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Abstract—We study the problem of redistributing data between clusters interconnected by a backbone. We suppose that at most

k communications can be performed at the same time (the value of k depending on the characteristics of the platform). Given a set of

messages, we aim at minimizing the total communication time assuming that communications can be preempted and that preemption

comes with an extra cost. Our problem, called k-Preemptive Bipartite Scheduling (KPBS) is proven to be NP-hard. We study its lower

bound. We propose two 8
3 -approximation algorithms with low complexity and fast heuristics. Simulation results show that both

algorithms perform very well compared to the optimal solution and to the heuristics. Experimental results, based on an MPI

implementation of these algorithms, show that both algorithms outperform a brute-force TCP-based solution, where no scheduling of

the messages is performed.

Index Terms—Message scheduling, data redistribution, grid computing, approximation algorithm, code coupling.
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1 INTRODUCTION

IN recent years, the emergence of cluster computing,
coupled with fast wide area networks has allowed the

apparition of grid computing, enabling parallel algorithms
to take advantage of various distant resources, be it
computing power, software, or data. However, the classical
problem of minimizing the communications/computations
ratio remains and is even more difficult since communica-
tion times increase on slower networks. It is therefore
important to try to minimize communication times. In this
work, we focus on the scheduling of the messages when a
parallel data redistribution has to be realized on a network,
called a backbone. Two parallel machines are involved in
the redistribution: the one that holds the data and the one
that will receive the data. If the parallel redistribution
pattern involves a lot of data transfers, the backbone can
become a bottleneck. Thus, in order to minimize the parallel
data redistribution time and to avoid the overloading of the
backbone it is required to schedule each data transfer.

The message scheduling problem appears in the context of
data redistribution but also in the context of packet switching
for wavelength-division multiplexed (WDM) optical net-
work [7], [13], [23], [26], [28] or for satellite-switched time
division multiple access (SS/TDMA) [4], [15], [16]. The
solution proposed in this paper works for these two cases.

Data redistribution has mainly been studied in the
framework of high-performance parallel computing [1],
[8], [10]. In this paper, we study a generalization of the

parallel data redistribution. Indeed, contrary to some
previous works that only deal with block-cyclic redistribu-
tion [3], [10], [24], here no assumption is made on the
redistribution pattern. Moreover, some workk [1], [8]
assume that there is no bottleneck. In this paper, it is not
the case and we suppose that the ratio between the
throughput of the backbone and the throughput of each
of the n nodes of the parallel machines is k. Hence, at most
k communications can occur at the same time. We study the
problem for all values of k. We focus on the case k < n (the
backbone is a bottleneck) whereas the case k � n has been
tackled in [1], [8].

Redistributing data between clusters has recently re-
ceived considerable attention as it occurs in many applica-
tion frameworks. Here, we provide three examples of such
frameworks taken from distributed code-coupling, parallel
task execution and persistence, and redistribution for
metacomputing:

1. Distributed code coupling. Code coupling applica-
tions [21] are composed of several codes that interact
with each other. They are used for simulating complex
systems. Such a system is composed of several
models, each model being simulated by one parallel
code or component [30]. Moreover, in distributed code
coupling, each code/component is running on a
different parallel machine or cluster [2], [25]. For
instance, the hydrogrid project [20] aims at modeling
and simulating fluid and solute transport in subsur-
face geological media. In this application, two parallel
codes are coupled: one for flow simulation and one for
transport simulation. For performance reasons, each
parallel code requires a very large cluster to execute
on: they cannot execute on the same cluster. During
the simulation the models interact with each other
and, therefore, the parallel codes need to exchange
data. Hence, this exchange of data is a redistribution
between distant clusters.

2. Parallel task execution. Recent works in the field of
mixed parallelism [31], [27], [5] have shown the
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potential of executing data parallel tasks concur-
rently on different clusters. In some cases, these
tasks need to communicate with each other and data
has to be redistributed between each cluster that host
the task.

3. Persistence and redistribution in GridRPC systems.
Several metacomputing environments implement
the client-agent-server model [6], such as Netsolve
or Ninf [18]. In this model, the agent has to map a
client request to a server; the request is then being
processed in an RPC way. One of the drawbacks of
this approach is that data are sent back to the client
at the end of every computation. This implies
unnecessary communications when computed data
are needed by an other server in further computa-
tions. Some recent enhancements of this model deal
with data management and allow data to be
persistent on the server [9], [11]. Because the service
can be parallel, the data can be distributed among
the node of the cluster when this data is required for
further computation on a distant server. In this case,
a parallel data redistribution occurs between distant
clusters.

The contribution of this paper is the following: We prove
that the problem of scheduling any parallel data redistribu-
tion pattern is NP-hard for any value of kðk < nÞ. We
exhibit a lower bound for the number of steps of the
redistribution and a lower bound for the sum of the
durations of each step. Next, we propose two algorithms
(called GGP and OGGP) that have a 8

3 -approximation
bound. On the other hand, we study simple and fast
heuristics that achieve a good average performance.
Simulation results show that both GGP and OGGP outper-
form the heuristics and are close to the optimal solution.
Moreover, we have implemented these algorithms and
tested them on real examples using MPI. Results show that
we outperform a TCP-based brute-force solution that
consists of letting the transport layer do the scheduling
and managing the congestion alone.

2 DESCRIPTION OF THE PROBLEM

2.1 Modelization of the Problem

We consider the following heterogeneous architecture made
of two clusters of workstations C1 and C2 connected together
by a backbone of throughput D. Let n1 be the number of
nodes of C1 and n2 be the number of nodes of C2. All the
nodes of the first cluster have a throughput d1 and the
nodes of the second have a throughput d2.

We assume that any node of C1 can communicate to any
node of C2. This requires that each node has its own address
(as in GRID’50001 or for the icluster project2) or, if the nodes
are behind a NAT, that the router/front-end implements a
specific port forwarding mechanism to each node. The
bottleneck that might come from such a mechanism can
easily be captured by our model.

Let us consider a parallel application that must execute
the first part of its computations on C1 and the second part
on C2. This is the case where an application is made of
several parallel components, data parallel tasks, or requests

with dependencies. During the execution of the application,
parallel data must be redistributed from the first cluster to
the second one.

We assume that the communication pattern of the

redistribution is computed by the application. We focus

on efficiently transmitting the data, not on computing the

pattern itself. For computing the pattern in the case of

block-cyclic redistribution, see [17]. This pattern is modeled

by a traffic matrix T ¼ ðti;jÞ1�i�n1;1�j�n2
, where ti;j represents

the amount of information that must be exchanged between

node i of cluster C1 and node j of cluster C2.
For a given traffic pattern and for a particular architec-

ture, our goal is to minimize the total transmission time. In
order to perform the redistribution, one naive solution
consists of sending all the data from all the nodes of C1 to all
the nodes of C2 at the same time and let the transport layer
(for instance, TCP) schedule the segments. This solution, as
we will show in the results section, is suboptimal for many
reasons. If the traffic matrix is very large and dense with
high coefficient, a lot of traffic is generated at the same time.
This traffic cannot be handled either by the backbone (when
the aggregated bandwidth of the emitting card is greater
than the bandwidth of the backbone) or by the cards
themselves (when the incoming traffic has a throughput
greater than the throughput of a given card). In both cases,
TCP segments will be dropped. TCP will detect the problem
and start to control the congestion by reducing the window
size and, therefore, reduce the amount of data sent at a
given time. To avoid these problems, we use the knowledge
we have (i.e., the traffic matrix) to perform optimizations at
the application level and control by ourselves the conges-
tion by defining a schedule for all the communications.

We consider two constraints relative to the commu-
nications:

1. The 1-port constraint. A transmitter (respectively, a
receiver) cannot perform more than one commu-
nication at a given moment. However, more than
one communication can occur at the same time as
long as the receiver/transmitter pair is different. A
parallel transmission of messages between different
pairs is called a step.

2. The k constraint. The maximum number of com-
munications that can occur during a step is denoted
by k. This number depends mainly on the ratio D=d1

and D=d2. It comes from the fact that no congestion
occurs when the aggregated bandwidth generated
by cluster C1 or received by C2 is not larger than the
bandwidth D of the backbone. Therefore, k must
respect the following equations:

a. kd1 � D,
b. kd2 � D,
c. k � n1, and
d. k � n2.

We denote by d the speed of each communication
d ¼ minðd1; d2; DÞ. For instance, let us assume that n1 ¼ 200,
n2 ¼ 100, d1 ¼ 10Mbit=s, d2 ¼ 100Mbit=s, and D ¼ 1GBbit/s
(D ¼ 1; 000Mbit=s). In that case, k ¼ 100 because C1 can send
100 outgoing communications at 10 Mbit/s generating a total
of 1 Gbit/s aggregated bandwidth and each network card of
C2 can receive the data at d ¼ 10 Mbit/s.
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A common approach to minimize the overall transmis-
sion time is to enable preemption, i.e., the possibility to
interrupt the transmission of a message and to complete it
later. In practice, this involves a nonnegligible cost, called
startup delay and denoted here by �, which is the time
necessary to start a new step.

2.2 Formulation of the Problem

Let T be a traffic matrix, k be the maximum number of
communications at each step, � be the startup delay, and d
be the speed of each communication.

We can normalize the problem by d: The traffic matrix T ,
can be replaced by the matrixM¼ ðmi;jÞ ¼ ðti;jd Þ1�i�n1;1�j�n2

that represents the communication time.
Before describing the problem formally, we need to

introduce some terminology on graphs. Let G ¼ ðV1; V2; EÞ
be a bipartite graph with vertex set V1 [ V2 and edges set
E � V1 � V2: If ði; jÞ 2 E, then i 2 V1 and j 2 V2. A set M �
E is called a matching if no vertex v 2 V1 [ V2 is incident
with more than one edge in M. A matching is called perfect
if all vertices of V1 [ V2 are incident to exactly one edge in
M. A weighted matching ðM;wÞ is a matching associated to a
function that gives the weight of all its edges: w : M ! Qþ.

The matrix M is equivalent to a weighted bipartite graph
G ¼ ðV1; V2; E; wÞ (see Fig. 1) wherew : E ! Qþ, 8e ¼ ði; jÞ 2
E; andwðeÞ ¼ mi;j. Each node of clusterC1 (respectively,C2) is
represented by a node of V1 (respectively, V2). Hence, jV1j ¼
n1 and jV2j ¼ n2.

Given a weighted bipartite graph G ¼ ðV1; V2; E; wÞ that
represents the communication to execute with their time,
we tackle the problem of scheduling these communications.
The solution must describe when a node of V1 must
communicate to a node of V2 and for how long. The
solution will be composed of steps. Each step needs to
follow the constraints presented in the previous section:

. The 1-port model avoids communication contention:
During one step, a given node cannot communicate
with more than one node. Since an edge of graph G
represents an communication between two nodes, a
step will be modeled by a matching of G.

. Moreover, the backbone is a bottleneck: At most,
k communications can occur during one step. Hence,
a communication step will be represented by a
matching with at most k edges.

We recall that the preemption is allowed: A commu-
nication between two given nodes might be stopped and
resumed later. Therefore, a given edge of G might occur in
several matchings, each representing a different commu-
nication step. In order to describe which part of the whole
communication is done during a given step, we add weight
function to each the matching. These weights refer to the
amount of exchanged data. Hence, an edge of G can be

decomposed and be present into several matchings pro-
vided that the sum of all the weights of this edge in these
matchings is not smaller than the weight of the original
edge in G.

We denote the matching and its weighted function
corresponding to a communication step by a valid weighted
matching (for the remaining, a valid weighted matching
contains at most k edges).

In order to execute a schedule, we execute each step
one after the other. Step i corresponds to a valid
weighted matching ðMi;wiÞ and for each edge e ¼ ðu; vÞ 2
Mi we send data between node u of cluster C1 to node v

of cluster C2 for a time equal to wiðeÞ (or wiðeÞ � d
amount of data). We execute step iþ 1 when all
communications of step i are done. The duration of step
i is therefore � þWi where � is the startup cost of a
communication and Wi ¼ maxe2Mi

wiðeÞ. Fig. 2 gives an
example of a valid schedule.

We call this optimization problem k-Preemptive Bipartite

Scheduling (KPBS), formally defined as follows:
Given a weighted bipartite graph G ¼ ðV1; V2; E; wÞ,

where w : E ! Qþ, an integer3 k � 2 and a rational �, find

a collection fðM1; w1Þ; ðM2; w2Þ; . . . ; ðMs;wsÞg of valid

weighted matchings such that:

1. The matchings are a decomposition ofE:[si¼1Mi ¼ E.
2. All the functions wi, 1 � i � s, must respect the

following inequality: 8e 2 E,
P

i2fjje2Mjg wiðeÞ � wðeÞ.
3. Any matching Mi contains at most k edges

(jMij � k; i 2 ½1; s�Þ and its cost is equal to the
rational number � þWi, where Wi ¼ maxe2Mi

wiðeÞ.
4.

Ps
i¼1ð� þWiÞ

� �
is minimized.

2.2.1 Case � ¼ 1

It is important to see that solving the case � ¼ 1 is sufficient
to consider. Indeed, if � 6¼ 1, one can divide (normalize) all
the edges weights by �, then solve the problem assuming
� ¼ 1 and multiply the edges weight of the matchings of the
solution by the original value of �. Therefore, in the
remainder of this paper, we will consider that � ¼ 1. � will
not appears in the NP-completeness proof or as a
parameters of the algorithms (Sections 4 and 6).

In the remainder of this paper, we use the following

notation: For any solution S of KPBS, the cost of S is �þ s
(� is considered equals to 1), where s is the number of steps

and � is the useful transmission cost.
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3. The case k ¼ 1 is not interesting because the backbone is saturated by
one communication.

Fig. 1. Correspondance between matrix M and a bipartite graph.
Fig. 2. An example for KPBS problem with the graph of Fig. 1 and k ¼ 3.

The solution contains two steps and the useful transmission cost is

equal to 2 (¼ 1þ 1). The cost of the solution is 2þ 2�. Thanks to

preemption, the edge of cost 2 is decomposed into two steps.



3 RELATED WORK

This problem has been partially studied in the context of
Satellite-Switched Time-Division Multiple access systems
(SS/TDMA) [4], [15], [16]. In [4], the problem with � ¼ 0 is
studied and an optimal algorithm with OðmnÞ steps is
described. In [15], an optimal algorithm that finds the
minimal number of steps is described. In [16], the problem
without preemption is studied. It is shown NP-hard and a
heuristic is given.

The KPBS problem partially falls in a field originated by
packet switching in communication systems for optical
network called wavelength-division multiplexed (WDM)
broadcast network [7], [13], [23], [26], [28]. The problem of
minimizing the number of steps is studied in [13], [15], and
the problem of minimizing the total cost is studied in [23].
In [7] and [26], the authors consider a version of the KPBS
problem where the number of receivers is equal to the
number of messages that can be transmitted at the same
time (k ¼ n2) and where the setup delay can be overlapped
by the communication time (in [26], authors also assume
that all messages have the same size). In that case, a list-
scheduling algorithm is proven to be a 2-approximation
algorithm [7]. The case where the backbone is not a
constraint (k � minðn1; n2Þ) has been studied in [1], [8]
and it is known as the preemptive bipartite scheduling (PBS).
PBS was proven to be NP-hard in [12], [16]. Approximating
the PBS problem within a ratio number smaller than 7

6 has
been proven impossible unless P ¼ NP [8]. Several approx-
imation algorithms for the PBS problem have been
proposed in the literature. In [8], two different polynomial
time 2-approximation algorithms for PBS have been pro-
posed and in [1], an improvement of this result is given.

In [19], the problem of mapping the data to the
processors for minimizing the communications is studied
in the context of local block cyclic redistributions. It aims at
minimizing the amount of data to transfer and not the
communication time.

In the context of block cyclic redistribution, many works
exist (see [3], [10], [24], for example). In this case, the
backbone is not a constraint and the redistribution pattern is
not arbitrary. Hence, all these problems are less general
than KPBS.

4 COMPLEXITY RESULTS

This problem has already been proven NP-hard for the
particular case where k � minðn1; n2Þ [12], [16]. We prove
that it remains NP-hard for any fixed k � 2 (with a different
reduction than in [12], [16]). The decision problem of KPBS
(D-KPBS) is defined as follows:

Instance: A weighted bipartite graph G ¼ ðV1; V2; E; wÞ
where w : E ! Qþ, an integer k,

a rational number B.

Question: Is there a collection
fðM1; w1Þ; ðM2; w2Þ; . . . ; ðMs;wsÞg
of valid weighted matchings such that

E ¼ [si¼1Mi

and
Ps

i¼1 Wi þ s � B
with for any e 2 E,

P
i2fjje2Mjg wiðeÞ � wðeÞ?

Theorem 1. Let k � 2 be a fixed integer. D-KPBS is NP-

complete in the strong sense.

Proof of Theorem 1. It is easy to see that D-KPBS belongs to

NP. We show that it can be reduced to the 3-Partition

problem [14] defined as follows:

Instance: A finite set U ¼ fu1; u2; ; u3mg and a size
aðuÞ 2 Zþ for each u 2 U .

Question: Can U be partitioned into m disjoint sets

U1; ; Um such that:

For 1 � i � m,
P

u2Ui aðuÞ ¼
1
m

P
u2U aðuÞ?

Let aðUÞ ¼
P3m

i¼1 aðuiÞ. We transform 3-partition to
D-KPBS: Let U ¼ fu1; u2; . . . ; u3mg be a finite set and a
size aðuÞ 2 Zþ for each u 2 U in an arbitrary instance
of 3-Partition problem. Now, an instance of D-KPBS are
constructed from set U and function a. We set B ¼
aðUÞ þ 3m and k ¼ 2. We consider the following
weighted bipartite graph G ¼ ðV1; V2; E; wÞ:

. V1 ¼ fv1; v2; . . . ; v3m; x1; . . . ; xmg and V2 ¼ fg; hg.

. E ¼ fðxi; hÞ : 1 � i � mg [ fðvi; gÞ : 1 � i � 3mg.

. wðxi; hÞ ¼ aðUÞ=m for 1 � i � m.

. wðvi; gÞ ¼ aðuiÞ for 1 � i � 3m.

Fig. 3 gives an example of this transformation. G can
clearly be constructed in polynomial time. We claim that
the instance of D-KPBS admits a solution if and only if
the instance of 3-Partition has a desired partition.
ð)Þ Let fU1; . . . ; Umg be a solution of the 3-Partition

instance. Then, a collection fðMi;wiÞ : 1 � i � 3mg of
valid weighted matchings is defined as follows: for
1 � i � 3m, Mi ¼ fðvi; gÞðxj; hÞg, wiððvi; gÞÞ ¼ aðuiÞ, and
wiððxj; gÞÞ ¼ aðuiÞ, where ui 2 Uj. This collection is a
solution of D-KPBS. Indeed the sum of these matchings
is aðUÞ because

Pm
j¼1

P
ui2Uj aðuiÞ ¼ aðUÞ. The cost of

this solution is exactly B.
ð(Þ Conversely, we suppose that the instance of D-

KPBS admits a solution. Then, the useful transmission
cost is at least equal to aðUÞ because of the edges incident
to vertex h. There are at least 3m steps because vertex g
has 3m neighbors. Since the cost is lower than or equal to
B, both previous inequalities are equalities. Therefore,
for 1 � i � 3m, no edge incident to vi can be split and the
solution of the instance of D-KPBS is composed of
3m valid matchings. Thus, the solution having the
desired properties can be written ðMiÞ1�i�3m. Now, we
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will determine weight functions ðwiÞ1�i�3m. Since the size
of a matching is at most 2ð¼ kÞ, for 1 � i � 3m, all valid
matchings Ci of the solution contains only one edge
incident to g and to uj (w.l.g. we assume that j ¼ i) and,
thus, wiððvj; gÞÞ ¼ aðuiÞ. Necessarily, Mi contains an edge
incident to one vertex belonging to fx1; . . . ; xmg, having
the weight aðuiÞ (the same weight as the other edge of the
matching).

For 1 � j � m, let Uj be the set of the ui such that Mi

contains an edge adjacent to xj. Then, for 1 � j � m, we
have

P
ui2Uj aðuiÞ ¼

P
ui2Uj wiððvi; gÞÞ ¼

aðUÞ
m . Hence, sets

U1; . . . ; Um (such that for 1 � j � m,
P

u2Uj aðuÞ ¼
1
maðuÞ)

is a partition of U .
Since for any k fixed, we have the same proof,

Theorem 1 is proven. tu

Since the problem decision problem D-KPBS is NP-
complete, the optimization problem KPBS is NP-hard.
The remainder of this paper is devoted to find approx-
imation algorithms and to experiment them.

5 LOWER BOUNDS

Before giving a lower bound for the optimal solution, we
give some graph notations. We define the weight wðvÞ of a
node v of G to be the sum of weights of all edges incident to
vertex v. We denote the maximum of wðvÞ over all vertices
by WðGÞ. Let P ðGÞ be the sum of the weights of all edges of
graph G. We denote the maximum degree of the bipartite
graph G by �ðGÞ, its number of edges by mðGÞ and its
number of vertices by nðGÞ. For example, in Fig. 1,
W ðGÞ ¼ 2, P ðGÞ ¼ 6 and �ðGÞ ¼ 2.

Proposition 1. Let G ¼ ðV1; V2; E; wÞ be a weighted bipartite
graph. Let k be an integer, � a rational. The cost of the optimal
solution for the instance hG; k; �i of KPBS is at least �ðGÞ ¼
�dðGÞ þ ��sðGÞ with

�dðGÞ ¼ max W ðGÞ; P ðGÞ
k

� �
;

�sðGÞ ¼ max �ðGÞ; mðGÞ
k

� �� �
:

Proof of Proposition 1. �sðGÞ is a lower bound for the
number of steps. The first term of the maximum accounts
for the fact that two edges incident to the same node
cannot appear in the same step and the second term for
the fact that a step contains at most k edges. �dðGÞ is a
lower bound for the useful transmission cost and is
obtained similarly. The total cost is therefore minimized
by �dðGÞ þ ��sðGÞ. tu

6 ALGORITHMS

In this section, we present two algorithms we propose to
use for the KPBS problem. As discussed before, we consider
only the case � ¼ 1 here. We start by presenting the GGP
(Generic Graph Peeling) which is a polynomial time
8
3 -approximation algorithm. This algorithm is relatively
complex, hence we describe it relying on a subalgorithm
called weight-regular extension algorithm in order to simplify
the presentation.

We first introduce the main ideas behind these algo-
rithms together with a more formal description of the
different steps.

We then continue this section by an analysis of the
different properties of GGP. Three key properties are
studied: algorithm correctness, approximation ratio, and
worst-case complexity. In order to study the approximation
ratio, we need to introduce another algorithm called
multigraph algorithm. We prove that this algorithm is a
pseudo polynomial 8

3 -approximation and that GGP can
always give better results than it.

Finally, we introduce the OGGP algorithm (Optimized
GGP) which is a direct enhancement of GGP and compute
its worst-case complexity.

6.1 GGP Algorithm

6.1.1 Simple Case where G is Weight-Regular, with All

Edges of Integer Weights

Solving the KPBS problem is easy in the case where there is
no constraint on k (i.e., k ¼ n) and the input graph G holds
the following properties: G is weight-regular, with all edges
of integer weights. A weight-regular graph is a graph such
that for each of its nodes the sum of all weights of adjacent
edges is the same (see Fig. 4).

The algorithm is based on an interesting propriety: Any
weight-regular graph has a perfect matching [8]. We are
therefore able to pick such a perfect matching which can be
communication step. But, as all communications in a given
step should to be ended simultaneously (to minimize
waiting and therefore overall cost) we cut the duration of
all communications (i.e., the weight of any edge in the
matching) to the smallest one. By doing this, the graph left
after removing the matching is still weight-regular because
we removed the same amount of weight on each node (see
Fig. 4). We then start again, removing another matching
from the graph. In the remainder of this paper, we call
peeling a graph this procedure of step by step removing
perfect matchings from it. The algorithm ends when the
graph is empty. In Fig. 4, we removed a perfect matching of
weight 2 for all edges leading to a weight-regular graph
(which is also a perfect matching).

6.1.2 General Case

For the general case, we start by modifying the input graph
to obtain a weight-regular graph as in the simple case. We
do so by taking into account latency and the k-constraint.

The difficulty of the KPBS problem comes from the
startup delay cost associated to each step. This means that
in order to be efficient we should avoid generating a too
high number of steps and, therefore, avoid cutting any edge
into too little pieces. In particular, we do not want to
subdivise an edge with a cost already lower than the startup
delay cost (which has a value of 1 due to normalization). To
achieve that, the first step of the GGP algorithm is to round
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all weights on all edges to their next upper integers and
after that considering only matchings with integer costs in
the algorithm.

The other main objective of the GGP algorithm is to
avoid having more than k edges in a matching. In order to
do that, we add some virtual edges in the input graph. By
choosing them carefully, we can ensure that any perfect
matching will contain at most k real edges (i.e., edges from
the original graph): see Section 6.2.1.

Hence, if we put all that into order, GGP is divided into
these four large steps:

1. Building graph H by rounding all weights (Step 1 in
the formal description of Fig. 5).

2. Building graph I for preparing Step 3 (Step 2 in the
formal description).

3. Build a weight-regular graph J while also adding
virtual edges taking care of the k constraint (Step 3 in
the formal description, and Fig. 6).

4. Peel the graph (Steps 4, 5, and 6 in the formal
description).

To build the weight-regular graph of Step 3 we need to
define the function mw : V1 [ V2 ! N the function assigning
to a node s the missing weightmwðsÞ of this node for the graph

to be P ðIÞ
k weight-regular. We have mwðsÞ ¼ P ðIÞ

k � wðsÞ. The

algorithm building the weight-regular graph is shown in

Fig. 6.

Example. Consider the example of Fig. 7. The input of GGP

is the graph given on Fig. 1 with k ¼ 3. After Step 3 of

GGP, nodes 5 and 50 as well as edges shown as dashed

lines have been added to the original graph. Then, we

start peeling the graph and in any perfect matching the

number of real edges is always k ¼ 3 and the number of

virtual edges is 2. The final solution (real edges) is the

same as the one given in Fig. 2.

6.2 Properties

We start by proving that the weight-regular extension

algorithm of Fig. 6 is correct.

Proposition 2. J is P ðIÞ
k -weight-regular.

Proof of Proposition 2. We need to prove 8s 2 V1J [ V2J ;

wðsÞ ¼ P ðIÞ
k . We consider two cases: the case where s was

already in I and the case where s is a new node.
If s was already in I, the algorithm implies mwðsÞ ¼ 0

and, therefore, wðsÞ ¼ P ðIÞ
k .
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If s was not in I, the weights on the added edges is

the sum of the missing weights for all nodes of one

side, that is
P

t2V1I
mwðtÞ and

P
t2V2I

mwðtÞ. We know

that
P

t2V1I
mwðtÞ ¼

P
t2V 1I

P ðIÞ
k � wðtÞ. It is therefore

equal to jV1I j �
P ðIÞ
k � P ðIÞ ¼ ðjV1I j � kÞ

P ðIÞ
k since there

is no edge between two nodes on the same side. This

value divided by P ðIÞ
k gives ðjV1I j � kÞ which means it

is possible to add edges to ðjV1I j � kÞ new nodes s with

wðsÞ ¼ P ðIÞ
k . The same reasoning holds for V2I . As we

build all nodes sequentially, never leaving a node s

with wðsÞ < P ðIÞ
k we have 8s 2 V1J [ V2J ; wðsÞ ¼

P ðIÞ
k . tu

6.2.1 Correctness of GGP

The correctness of GGP follows from the respect of the 1-port

and the k-constraint. The 1-port constraint is ensured by

choosing matchings. The respect of the k-constraint requires

the following lemma:

Lemma 1. Any perfect matching on J contains k edges belonging

to I.

Proof of Lemma 1. Let M be a perfect matching on J . We
have from proof of Proposition 2 that V1J is V1I with jV2I j �
k new nodes. Similarly, V2J is V2I with jV1I j � k new nodes.
Therefore, we have jV1J j¼jV2J j¼jV1I jþjV2I j�k, which is
the number of edges inM. We know that none of the nodes
added are connected together and also that any edge
connected to a new node is not in EI . Therefore, we have

one edge for each node added that is in M and not in EI .
Since we added jV1I j � k and jV2I j � k nodes the number of
nodes in M and in EI is jV1I j þ jV2I j � k� ðjV1I j � kÞ �
ðjV2I j � kÞ ¼ k. tu
Since I is built by adding edges from H, M has at most

k edges belonging to G. To build the solution, matchings on
J from which all edges not belonging to G are removed.
Therefore, any matching of the solution given by GGP
respects the k-constraint.

6.2.2 Approximation Ratio

We define the trans function which takes a weighted
bipartite graph G ¼ ðV1; V2; E; wGÞ as argument and returns
the corresponding multigraph G0 ¼ ðV 01 ; V 02 ; E0Þ by splitting
all edges such that an edge e 2 E of weight wGðeÞ is turned
into wGðeÞ edges of weight 1.

With this function, we can now define the Multigraph
algorithm (Fig. 8). Basically, this algorithm starts by
constructing the same graph J as GGP but is different in
the ways it peels the graph. We build J 0 ¼ transðJÞwhich is
a regular graph and peel it into perfect matchings using the
property that there always exist a perfect matching on a
regular graph. Thus, we obtain a set of matchings whose
costs are always 1, solution of KPBS. However, as the
number of edges in J 0 depends on the weights of the edges
of J the algorithm is only pseudopolynomial and therefore
not useful in practice.

Theorem 2 proves that the multigraph algorithm is a
8
3 -approximation algorithm. Before that, we need the follow-

ing lemma. It proves that the lower bound of the useful

transmission time of graph I is equal to max dP ðHÞk e;WðHÞ
� 	

.
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Fig. 6. Weight-regular extension algorithm.

Fig. 7. Example of k ¼ 3 constraint solving. The Graph J (after Step 3 of

GGP) is built from the graph of Fig. 1 and peeled to obtain the solution

(unbroken edges) of Fig. 2.

Fig. 8. Multigraph algorithm.



Lemma 2. �dðIÞ ¼ max dP ðHÞk e;WðHÞ
� 	

.

Proof of Lemma 2. Consider the three possible cases when

building I:

1. P ðHÞ
k �WðHÞ and P ðHÞ

k 2 N: I ¼ H and, therefore,

�dðIÞ ¼ max
P ðIÞ
k

;WðIÞ
� �

¼ max
P ðHÞ
k

;WðHÞ
� �

¼ max
P ðHÞ
k

� �
;WðHÞ

� �
:

2. P ðHÞ
k �WðHÞ and P ðHÞ

k 62 N: We add no edge of

weight greater than WðHÞ and P ðIÞ
k ¼

P ðHÞ
k

l m
,

hence �dðIÞ ¼ max P ðHÞ
k

l m
;WðHÞ

� 	
.

3. P ðHÞ
k < WðHÞ: As we add no edge of weight

greater than WðHÞ, WðIÞ ¼WðHÞ. Moreover,
we only add edges until P ðIÞ

k ¼WðHÞ, hence
�dðIÞ ¼ �dðHÞ ¼W ðHÞ. tu

Theorem 2. The multigraph algorithm is a 8
3 -approximation

algorithm.

Proof of Theorem 2. With as input parameters G ¼
ðV1; V2; E; wGÞ a bipartite graph and k an integer, we

apply the multigraph algorithm on G to obtain S0 the

set of wanted matchings. J is, by construction, a
P ðIÞ
k -weight-regular graph and all of its weights are

integers, therefore J 0 ¼ transðJÞ is a P ðIÞ
k -regular multi-

graph. Since P ðIÞ ¼ mðI 0Þ, J 0 is a mðI 0Þ
k -regular graph,

where I 0 ¼ transðIÞ. As at each step of the main

iteration, we remove a perfect matching from J 0,

jS0j ¼ mðI 0Þ
k ¼ �sðI 0Þ. The cost of the solution S0 is

therefore cðS0Þ ¼ �sðI 0Þ þ �sðI 0Þ because each step has

a duration of 1 and the startup delay � is considered

equals to 1. Therefore,

cðS0Þ ¼ 2�sðI 0Þ: ð1Þ

If all edges ofG have a weight less than 1, then all edges

of H have a weight of 1 and WðHÞ ¼ 1. Hence, all edges

added to H to build I have a weight of 1. This means that

�sðI 0Þ ¼ �sðIÞbecause I and I 0 are then identical graphs. As

the weight of any edge in I is 1, we have P ðIÞ ¼ mðIÞ and

WðIÞ ¼ �ðIÞ and, therefore, �sðIÞ ¼ max P ðIÞ
k

l m
;WðIÞ

� 	
¼

max P ðHÞ
k

l m
;WðHÞ

� 	
by construction of I. As the weight of

each edge inH is also 1, we can conclude that �sðIÞ¼�sðHÞ.
Finaly, as mðHÞ ¼ mðGÞ and �ðHÞ ¼ �ðGÞ, we have

�sðI 0Þ ¼ �sðIÞ ¼ �sðHÞ ¼ �sðGÞ and, therefore, (1) becomes

cðS0Þ ¼ 2�sðGÞ � 2�ðGÞ. Therefore, the algorithm is a 2-

approximation algorithm when all edges of G have a

weight less than 1.

As P ðIÞ
k ¼

mðI 0Þ
k and WðIÞ ¼ �ðI 0Þ, we know that

�sðI 0Þ ¼ max �ðI 0Þ; mðI
0Þ

k

� 	
¼ max W ðIÞ; P ðIÞk

� 	
¼ �dðIÞ.

Consequently, cðS0Þ ¼ 2�dðIÞ. We now use Lemma 2 to

deduce that

cðS0Þ ¼ 2max
P ðHÞ
k

� �
;WðHÞ

� �
: ð2Þ

Let us first suppose that P ðHÞ
k

l m
> W ðHÞ.

Equation (2) becomes cðS0Þ ¼ 2 P ðHÞ
k

l m� 	
.

In the algorithm building H from G, no edge sees its
weight increasing by more than one unit. Therefore, we
have P ðHÞ � P ðGÞ þmðGÞ. This leads to

cðS0Þ � 2
P ðGÞ þmðGÞ

k

� �� �
ð3Þ

� 2
P ðGÞ
k

� �
þ mðGÞ

k

� �� �

� 2
P ðGÞ
k

� �
þmax

mðGÞ
k

� �
;�ðGÞ

� �� �
ð4Þ

� 2
P ðGÞ
k
þ 1þ �sðGÞ

� �

� 2 �dðGÞ þ 1þ �sðGÞð Þ ¼ 2�ðGÞ þ 2: ð5Þ

Since WðHÞ is an integer and we supposed that
P ðHÞ
k

l m
> WðHÞ, we can deduce that P ðHÞ

k > WðHÞ. This

means that mðHÞ > k (otherwise, the number of edges of

H would be greater than k and P ðHÞ would be less than

k�W ðHÞ—by definition of WðHÞ—and, consequently,
P ðHÞ
k would be less than WðHÞ).

By construction mðHÞ ¼ mðGÞ, therefore mðGÞ
k

l m
� 2.

We deduce that �sðGÞ � 2.

We can assume that the weight of at least one edge of

G is greater than 1 or equal to 1 (the case when all the

edges have a weight smaller than 1 has been treated

above and leads to an approximation ratio of 2). We have

W ðGÞ � 1 and, therefore, �dðGÞ ¼ max P ðGÞ
k ;WðGÞ

� 	
� 1.

Consequently, �ðGÞ � 2þ 1 ¼ 3.

Inequation (3) becomes

cðS0Þ
�ðGÞ � 2þ 2

�ðGÞ � 2þ 2

3
¼ 8

3
:

This means that in this case, the algorithm is a
8
3 -approximation algorithm.

Now, we still have to study the case where
P ðHÞ
k

l m
�WðHÞ. In this case, (2) becomes cðS0Þ ¼ 2WðHÞ.

However, WðHÞ �WðGÞ þ�ðGÞ because we have
added at most one to each edge weight of G to build H.
Hence,

cðS0Þ � 2 WðGÞ þ�ðGÞð Þ

� 2

�
max

�
P ðGÞ
k

;WðGÞ
�

þmax
mðGÞ
k

� �
;�ðGÞ

� ��

� 2 �dðGÞ þ �sðGÞð Þ ¼ 2�ðGÞ:

Therefore, for this case, the approximation ratio is 2.
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Consequently, the approximation ratio for the multi-
graph algorithm is 8

3 (in the worst case). tu

From the above theorem, it follows that GGP is a
8
3 -approximation algorithm. Indeed, for any schedule S

obtained by GGP of cost cðSÞ it exists a schedule S0 obtained

by the multigraph algorithm of cost cðS0Þ such that

cðSÞ � cðS0Þ. By construction, a solution S obtained by GGP

can be decomposed into a solution S0 where 8Mi 2 S of cost

cðMiÞ there exists cðMiÞ identical matchingsM 0
j of cost 1 in S0.

We therefore have
PjSj

i¼1 cðMiÞ ¼
PjS0 j

j¼1 cðM 0
jÞ and jSj � jS0j.

The cost of S is: jSj þ
PjSj

i¼1 cðMiÞ. Similarly, the cost of S0

is: jS0j þ
PjS0 j

j¼1 cðM 0
jÞ. Therefore, cðSÞ � cðS0Þ.

6.2.3 Complexity

We have shown that the Multigraph algorithm is pseudo-
polynomial. Here, we show that GGP is polynomial and
compute its worst-case complexity.

Proposition 3. GGP has a worst-case complexity in

Oð
ffiffiffiffiffiffiffiffiffiffiffi
nðGÞ

p
ðmðGÞ þ nðGÞÞ2Þ.

Proof of Proposition 3. Steps 1, 2, 3, 4, and 6 of GGP are

computed in linear time. However, Step 5 requires finding

a perfect matching which is done inOð
ffiffiffiffiffiffiffiffiffiffi
nðJÞ

p
mðJÞÞ using

the hungarian method [22]. At each step, we remove at

least one edge (the edge of the matching with the lowest

weight); hence, we iterate at most mðJÞ times. Therefore,

the worst-case complexity of Step 5 is in Oð
ffiffiffiffiffiffiffiffiffiffi
nðJÞ

p
mðJÞ2Þ.

Now, to build H, no edge or node are added, hence
nðHÞ ¼ nðGÞ and mðHÞ ¼ mðGÞ. To build I, we add at
most k edges and, therefore, 2k nodes, hence nðIÞ �
nðGÞ þ 2k and mðIÞ � mðGÞ þ k. Since it makes no sense
allowing the selection in a matching of more edges than
nodes, we limit here k to nðGÞ. We can then deduce that
nðIÞ � 3nðGÞ and mðIÞ � mðGÞ þ nðGÞ.

In the weight-regular extension algorithm, for each
node in I (each iteration), we add at most one new
node in J . Therefore, nðJÞ � 2nðIÞ. Similarly, for each
node in I, we add at most two new edges in J and,
therefore, mðJÞ � mðIÞ þ 2nðIÞ. Hence, nðJÞ � 6nðGÞ
and mðJÞ � mðGÞ þ 7nðGÞ.

This leads to a worst-case complexity of Step 5 of
Oð

ffiffiffiffiffiffiffiffiffiffiffi
nðGÞ

p
ðmðGÞ þ nðGÞÞ2Þ. tu

6.3 OGGP

6.3.1 Algorithm

It is possible to find a family of graphs on which GGP
reaches a 2-approximation ratio. We developed a modified
version of GGP called OGGP which gives good results on
this family of graphs, and better results than GGP in the
general case. Being a direct extension of GGP, OGGP
inherits the 8

3 -approximation ratio. It should be noted
however, that we have no proof that OGGP could have a
lower approximation ratio than 8

3 .
The principle is the following: In GGP, when choosing a

perfect matching, the weight-regular graph guarantees that
there exists a perfect matching. However, there is often
more than one perfect matching and GGP does not specify
which one to choose, but uses a random one. In OGGP, we

simply try to choose the matching that might give the best
results among all matchings. Intuitively, we would like to
issue as much communications as possible. By taking the
longest possible communication steps, we might reduce the
total number of steps and, therefore, the communication
time. A communication step time is given by the smallest
weight of all edges in the matching. To have the largest
communication step, we need to find the perfect matching
whose smallest weight is maximal.

The greedy algorithm depicted in Fig. 9 finds a perfect
matching which smallest edge’s weight is maximal. It is
based on the algorithm described in [4] that maximizes the
minimum weight of a matching.

Proposition 4. The algorithm of Fig. 9 returns a matching of
maximal minimum weight.

Proof of Proposition 4. Let l be the last edge added at the
previous step in G0, we have l 2M because without l it
was not possible to find a perfect matching in G. We also
have 8e 2 G;wðeÞ > wðlÞ ) e 2 G0. Suppose that M 0 is a
maximal matching better than M (it’s minimum weight
is larger than the one of M). M 0 is such that:
8e 2M 0; fðeÞ > fðlÞ. Therefore, we have M 0 � G0. This
is a contradiction, hence M is a perfect matching
maximizing the minimum weight. tu

6.3.2 Complexity

The new matching algorithm complexity is OðmðJÞ
ffiffiffiffiffiffiffiffiffiffi
nðJÞ

p
mðJÞÞ¼OðmðJÞ2

ffiffiffiffiffiffiffiffiffiffi
nðJÞ

p
Þ. Therefore, the complexity of OGGP

isOð
ffiffiffiffiffiffiffiffiffiffiffi
nðGÞ

p
ðmðGÞ þ nðGÞÞ3Þ.

7 HEURISTICS

Here are two heuristics that appear to work well in practice
(a heuristic on weights and a heuristic on degrees). They are
faster than GGP and OGGP, but are not approximation
algorithms as will show the simulation results. The heuristic
on degrees is the same as the heuristic on weights (Fig. 10)
except that line 2 is changed into “2. Keep only the k (or less if
there are less than k edges) edges with highest degrees.”

Complexity: We use the Hungarian method of complexity
OðmðGÞnðGÞ1=2Þ for finding a maximum cardinality match-
ing in a bipartite graph. For both heuristics, at each step, at
least one edge is removed from G. Therefore, the complex-
ity of both heuristics is OðmðGÞ2

ffiffiffiffiffiffiffiffiffiffiffi
nðGÞ

p
Þ which is better

than the complexity of GGP.
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8 EXPERIMENTS

8.1 Simulation of the Heuristics

We have tested each heuristic (with k fixed) on a sample of

100,000 random graphs (the number of edges, the edges,

and, finally, the weights were chosen randomly with a

uniform distribution) with 20 nodes on each side. We made

a difference between lightly and heavily weighted graphs.

Small weights were taken between 1 and 20, whereas large

weights were taken between 1 and 100,000. The result of a

heuristic is calculated as the solution cost divided by the

lower bound �. We call this ratio the evaluation ratio.
In Figs. 11, 12, 13, and 14, the plots show the average and

the maximum calculated over the samples.
For these tests, the maximum is always below 2.4 with an

average under 1.8 for small weights, and below 2, with an

average under 1.3 in case of large weights.
We explain the convex shape of the plots as follows:

. When k ¼ 1, the two heuristics obtain the optimal
solution which consists of one communication per
step.

. When k is greater than 2 and lower than a certain
value (close to n=2), the quality of the solution
degrades (compared to the lower bound). We
believe that this is due to the fact that, at each step,
the number of valid matchings increases.

. When k is greater than n=2, the quality of the
solution tends to improve. At each stage of the two
heuristics, the choice of valid matchings decreases,
therefore the heuristics are less likely to select bad
valid matchings.

8.2 Simulation of GGP and OGGP

The simulation of GGP and OGGP has been conducted
under the same conditions as the simulation of the
heuristics. OGGP and GGP have been implemented into a
C++ library, and executed on random graphs as described
in the previous section.

8.2.1 Comparing GGP and OGGP

Tests on Small Weights. Fig. 15 displays how the evaluation
ratio varies when k grows. The weights are generated
randomly between 1 and 20.

We can see that as k grows, the evaluation ratio grows
and stabilizes. OGGP gives better results than GGP even
when comparing the worst case obtained with OGGP and
the average obtained with GGP.

Tests on Large Weights. Fig. 15 displays how the
evaluation ratio varies when k grows. The weights are
generated randomly between 1 and 100,000.

Results are similar, but with an evaluation ratio far closer
to 1 on large weights. On these cases, the difference between
GGP and OGGP is smaller.

We can see that GGP is giving better results than the
heuristics. Although the difference is not extremely high on
average, when comparing worst cases, heuristics are taking
1.5 more time than GGP.

8.3 Real-World Experiments with MPI

In order to validate theoretical results and simulations, we
have conducted several real-world experiments. We used
two clusters of 10 1.5 GHz Pentium computers running
Linux. Network cards were 100Mbits Ethernet adapters and
the two clusters were interconnected within a local network
by two 100Mbits switches. In order to test interesting cases,
that is where k 6¼ 1, we limited the available incoming and
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Fig. 10. Heuristic on weights.

Fig. 11. Heuristic on weights. Simulation with small weights.

Fig. 12. Heuristic on weights. Simulation with large weights.

Fig. 13. Heuristic on edges. Simulation with small weights.



outgoing bandwidth of each network card to 100
k Mbits per

second. This was done using the rshaper [29] Linux kernel
module. This module implements a software token bucket
filter thus enabling a control of the available bandwidth. We
conduct experiments for k ¼ 3; k ¼ 5; k ¼ 7.

Two different types of redistribution have been imple-
mented. First, a brute force TCP-only approach: We start all
communications simultaneously and wait until all transfers
are finished. In this case, the network transport layer (TCP)
is responsible for the congestion control. The second
approach allows us to test our algorithms: We divide all
communications into different steps, synchronized by a
barrier, and only one synchronous communication can take
place in each step for each sender. Both algorithms have
been implemented using MPICH version 1.2.4. We have not
implemented an exponential algorithm finding the optimal
solution (which could seem possible as the number of nodes
and edges is not very high) because designing such an
algorithm is difficult, and anyway our algorithms are
already close enough to the optimum. All communication
times have been measured using the ntp_gettime function
call from the GNU libc.

In our tests, the 10 nodes of the first cluster have to
communicate to each 10 nodes of the second cluster. The
size of the data to transfer between two given cluster nodes
is uniformly generated between 10 and n MB. We plot the
total communication time obtained when n increases as
shown in Fig. 16.

Several observations can be made:

. We achieve a 5 to 20 percent reduction of commu-
nications costs. Although we are alone on a local
network, where TCP is efficient, we are able to
achieve better results.

. The barriers cost extremely little time. Although
OGGP algorithm has 50 percent less steps of
communication, it gives the same result as GGP.
However, we believe the cost of synchronizations
may increase if we introduce some random pertur-
bations on the network.

. The brute-force approach does not behave determi-
nistically. When conducting several time the same
experiments we see a time variation of up to
10 percent. It is interesting to see that our approach
on the opposite behaves deterministically.

. As the available bandwidth decreases (i.e., k
increases) we increase the benefits of using GGP
or OGGP over the brute-force approach.

9 CONCLUSIONS

In this paper, we have formalized and studied the problem
(called KPBS) of redistributing parallel data over a backbone.
Our contribution is the following: We have shown that KPBS
remains NP-hard when k is constant. We have studied lower
bounds related to KPBS. We have proposed two messages
scheduling algorithms called GGP and OGGP for the
redistribution problem. These algorithms have an approx-
imation ratio of 8

3 . We then studied two fast heuristics.

COHEN ET AL.: MESSAGES SCHEDULING FOR PARALLEL DATA REDISTRIBUTION BETWEEN CLUSTERS 1173

Fig. 14. Heuristic on edges. Simulation with large weights.

Fig. 15. GGP and OGGP for small weights/large weights graphs.

Fig. 16. Brute-Force versus GGP or OGGP (k ¼ 3; 5; 7).



Simulations show that OGGP outperforms GGP that outper-
forms the heuristics. We have performed real experiments on
two clusters. Results show that our scheduling algorithms
outperform the brute-force approach that consists of letting
the network manage the congestion alone (redistribution
time can be reduced to up to 20 percent).

In our approach, we limit the maximum number of
messages during one step. This is especially useful when
the redistribution is performed between two clusters
interconnected by a backbone and when this backbone is
a bottleneck. However, the algorithms we have proposed
can also be used when a redistribution occurs on the same
parallel machines or in the context of SS/TDMA systems or
WDM network.

In our future work, we want to extend the model to
handle more complex redistributions. First, we would like
to consider achieving a local preredistribution in case a
high-speed local network is available. This would enable us
to aggregate small communications together, or on the
opposite to dispatch communications to all nodes in the
cluster. Second, we would like to study the problem when
the throughput of the backbone varies dynamically or when
the redistribution pattern is not fully known in advance. We
think that our multistep approach could be useful for these
dynamic cases. The final goal of this work is to produce
(together with the people involved in the INRIA ARC
redGRID4) a fully working redistribution library.

ACKNOWLEDGMENTS

This work was partially funded by the INRIA ARC

redGRID, the ACI GRID, and the Région Lorraine.

REFERENCES

[1] F.N. Afrati, T. Aslanidis, E. Bampis, and I. Milis, “Scheduling in
Switching Networks with Set-Up Delays,” J. Combinatorial
Optimization, vol. 9, no. 1, pp. 49-57, 2005.

[2] F. Bertrand, R. Bramley, D. Bernholdt, J.A. Kohl, A. Sussman, J.W.
Larson, and K. Damevski, “Data Redistribution and Remote
Method Invocation in Parallel Component Architectures,” Proc.
Int’l Parallel and Distributed Processing Symp., 2005.

[3] P.B. Bhat, V.K. Prasanna, and C.S. Raghavendra, “Block Cyclic
Redistribution over Heterogeneous Networks,” Proc. 11th Int’l
Conf. Parallel and Distrinuted Computing Systems (PDCS ’98), 1998.

[4] G. Bongiovanni, D. Coppersmith, and C.K. Wong, “An Optimum
Time Slot Assignment Algorithm for an SS/TDMA System with
Variable Number of Transponders,” IEEE Trans. Comm., vol. 29,
no. 5, pp. 721-726, 1981.

[5] V. Boudet, F. Desprez, and F. Suter, “One-Step Algorithm for
Mixed Data and Task Parallel Scheduling without Data Replica-
tion,” Proc. Int’l Parallel and Distributed Processing Symp., p. 41, 2003.

[6] H. Casanova and J. Dongarra, “NetSolve: A Network-Enabled
Server for Solving Computational Science Problems,” Int’l
J. Supercomputer Applications and High Performance Computing,
vol. 11, no. 3, pp. 212-213, Fall 1997.

[7] H. Choi, H.-A. Choi, and M. Azizoglu, “Efficient Scheduling of
Transmissions in Optical Broadcast Networks,” IEEE/ACM Trans.
Networking, vol. 4, no. 6, pp. 913-920, 1996.

[8] P. Crescenzi, D. Xiaotie, and C.H. Papadimitriou, “On Approx-
imating a Scheduling Problem,” J. Combinatorial Optimization,
vol. 5, pp. 287-297, 2001.

[9] B. Del-Fabbro, D. Laiymani, J.-M. Nicod, and L. Philippe, “Data
Management in Grid Applications Providers,” Proc. Int’l Conf.
Distributed Frameworks for Multimedia Applications (DFMA),
pp. 315-322, 2005.

[10] F. Desprez, J. Dongarra, A. Petitet, C. Randriamaro, and Y. Robert,
“Scheduling Block-Cyclic Array Redistribution,” IEEE Trans.
Parallel and Distributed Systems, vol. 9, no. 2, pp. 192-205, Feb. 1998.

[11] F. Desprez and E. Jeannot, “Improving the GridRPC Model with
Data Persistence and Redistribution,” Proc. Third Int’l Symp.
Parallel and Distributed Computing (ISPDC), July 2004.

[12] S. Even, A. Itai, and A. Shamir, “On the Complexity of Timetable
and Multicommodity Flow Problem,” SIAM J. Computers, vol. 5,
pp. 691-703, 1976.

[13] A. Ganz and Y. Gao, “A Time-Wavelength Assignment Algorithm
for WDM Star Network,” Proc. IEEE INFOCOM Conf., pp. 2144-
2150, 1992.

[14] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Co., 1979.

[15] I.S. Gopal, G. Bongiovanni, M.A. Bonuccelli, D.T. Tang, and C.K.
Wong, “An Optimal Switching Algorithm for Multibean Satellite
Systems with Variable Bandwidth Beams,” IEEE Trans. Comm.,
vol. 30, no. 11, pp. 2475-2481, Nov. 1982.

[16] I.S. Gopal and C.K. Wong, “Minimizing the Number of Switching
in an SS/TDMA System,” IEEE Trans. Comm., 1985.

[17] M. Guo and I. Nakata, “A Framework for Efficient Data
Redistribution on Distributed Memory Multicomputers,” The
J. Supercomputing, vol. 20, no. 3, pp. 243-265, 2001.

[18] S. Sekiguchi, H. Nakada, and M. Sato, “Design and Implementa-
tions of Ninf: Towards a Global Computing Infrastructure,” Future
Generation Computing Systems, vol. 15, pp. 649-658, 1999.

[19] C.-H. Hsu, Y.-C. Chung, D.-L. Yang, and C.-R. Dow, “A General-
ized Processor Mapping Technique for Array Redistribution,”
IEEE Trans. Parallel and Distributed Systems, vol. 12, no. 7, pp. 743-
757, 2001.

[20] The Hydrogrid Project, http://www-rocq.inria.fr/kern/Hydro
Grid/HydroGrid-en.html, 2006.

[21] Oak Ridge National Labs, Mxn, http://www.csm.ornl.gov/cca/
mxn, 2006.

[22] S. Micali and V.V. Vazirani, “An oð
ffiffi
ð

p
vÞeÞ Algorithm for Finding a

Maximum Matching in General Graphs,” Proc. 21st Ann IEEE
Symp. Foundations of Computer Science, pp. 17-27, 1980.

[23] M. Mishra and K. Sivalingam, “Scheduling in WDM Networks
with Tunable Transmitter and Tunable Receiver Architecture,”
Proc. NetWorld + Interop Eng. Conf., May 1999.

[24] N. Park, V.K. Prasanna, and C.S. Raghavendra, “Efficient
Algorithms for Block-Cyclic Array Redistribution between Pro-
cessor Sets,” IEEE Trans. Parallel and Distributed Systems, vol. 10,
no. 12, pp. 1217-1239, Dec. 1999.
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