms community 
to solve problems in energy manage-
ment. For a given problem, the goal 
is to design energy-efficient algorithms 
that reduce energy consumption while 
minimizing compromise to service. 
An important aspect is that these algo-
rithms must achieve a provably good 
performance.

This article focuses on the sys-
tem and device level: How can we 
minimize energy consumption is 
a single computational device? We 

eN e rGY CoNserVaTioN is  a major concern today. 
Federal programs provide incentives to save energy 
and pro mote the use of renewable energy resources. 
Individuals, companies, and organizations seek energy-
efficient products as the energy cost to run equipment 
has grown to be a major factor.

energy consumption is also critical in computer sys-
tems, in terms of both cost and availability. electricity 
costs impose a substantial strain on the budget of 
data and computing centers. Google engineers, 
maintaining thousands of servers, warned that if power 
consumption continues to grow, power costs can easily 
overtake hardware costs by a large margin.12 In office 
environments, computers and monitors account 
for the highest energy consumption after lighting. 
Power dissipation is also a major concern in portable, 

energy-
efficient 
algorithms

	 key	insights
    energy management has become 

an important issue in computing 
environments. algorithmic techniques 
provide effective solutions for energy 
savings, complementing hardware and 
systems-based approaches.

    energy-efficient algorithms have been 
developed for a range of fundamental 
power management and dynamic  
speed-scaling problems that arise in 
many environments.

    energy conservation involves decision 
making with incomplete information 
about the future. energy-efficient 
algorithms achieve a provably good 
performance relative to the true 
optimum.
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first study power-down mechanisms 
that conserve energy by transition-
ing a device into low-power standby 
or sleep modes. Then we address 
dynamic speed scaling in variable-
speed processors. This relatively new 
technique saves energy by utilizing 
the full speed/frequency spectrum of 
a processor and applying low speeds 
whenever possible. Finally, we con-
sider some optimization problems in 
wireless networks from an energy sav-
ings perspective.

We remark that all the above prob-
lems have also been studied in the 
systems literature. The correspond-
ing papers also present algorithmic 

approaches but usually do not prove 
performance guarantees.

Power-Down mechanisms
Power-down mechanisms are well-
known and widely used techniques to 
save energy. We encounter them on 
an everyday basis. The display of our 
desktop turns off after some period 
of inactivity. Our laptop transitions 
to a standby or hibernate mode if it 
has been idle for a while. In these 
settings, there usually exist idleness 
thresholds that specify the length of 
time after which a system is powered 
down when not in use. The following 
natural question arises: Is it possible 

to design stra tegies that determine 
such thresholds and always achieve 
a provably good performance rela-
tive to the optimum solution? There 
exists a rich literature on power-down 
mechanisms, ranging from algorith-
mic to stochastic and learning-based 
approaches. This article concentrates 
on algorithmic solutions. We refer the 
reader to Benini et al. and Irani et al.14, 

25 for surveys on other techniques.

Power management and 
competitiveness
Problem setting: In a general sce-
nario, we are given a device that always 
resides in one of several states. In i
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addition to the active state there can 
be, for instance, standby, suspend, 
sleep, and full-off states. These states 
have individual power consumption 
rates. The energy incurred in tran-
sitioning the system from a higher-
power to a lower-power state is usually 
negligible. However, a power-up oper-
ation consumes a significant amount 
of energy. Over time, the device expe-
riences an alternating sequence of 
active and idle periods. During active 
periods, the system must reside in the 
active mode to perform the required 
tasks. During idle periods, the system 
may be moved to lower-power states. 
An algorithm has to decide when to 
perform the transitions and to which 
states to move. The goal is to minimize 
the total energy consumption. As the 
energy consumption during the active 
periods is fixed, assuming that pre-
scribed tasks have to be performed, we 
concentrate on energy minimization 
in the idle intervals. In fact, we focus 
on any idle period and optimize the 
energy consumption in any such time 
window.

This power management problem 
is an online problem, that is, at any time 
a device is not aware of future events. 
More specifically, in an idle period, 
the system has no information when 
the period ends. Is it worthwhile to 
move to a lower-power state and ben-
efit from the reduced energy consump-
tion, given that the system must finally 
be powered up again at a cost to the 
active mode?
Performance analysis: Despite the 
handicap of not knowing the future, 
an online strategy should achieve a 
provably good performance. Here 
the algorithms community resorts to 
com petitive analysis, where an online 
algorithm ALG is compared to an opti-
mal offline algorithm OPT.38 OPT is an 
omniscient strategy that knows the 
entire future and can compute a state 
transition schedule of minimum total 
energy. Online algorithm ALG is called 
c-competitive if for every input, such 
as, for any idle period, the total energy 
consumption of ALG is at most c times 
that of OPT.

Competitive analysis provides a 
strong worst-case performance guar-
antee. An online strategy must per-
form well on all inputs (idle periods) 
that might even be generated by an 

adversary. This adversarial scenario 
may seem pessimistic but it is consis-
tent with classical algorithm analysis 
that evaluates strategies in terms of 
their worst-case resources, typically 
running time or memory require-
ments. In this section, we will mostly 
study algorithms using competitive 
analysis but will also consider perfor-
mance on inputs that are generated 
according to probability distributions.

In the following, we will first study 
systems that consist of two states 
only. Then we will address systems 
with multiple states. We stress that we 
consider the minimization of energy. 
We ignore the delay that arises when 
a system is transitioned from a lower-
power to a higher-power state.

systems with two states
Consider a two-state system that may 
reside in an active state or in a sleep 
state. Let r be the power consump-
tion rate, measured in energy units 
per time unit, in the active state. The 
power consumption rate in the sleep 
mode is assumed to be 0. The results 
we present in the following general-
ize to an arbitrary consumption rate 
in the sleep mode. Let b energy units, 
where b > 0, be required to transition 
the system from the sleep state to the 
active state. We assume that the energy 
of transitioning from the active to the 
sleep state is 0. If this is not the case, 
we can simply fold the correspond-
ing energy into the cost b incurred in 
the next power-up operation. The sys-
tem experiences an idle period whose 
length T is initially unknown.

An optimal offline algorithm OPT, 
knowing T in advance, is simple to for-
mulate. We compare the value of rT, 
which is the total energy consumed 
during the idle period when residing 
in the active mode, to the power-up 
cost of b. If rT < b, OPT remains in the 
active state throughout the idle period 
as transitioning between the active 
and sleep modes costs more. If rT ³ b, 
using the sleep mode is beneficial. In 
this case OPT transitions to the sleep 
state right at the beginning of the idle 
period and powers up to the active 
state at the end of the period.

The following deterministic online 
algorithm mimics the behavior of OPT, 
which uses the sleep mode on idle 
periods of length at least b/r.

energy has become 
a leading design 
constraint for 
computing devices. 
hardware engineers 
and system 
designers explore 
new directions 
to reduce energy 
consumption of 
their products.
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ALG-P is at most  times the expected 
optimum consumption.

systems with multiple states
Many modern devices, beside the 
active state, have not only one but sev-
eral  low-power states. Specifications 
of such systems are given, for instance, 
in the Advanced Configuration and 
Power Management Interface (ACPI) 
that establishes industry-standard 
interfaces enabling power manage-
ment and thermal management of 
mobile, desktop and server platforms. 
A description of the ACPI power 
management architecture built into 
Microsoft Windows operating sys-
tems can be found at http://www.
microsoft.com/whdc/system/pnppwr/
powermgmt/default.mspx.1

Consider a system with l states s1, …, 
sl. Let ri be the power consumption 
rate of si. We number the states in 
order of decreasing rates, such as, r1 
> … > rl. Hence s1 is the active state 
and sl represents the state with low-
est energy consumption. Let bi be 
the energy required to transition 
the system from si to the active state 
s1. As transitions from lower-power 
states are more expensive we have  
b1 £ … £ bl. Moreover, obviously, b1 = 
0. We assume again that transitions 
from higher-power to lower-power 
states incur 0 cost because the corre-
sponding energy is usually negligible. 
The goal is to construct a state transi-
tion schedule minimizing the total 
energy consumption in an idle period.

Irani et al.24 presented online and 
offline algorithms. They assume that 
the transition energies are additive, 
such as, transitioning from a lower-
power state sj to a higher-power state 
si, where i < j, incurs a cost of bj − bi. An 

algorithm aLG-d: In an idle period 
first remain in the active state. After 
b/r time units, if the period has not 
ended yet, transition to the sleep state.

It is easy to prove that ALG-D is 
2- competitive. We only need to con-
sider two cases. If rT < b, then ALG-D 
consumes rT units of energy during 
the idle interval and this is in fact 
equal to the consumption of OPT. If 
rT ³ b, then ALG-D first consumes r . 
b/r = b energy units to remain in the 
active state. An additional power-up 
cost of b is incurred at the end of the 
idle interval. Hence, ALG-D’s total cost 
is 2b, while OPT incurs a cost of b for 
the power-up operation at the end of 
the idle period.

It is also easy to verify that no deter-
ministic online algorithm can achieve 
a competitive ratio smaller than 2. If an 
algorithm transitions to the sleep state 
after exactly t time units, then in an 
idle period of length t it incurs a cost of 
tr + b while OPT pays min{rt, b} only.

We remark that power management 
in two-state systems corresponds to 
the famous ski-rental problem, a cor-
nerstone problem in the theory of 
online algorithms, see, for example, 
Irani and Karlin.26

Interestingly, it is possible to beat 
the competitiveness of 2 using ran-
domization. A randomized algorithm 
transitions to the sleep state according 
to a probability density function p(t). 
The probability that the system pow-
ers down during the first t0 time units 
of an idle period is ò0

t0p(t)dt. Karlin et 
al.28 determined the best probability 
distribution. The density function is 
the exponential function ert/b, multi-
plied by the factor  to ensure that 
p(t) integrated over the entire time 
horizon is 1, that is, the system is defi-
nitely powered down at some point.
algorithm aLG-r: Transition to the 
sleep state according to the probabil-
ity density function

ALG-R achieves a considerably 
improved competitiveness, as com-
pared to deterministic strategies. 
Results by Karlin et al.28 imply that 
ALG-R attains a competitive ratio of 

, where e » 2.71 is the Eulerian 

number. More precisely, in any idle 
period the expected energy consump-
tion of ALG-R is not more than  
times that of OPT. Again,  is the best 
competitive ratio a randomized strat-
egy can obtain.28

From a practical point of view, it is 
also instructive to study stochastic set-
tings where the length of idle periods 
is governed by probability distribu-
tions. In practice, short periods might 
occur more frequently. Probability 
distributions can also model specific 
situations where either very short 
or very long idle periods are more 
likely to occur, compared to periods 
of medium length. Of course, such a 
probability distribution may not be 
known in advance but can be learned 
over time. In the following, we assume 
that the distribution is known.

Let Q = (q(T) )0£T<∞ be a fixed prob-
ability distribution on the length T of 
idle periods. For any t ³ 0, consider 
the deterministic algorithm ALGt that 
always powers down after exactly t 
time units. If the idle period ends 
before ALGt powers down, such as, if 
T < t, then the algorithm remains in 
the active state for the duration of the 
idle interval and uses an energy of rT. 
If the idle period has not yet ended 
when ALGt powers down, such as, if T 
³ t, then the algorithm incurs a fixed 
energy of rt + b because an energy of 
rt is consumed before the system in 
powered down and a cost b is incurred 
to transition back to the active mode. 
In order to determine the expected 
cost of ALGt, we have to integrate over 
all possibilities for the length T of 
the idle period using the probability 
distribution Q. The two terms in the 
expression below represent the two 
cases. Note that the probability that 
the idle period has not yet ended when 
ALGt powers down is 

              (1)

Karlin et al.28 proposed the following 
strategy that, given Q, simply uses the 
best algorithm ALGt.
algorithm aLG-P: Given a fixed Q, let 
AQ

* be the deterministic algorithm ALGt 
that minimizes Equation 1.

Karlin et al. proved that for any Q, 
the expected energy consumption of 

figure 1. illustration of the optimum cost  
in a four-state system.
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optimal off-line strategy OPT, knowing 
the length T of the idle period, is sim-
ple to state. We first observe that OPT 
changes states only at the beginning 
and at the end of the idle period. No 
transitions are performed during the 
period: Moving from a higher-power 
state si to a lower-power state sj, with j > i 
during the period is not sensible as si 
consumes more energy and a power-
up cost of at least bj must be paid any-
way to reach the active mode at the 
end of the period. A better option is to 
immediately use sj. Similarly, a tran-
sition from a lower-power state sj to a 
higher-power state si does not make 
sense as sj consumes less energy and 
the transition cost of bj − bi can better 
be spent later when transitioning back 
to the active mode. If OPT uses state si 
throughout the idle period, its total 
energy consumption is riT + bi. OPT 
simply chooses the state that mini-
mizes the cost, that is, the optimum 
energy consumption is given by

OPT(T) = m
1≤i≤l

in {riT + bi}.

Interestingly, for variable T the opti-
mal cost has a simple graphical repre-
sentation, see Figure 1. If we consider 
all linear functions fi(t) = rit + bi, repre-
senting the total energy consumption 
using state si, then the optimum energy 
consumption is given by the lower-
envelope of the arrangement of lines.

One can use this lower-envelope 
to guide an online algorithm to select 
which state to use at any time. Let SOPT(t) 
denote the state used by OPT in an idle 
period of total length t, such as, SOPT(t) 
is the state arg min1£i£l{rit + bi}. Irani 
et al.24 proposed an algorithm called 
Lower-Envelope that traverses the state 
sequence as suggested by the optimum 
offline algorithm. At any time t in an 
idle period, the algorithm uses the 
state OPT would use if the period had a 
total length of t.
Algorithm Lower-Envelope: In an idle 
period, at any time t, use state SOPT(t).

Intuitively, over time, Lower-
Envelope visits the states represented 
by the lower-envelope of the functions 
fi(t). If currently in state si−1, the strategy 
transitions to the next state si at time ti, 
where ti is the point in time when OPT 
starts favoring si over si−1. Formally ti is 
the intersection of the lines fi−1(t) and 
fi(t), that is, the solution to the equation 

ri−1t + bi−1 = rit + bi. Here we assume that 
states whose functions do not occur on 
the lower-envelope, at any time, are dis-
carded. We remark that the algorithm 
is a generalization of ALG-D for two-
state systems. Irani et al.24 proved that 
Lower-Envelope is 2-competitive. This 
is the best competitiveness a determin-
istic algorithm can achieve in arbitrary 
state systems.

Irani et al.24 also studied the set-
ting where the length of idle periods 
is generated by a probability distribu-
tion Q = (q(T) )0£T<∞. They determine the 
time ti when an online strategy should 
move from state si−1 to si, 2 £ i £ l. To 
this end consider the deterministic 
online algorithm ALGt that transitions 
to the lower-power state after exactly t 
time units. We determine the expected 
cost of ALGt in an idle period whose 
length T is generated according to Q, 
assuming that only states si−1 and si are 
available. Initially ALGt resides in state 
si−1. If the idle period ends before ALGt 
transitions to the lower-power state, 
such as, if T < t, then the energy con-
sumption is ri−1T. If the idle period has 
not ended yet when ALGt transitions to 
the lower-power state, such as, if T ³ t, 
the algorithm incurs an energy ri−1t 
while residing in si−1 during the first t 
time units and an additional energy of  
ri(T − t) when in state si during the 
remaining T − t time units. At the end 
of the idle period, a power-up cost of  
bi − bi−1 is paid to transition from si back 
to si−1. Hence, in this case ALGt incurs a 
total energy of ri−1t + (T − t)ri + bi − bi−1. 
The expected cost of ALGt, assuming 
that only si−1 and si are available, is

Let ti be the time t that minimizes the 
above expression. Irani et al.24 pro-
posed the following algorithm.
Algorithm ALG-P(l): Change states 
at the transition times t2,…,tl defined 
above.

ALG-P(l) is a generalization of 
ALG-P for two-state systems. Irani 
et al. proved that for any fixed probabil-
ity distribution Q, the expected energy 
consumption of ALG-P(l) is no more 
than  times the expected optimum 
consumption. Furthermore, Irani et 

al. presented an approach for learn-
ing an initially unknown Q. They com-
bined the approach with ALG-P(l) and 
performed experimental tests for an 
IBM mobile hard drive with four power 
states. It shows that the combined 
scheme achieves low energy consump-
tions close to the optimum and usually 
outperforms many single-value predic-
tion algorithms.

Augustine et al.5 investigate gen-
eralized multistate systems in which 
the state transition energies may take 
arbitrary values. Let bij ³ 0 be the energy 
required to transition from si to sj, 1 £ i, j £ l. 
Augustine et al. demonstrate that Lower-
Envelope can be generalized and achieves 
a competitiveness of 3 + 2Ö2  5.8. This 
ratio holds for any state system. Better 
bounds are possible for specific sys-
tems. Augustine et al. devise a strategy 
that, for a given system S, achieves a 
competitive ratio arbitrarily close to the 
best competitiveness c* possible for S. 
Finally, the authors consider stochastic 
settings and develop optimal state tran-
sition times.

Dynamic speed scaling
Many modern microprocessors can 
run at variable speed. Examples are 
the Intel SpeedStep and the AMD pro-
cessor PowerNow. High speeds result 
in higher performance but also high 
energy consumption. Lower speeds 
save energy but performance degrades. 
The well-known cube-root rule for 
CMOS devices states that the speed s of 
a device is proportional to the cube-root 
of the power or, equivalently, the power 
is proportional to s3. The algorithms 
literature considers a generalization of 
this rule. If a processor runs at speed 
s, then the required power is sa, where 
a > 1 is a constant. Obviously, energy 
consumption is power integrated over 
time. The goal is to dynamically set the 
speed of a processor so as to minimize 
energy consumption, while still provid-
ing a desired quality of service.

Dynamic speed scaling leads to 
many challenging scheduling prob-
lems. At any time a scheduler has to 
decide not only which job to execute but 
also which speed to use. Consequently, 
there has been considerable research 
interest in the design and analysis of 
efficient scheduling algorithms. This 
section reviews the most important 
results developed over the past years. 
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We first address scheduling problems 
with hard job deadlines. Then we con-
sider the minimization of response 
times and other objectives.

In general, two scenarios are of 
interest. In the offline setting, all jobs 
to be processed are known in advance. 
In the online setting, jobs arrive over 
time, and an algorithm, at any time, 
has to make scheduling decisions 
without knowledge of any future jobs. 
Online strategies are evaluated again 
using competitive analysis. Online 
algorithm ALG is c-competitive if, for 
every input, the objective function 
value (typically the energy consump-
tion) of ALG is within c times the value 
of an optimal solution.

scheduling with Deadlines
In a seminal paper, initiating the algo-
rithmic study of speed scaling, Yao et 
al.40 investigated a scheduling problem 
with strict job deadlines. At this point, 
this framework is by far the most exten-
sively studied algorithmic speed scal-
ing problem.

Consider n jobs J1,…, Jn that have 
to be processed on a variable-speed 
processor. Each job Ji is specified by a 
release time ri, a deadline di, and a pro-
cessing volume wi. The release time 
and the deadline mark the time inter-
val in which the job must be executed. 
The processing volume is the amount 
of work that must be done to complete 
the job. Intuitively, the processing vol-
ume can be viewed as the number of 
CPU cycles necessary to finish the job. 
The processing time of a job depends 
on the speed. If Ji is executed at con-
stant speed s, it takes wi /s time units to 

complete the job. Preemption of jobs 
is allowed, that is, the processing of a 
job may be suspended and resumed 
later. The goal is to construct a feasible 
schedule minimizing the total energy 
consumption.

The framework by Yao et al. assumes 
there is no upper bound on the maxi-
mum processor speed. Hence there 
always exists a feasible schedule satis-
fying all job deadlines. Furthermore, it 
is assumed that a continuous spectrum 
of speeds is available. We will discuss 
later how to relax these assumptions.
Fundamental algorithms: Yao et al.40 
first study the offline setting and 
develop an algorithm for computing 
optimal solutions, minimizing total 
energy consumption. The strategy is 
known as YDS referring to the initials of 
the authors. The algorithm proceeds in 
a series of iterations. In each iteration, 
a time interval of maximum density is 
identified and a corresponding partial 
schedule is constructed. Loosely speak-
ing, the density of an interval I is the 
minimum average speed necessary to 
complete all jobs that must be sched-
uled in I. A high density requires a high 
speed. Formally, the density DI of a time 
interval I = [t, t¢] is the total work to be 
completed in I divided by the length of 
I. More precisely, let SI be the set of jobs 
Ji that must be processed in I because 
their release time and deadline are in I, 
such as, [ri, di] Í I. The correspond-
ing total processing volume is åJi Î SI

wi. 
Then

Algorithm YDS repeatedly deter-
mines the interval I of maximum den-
sity. In such an interval I, the algorithm 
schedules the jobs of SI at speed DI 
using the Earliest Deadline First (EDF) 
policy. This well-known policy always 
executes the job having the earliest 
deadline, among the available unfin-
ished jobs. After this assignment, YDS 
removes set SI as well as time interval 
I from the problem instance. More 
specifically, for any unscheduled job Ji 
whose deadline is in the interval I, the 
new deadline is set to the beginning of 
I because the time window I is not avail-
able anymore for the processing of Ji. 
Formally, for any Ji with di Î I, the new 
deadline time is set to di := t. Similarly, 
for any unscheduled Ji whose release 
time is in I, the new release time is set 
to the end of I. Again, formally for any 
Ji with ri Î I, the new release time is 
ri := t¢. Time interval I is discarded. This 
process repeats until there are no more 
unscheduled jobs. We give a summary 
of the algorithm in pseudocode.
algorithm Yds: Initially J := {J1, …, 
Jn}. While J ¹ ⵁ, execute the following 
two steps. (1) Determine the interval I 
of maximum density. In I, process the 
jobs of SI at speed DI according to EDF. 
(2) Set J := JSI. Remove I from the 
time horizon and update the release 
times and deadlines of unscheduled 
jobs accordingly.

Figure 2 depicts the schedule con-
structed by YDS on an input instance 
with five jobs. Jobs are represented by 
colored rectangles, each job having a 
different color. The rectangle heights 
correpond to the speeds at which the 
jobs are processed. Time is drawn on 

figure 2. an input instance with five jobs specified as Ji = (ri, di, wi). Blue J1 = (0, 25, 9); red J2 = (3, 8, 7); orange J3 = (5, 7, 4);  
dark green J4 = (13, 20, 4); light green J5 = (15, 18, 3).
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the horizontal axis. In the first iteration 
YDS identifies I1 = [3, 8] as interval of 
maximum density, along with set SI1

 = 
{ J2, J3}. In I1, the red job J2 is preempted 
at time 5 to give preference to the 
orange job J3 having an earlier dead-
line. In the second iteration I2 = [13, 
20] is the maximum density interval. 
The dark green and light green jobs are 
scheduled; preemption is again used 
once. In the third iteration, the remain-
ing job J3 is scheduled in the available 
time slots.

Obviously, when identifying inter-
vals of maximum density, YDS only has 
to consider intervals whose bound-
aries are equal to the release times 
and deadlines of the jobs. A straight-
forward implementation of the algo-
rithm has a running time of O(n3). Li 
et al.34 showed that the time can be 
reduced to O(n2 log n). Further improve-
ments are possible if the job execution 
intervals form a tree structure.33

Yao et al.40 also devised two elegant 
online algorithms, called Average Rate 
and Optimal Available. Whenever a new 
job Ji arrives at time ri, its deadline di 
and processing volume wi are known. 
For any incoming job Ji, Average Rate 
considers the density di = wi/(di − ri), 
which is the minimum average speed 
necessary to complete the job in time 
if no other jobs were present. At any 
time t, the speed s(t) is set to the accu-
mulated density of jobs active at time t. 
A job Ji is active at time t if it is available 
for processing at that time, such as, if 
t Î [ri, di]. Available jobs are scheduled 
according to the EDF policy.
algorithm Average Rate: At any time 
t, use a speed of . 
Available unfinished jobs are sched-
uled using EDF.

Yao et al.40 analyzed Average Rate 
and proved that the competitive ratio is 
upper bounded by 2a−1aa, for any a ³ 2. 
Bansal et al.6 showed that the analysis 
is essentially tight by providing a nearly 
matching lower bound.

The second strategy Optimal Avail able 
is computationally more expensive than 
Average Rate. It always computes an opti-
mal schedule for the currently available 
workload. A recomputation is necessary 
whenever a new job arrives. A new opti-
mal schedule for the future time horizon 
can be constructed using YDS.
algorithm Optimal Available: When-
ever a new job arrives, compute an 

offline algorithm YDS can be adapted 
easily to handle feasible job instances, 
such as, inputs for which feasible 
schedules exist using the restricted 
set of speeds. Note that feasibility can 
be checked easily by always using the 
maximum speed sd and scheduling 
available jobs according to the EDF pol-
icy. Given a feasible job instance, the 
modification of YDS is as follows. We 
first construct the schedule according 
to YDS. For each identified interval I of 
maximum density, we approximate the 
desired speed DI by the two adjacent 
speed levels sk and sk+1, such that sk < DI 
< sk+1. Speed sk+1 is used first for some 
d  time units and sk is used for the last 
|I| − d time units in I, where d is chosen 
such that the total work completed in I 
is equal to the original amount of |I|DI. 
An algorithm with an improved run-
ning time of O(dn log n) was presented 
by Li and Yao.35

If the given job instance is not fea-
sible, the situation is more delicate. 
In this case it is impossible to com-
plete all the jobs. The goal is to design 
algorithms that achieve good through-
put, which is the total processing 
volume of jobs finished by their dead-
line, and at the same time optimize 
energy  consumption. Papers7, 17 pres-
ent algorithms that even work online. 
At any time the strategies maintain a 
pool of jobs they intend to complete. 
Newly arriving jobs may be admitted 
to this pool. If the pool contains too 
large a processing volume, jobs are 
expelled such that the throughput 
is not diminished significantly. The 
algorithm by Bansal et al.7 is 4-com-
petitive in terms of throughput and 
constant competitive with respect to 
energy consumption.
Temperature minimization: High 
processor speeds lead to high tem-
peratures, which impair a processor’s 
reliability and lifetime. Bansal et al.9 
consider the minimization of the maxi-
mum temperature that arises during 
processing. They assume that cooling 
follows Newton’s Law, which states 
that the rate of cooling of a body is 
proportional to the difference in tem-
perature between the body and the 
environment. Bansal et al.9 show that 
algorithms YDS and BKP have favorable 
properties. For any jobs sequence, the 
maximum temperature is within a con-
stant factor of the minimum possible 

optimal schedule for the currently 
available unfinished jobs.

Bansal et al.9 gave a comprehen-
sive analysis of the above algorithm 
and proved that the competitive 
ratio is exactly a a. Hence, in terms of 
competitiveness, Optimal Available 
is better than Average Rate. Bansal 
et al.9 also presented a new online 
algorithm, called BKP according to 
the initials of the authors, which 
can be viewed as approximating the 
optimal speeds of YDS in an online 
manner. Again, the algorithm con-
siders interval densities. For times  
t, t1, and t2 with t1 < t £ t2, let w(t, t1, 
t2) be the total processing volume of 
jobs that have arrived by time t, have 
a release time of at least t1 and a dead-
line of at most t2. Then, intuitively, 
maxt1

,t2
 w(t, t1, t2)/(t2 − t1) is an estimate 

of the speed used by YDS, based on the 
knowledge of jobs that have arrived by 
time t. The new algorithm BKP approx-
imates this speed by considering spe-
cific time windows [et − (e − 1)t¢, t¢], for 
t¢ > t, of length e(t¢ − t). The correspond-
ing necessary speed is then multiplied 
by a factor of e.
algorithm BKP: At any time t use a 
speed of e . s(t), where

Available unfinished jobs are pro-
cessed using EDF.

Bansal et al.9 proved that BKP achi-
eves a competitive ratio of , 
which is better than the competitive-
ness of Optimal Available for large val-
ues of a.

All the above online algorithms 
attain constant competitive ratios 
that depend on a and no other prob-
lem parameter. The dependence on 
a is exponential. For small values of 
a, which occur in practice, the com-
petitive ratios are reasonably small. A 
result by Bansal et al.9 implies that the 
exponential dependence on a is inher-
ent to the problem. Any randomized 
online algorithm has a competitive-
ness of at least W( (4/3)a).
refinements—Bounded speed: The 
problem setting considered so far 
assumes a continuous, unbounded 
spectrum of speeds. However, in prac-
tice only a finite set of discrete speed 
levels s1 < s2 < ... < sd is available. The 
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maximum temperature, for any cool-
ing parameter a device may have.
sleep states: Irani et al.23 investigate 
an extended problem setting where a 
variable-speed processor may be tran-
sitioned into a sleep state. In the sleep 
state, the energy consumption is 0 
while in the active state even at speed 
0 some non-negative amount of energy 
is consumed. Hence, Irani et al.23 com-
bine speed scaling with power-down 
mechanisms. In the standard setting 
without sleep state, algorithms tend to 
use low speed levels subject to release 
time and deadline constraints. In con-
trast, in the setting with sleep state 
it can be beneficial to speed up a job 

so as to generate idle times in which 
the processor can be transitioned to 
the sleep mode. Irani et al.23 develop 
online and offline algorithms for this 
extended setting. Baptiste et al.11 and 
Demaine et al.21 also study scheduling 
problems where a processor may be 
set asleep, albeit in a setting without 
speed scaling.

minimizing Response time
A classical objective in scheduling is 
the minimization of response times. 
A user releasing a task to a system 
would like to receive feedback, say the 
result of a computation, as quickly 
as possible. User satisfaction often 

depends on how fast a device reacts. 
Unfortunately, response time minimi-
zation and energy minimization are 
contradicting objectives. To achieve 
fast response times, a system must usu-
ally use high processor speeds, which 
lead to high energy consumption. On 
the other hand, to save energy, low 
speeds should be used, which result in 
high response times. Hence, one has to 
find ways to integrate both objectives.

Consider n jobs J1, …, Jn that have 
to be scheduled on a variable-speed 
processor. Each job Ji is specified by 
a release time ri and a processing vol-
ume wi. When a job arrives, its process-
ing volume is known. Preemption of i
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jobs is allowed. In the scheduling lit-
erature, response time is referred to as 
flow time. The flow time fi of a job Ji is 
the length of the time interval between 
release time and completion time of 
the job. We seek schedules minimizing 
the total flow time .
Limited energy: Pruhs et al.37 study a 
problem setting where a fixed energy 
volume E is given and the goal is to 
minimize the total flow time of the 
jobs. The authors assume all jobs have 
the same processing volume. By scal-
ing, we can assume all jobs have unit-
size. Pruhs et al.37 consider the offline 
scenario where all the jobs are known 
in advance and show that optimal 
schedules can be computed in polyno-
mial time. However, in this framework 
with a limited energy volume it is dif-
ficult to construct good online algo-
rithms. If future jobs are unknown, it is 
unclear how much energy to invest for 
the currently available tasks.
energy plus flow times: Albers and 
Fujiwara2 proposed another approach 
to integrate energy and flow time mini-
mization. They consider a combined 
objective function that simply adds 
the two costs. Let E denote the energy 
consumption of a schedule. We wish to 
minimize . By multiplying 
either the energy or the flow time by a 
scalar, we can also consider a weighted 
combination of the two costs, express-
ing the relative value of the two terms 
in the total cost. Albers and Fujiwara 
concentrate on unit-size jobs and show 
that optimal offline schedules can be 
constructed in polynomial time using 
a dynamic programming approach. In 
fact the algorithm can also be used to 
minimize the total flow time of jobs 
given a fixed energy volume.

Most of the work by the authors2 
is concerned with the online setting 
where jobs arrive over time. Albers 
and Fujiwara present a simple online 
strategy that processes jobs in batches 
and achieves a constant competitive 
ratio. Batched processing allows one 
to make scheduling decisions, which 
are computationally expensive, only 
every once in a while. This is certainly 
an advantage in low-power computing 
environments. Nonetheless, Albers 
and Fujiwara conjectured that the fol-
lowing algorithm achieves a better 
performance with respect to the mini-
mization of g: at any time, if there are l 

active jobs, use speed 
aÖl  . A job is active 

if it has been released but is still unfin-
ished. Intuitively, this is a reasonable 
strategy because, in each time unit, the 
incurred energy of  is equal to 
the additional flow time accumulated 
by the l jobs during that time unit. 
Hence, both energy and flow time con-
tribute the same value to the objective 
function. The algorithm and variants 
thereof have been the subject of exten-
sive analyses,7, 8, 10, 32 not only for unit-
size jobs but also for arbitrary size jobs. 
Moreover, unweighted and weighted 
flow times have been considered.

The currently best result is due to 
Bansal et al.8 They modify the above 
algorithm slightly by using a speed 
of 

aÖl  + 1 whenever l  jobs are active. 
Inspired by a paper of Lam et al.,32 they 
apply the Shortest Remaining Processing 
Time (SRPT) policy to the available jobs. 
More precisely, at any time among 
the active jobs, the one with the least 
remaining work is scheduled.
algorithm Job Count: At any time if 
there are l  ³ 1 active jobs, use speed
aÖl  + 1. If no job is available, use speed 
0. Always schedule the job with the 
least remaining unfinished work.

Bansal et al.8 proved that Job Count 
is 3-competitive for arbitrary size jobs. 
Further work considering the weighted 
flow time in objective function g can 
be found in Bansal et al.8, 10 Moreover, 
Bansal et al. and Lam et al.7, 32 propose 
algorithms for the setting that there is 
an upper bound on the maximum pro-
cessor speed.

All the above results assume that 
when a job arrives, its processing vol-
ume is known. Papers18, 32 investigate 
the harder case that this information is 
not available.

extensions and other objectives
Parallel processors: The results pre-
sented so far address single-proces-
sor architectures. However, energy 
consumption is also a major con-
cern in multiprocessor environments. 
Currently, relatively few results are 
known. Albers et al.3 investigate dead-
line-based scheduling on m identi-
cal parallel processors. The goal is to 
minimize the total energy on all the 
machines. The authors first settle 
the complexity of the offline prob-
lem by showing that computing opti-
mal  schedules is NP-hard, even for 

unit-size jobs. Hence, unless P = NP, 
optimal solutions cannot be com-
puted efficiently. Albers et al.3 then 
develop polynomial time offline algo-
rithms that achieve constant factor 
approximations, such as, for any input 
the consumed energy is within a con-
stant factor of the true optimum. They 
also devise online algorithms attain-
ing constant competitive ratios. Lam 
et al.30 study deadline-based sched-
uling on two speed-bounded pro-
cessors. They present a strategy that 
is constant competitive in terms of 
throughput maximization and energy 
minimization.

Bunde15 investigates flow time 
minimization in multiprocessor envi-
ronments, given a fixed energy vol-
ume. He presents hardness results as 
well as approximation guarantees for 
unit-size jobs. Lam et al.31 consider 
the objective function of minimizing 
energy plus flow times. They design 
online algorithms achieving constant 
competitive ratios.
Makespan minimization: Another 
basic objective function in scheduling 
is makespan minimization, that is, the 
minimization of the point in time when 
the entire schedule ends. Bunde15 
assumes that jobs arrive over time and 
develops algorithms for single- and 
 multiprocessor environments. Pruhs  
et al.36 consider tasks having prece-
dence constraints defined between 
them. They devise algorithms for par-
allel processors given a fixed energy 
volume.

Wireless networks
Wireless networks such as ad hoc 
networks and sensor networks have 
received considerable attention over 
the last few years. Prominent appli-
cations of such networks are habitat 
observation, environmental monitor-
ing, and forecasting. Network nodes 
usually have very limited battery 
capacity so that effective energy man-
agement strategies are essential to 
improve the lifetime of a network. 
In this survey, we focus on two algo-
rithmic problems that have received 
considerable interest in the research 
community recently. Moreover, these 
problems can be viewed as schedul-
ing problems and hence are related to 
the topics addressed in the previous 
sections.
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network topologies
Wireless ad hoc network do not have a 
fixed infrastructure. The network basi-
cally consists of a collection of radio 
stations with antennas for sending 
and receiving signals. During trans-
mission a station s has to choose a 
transmission power Ps, taking into 
account that the signal strength 
decreases over distance. The signal is 
successfully received by a station t only 
if Ps /dist(s,t)a > g. Here dist(s,t) denotes 
the distance between s and t, coeffi-
cient a  > 1 is the attenuation rate and 
g  > 0 is a transmission quality param-
eter. In practice the attenuation rate is 
in the range between 2 and 5. Without 
loss of generality we may assume g   = 1.

In data transmission, a very basic 
operation is broadcast, where a given 
source node wishes to send a piece 
of information to all other nodes in 
the network. We study the problem of 
designing broadcast topologies allow-
ing energy-efficient broadcast opera-
tions in wireless networks. Consider a 
set V of n nodes that are located in the 
real plane R2. A source node s Î V has 
to disseminate a message to all other 
nodes in the network. However s does 
not have to inform all v Î V directly. 
Instead nodes may serve as relay sta-
tions. If v receives the message and 
transmits it to w1, …, wk, then v has to 
use a power of Pv = max1£j£k dist(v, wj)
a. The goal is to find a topology, that 
is, a transmission schedule that mini-
mizes the total power/energy E = Sv ÎV 
Pv incurred by all the nodes. Note that 
such a schedule corresponds to a tree 
T that is rooted at s and contains all 
the nodes of V. The children of a node 
v are the nodes to which v transfers the 
message.

Clementi et al.19 showed that the 
computation of optimal schedules 
is NP-hard. Therefore one resorts to 
approximations. An algorithm ALG 
achieves a c-approximation if for every 
input, such as, for every node set V, the 
solution computed by ALG incurs an 
energy consumption of no more than c 
times the optimum value. Wan et al.39 
investigate various algorithms in terms 
of their approximation guarantees. 
The most extensively studied strategy is 
MST. For a given node set V, MST com-
putes a standard minimum spanning 
tree T, such as, a tree of minimum total 
edge length containing all the vertices 

of V (see, e.g., Cormen et al.20). The tree 
is rooted at source node s. Data trans-
mission is performed along the edges 
of T, that is, each node transmits a 
received message to all of its children 
in the tree. Intuitively, this algorithm is 
sensible because the small total edge 
length of a minimum spanning tree 
should lead to a small overall energy 
consumption.
algorithm MsT: For a given V, compute 
a minimum spanning tree rooted at s. 
Any node v transmits a given message 
to all of its children in T.

Many papers have analyzed MST, 
see Ambühl,4 Caragiannis et al.,16 
Clementi et al.,19 Flammini et al.,22 
and Wan et al.39 and references 
therein. Ambühl4 proved that MST 
achieves a 6-approximation. The 
analysis is tight because Wan et al.39

showed that the ratio is not smaller  
than 6. A new improved algorithm was 
recently presented by Caragiannis et al.16

From a practical point of view, 
another strategy, called Broadcast 
Incremental Power (BIP), is very inter-
esting. This algorithm constructs a 
broadcast tree in a series of iterations, 
starting from an initial tree T0 that only 
contains s. In any iteration i, a new tree 
Ti is obtained from Ti−1 by computing 
the smallest additional power neces-
sary at any node of Ti−1 to include (at 
least) one additional node v Ï Ti−1. The 
new node and the corresponding edge 
are added to Ti−1. Results by Ambühl4 
and Wan et al.39 imply that the approxi-
mation ratio c of BIP satisfies 13/3 £ c £ 6. 
It would be interesting to develop tight 
bounds for this algorithm.

Data aggregation
As mentioned above, sensor networks 
are typically used to monitor an envi-
ronment, measuring, e.g., tempera-
ture or a chemical value. The data has 
to be transferred to a designated sink 
node that may perform further actions. 
Becchetti et al.13 and Korteweg et al.29 
develop energy- efficient protocols for 
data aggregation.

Suppose the transmission topology is 
given by a tree T rooted at the sink s.
Data gathered at a network node v is 
transmitted along the path from v to 
s in T. Network nodes have the ability to 
combine data. If two or more data pack-
ets simultaneously reside at a node v, 
then v may merge these packets into a 

We need a better 
understanding of 
the speed-scaling 
techniques in 
multiprocessor 
environments 
as multicore 
architectures 
become more 
common not  
only in servers  
but in desktops  
and laptops.
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single one and transfer it to the parent 
node, in the direction of s. The energy 
incurred by a network node is propor-
tional to the number of packets sent.

Becchetti et al.13 assume that data 
items arrive over time. Each item i 
is specified by the node vi where the 
item arises, an arrival time ri and a 
deadline di by which the data must 
reach the sink. The goal is to find a 
feasible transmission schedule mini-
mizing the maximum energy required 
at any node. Becchetti et al. show that 
the offline problem is NP-hard and 
 present a 2-approximation algorithm. 
They also develop distributed online 
algorithms for synchronous as well 
as asynchronous communication 
models. Korteweg et al.29 study a prob-
lem variant where the data items do 
not have deadlines but should reach 
the sink with low latency. They pres-
ent algorithms that simultaneously 
approximate energy consumption 
and latency, considering again vari-
ous communication models.

conclusion
In this survey, we have reviewed algo-
rithmic solutions to save energy. 
Another survey on algorithmic prob-
lems in power management was 
written by Irani and Pruhs.27 Over 
the past months a large number of 
papers have been published, and we 
expect that energy conservation from 
an algorithmic point of view will con-
tinue to be an active research topic. 
There are many directions for future 
research. With respect to power-down 
mechanisms, for instance, it would 
be interesting to design strategies 
that take into account the latency that 
arises when a system is transitioned 
from a sleep state to the active state. 
Additionally, we need a better under-
standing of speed scaling techniques 
in multiprocessor environments as 
multicore architectures become more 
and more common not only in serv-
ers but also in desktops and laptops. 
Moreover, optimization problems in 
networks deserve further algorithmic 
investigation. At this point it would 
be interesting to study energy-effi-
cient point-to-point communication, 
complementing the existing work on 
broadcast and data-aggregation proto-
cols. Last but not least, the algorithms 
presented so far have to be  analyzed 

in terms of their implementation and 
execution cost: how much extra energy 
is incurred in executing the algorithms 
in realistic environments. 
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