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Welcome

I Who am I ?: CNRS researcher at LIP, used to be a student of
ENS Lyon, and a PhD student at LIP.

I Any information about the class:
loris.marchal@ens-lyon.fr + website (google me)

I Mosty on the board, but slides will be available on the website
I Outline of the class:

I today: introduction to scheduling
I after: study of particular scheduling problems
I focus on scheduling for large-scale platforms
I at the end: more on-going research stuff
I evaluations: research papers

I Slides and documentation source:
I myself (a little bit)
I Frédéric Vivien http://graal.ens-lyon.fr/~fvivien/
I EPIT school http:

//graal.ens-lyon.fr/~fvivien/EPIT2007.html,
forthcoming book

loris.marchal@ens-lyon.fr
http://graal.ens-lyon.fr/~fvivien/
http://graal.ens-lyon.fr/~fvivien/EPIT2007.html
http://graal.ens-lyon.fr/~fvivien/EPIT2007.html
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Outline

Vocabulary
Basic complex scheduling problem
Processor scheduling

Graham classification

Types of results: easy and hard problems

Some scheduling problems
1||
∑
wiCi, polynomial (Smith-ratio)

P |prec|Cmax, NP-hard, Graham 2-approx
1||
∑
Ui, Moore-Hodgson algorithm

Other types of scheduling problems ?
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What is scheduling ?

I allocation of limited resources to activities over time

I activities: tasks in computer environment, steps of a
construction project, operations in a production process,
lectures at the University, etc.

I resources: processors, workers, machines, lecturers, rooms,
etc.

Many variations on the model, on the resource/activity interaction
and on the objective.
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Basic complex scheduling problem

Resource-constrained project scheduling problem:
Schedule activities over time on scarce resources, such that some
constraints are satisfied and some objective function is optimized

I n activities (jobs) j = 1, . . . n,

I r renewable resources i = 1, . . . , r

I Rk: amounts of resource k available at any time

I activity j processed for pj time units,
using an amount rj,k of resource k

I Integer numbers

I Rk = 1 ⇔ resource disjunctive (0 ⇔ resource cumulative)
I Precedence constraints: i→ j

I j cannot start before i is completed

I Precedence constraint graph: DAG (directed acyclic graph)
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Basic complex scheduling problem

Objective: find starting time Sj for each activity, such that

I At each time, the total resource demand is less than (or equal
to) the resource availability for each resource

I Precedence constraints are satisfied: Si + pi ≤ Sj if i→ j

I conceptMakespan Cmax = maxCj is minimized, with
Cj = Sj + pj

I Cj = Sj + pj implies no preemption (activity splitting).

I Dummy starting activity 0 + dummy termination activity
n+ 1, with S0 = 0 and Cmax = Cn+1

I Without preemption, vector S defines a schedule

I S is called feasible if all resource and precedence constraints
are fulfilled
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Basic complex scheduling problem – Example

j 1 2 3 4

pj 4 3 5 8
rj,1 2 1 2 2
rj,2 3 5 2 4

(a) A feasible schedule
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Generalization of precedence relations

I Generalize precedence relation: Si + di,j ≤ Sj

I different cases + models all relations between start/finish times

I Release times rj and deadlines
dj : S0 + rj ≤ Sj , Sj − (dj − pj) ≤ S0

I Communication delays ci,j

i

j-dij
j

i�−dij

(a) positive time-lag (b) negative time-lag
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Other objectives

I Total flow time:
∑n

j=1Cj

I Weighted (total) flow time:
∑n

j=1wjCj

I With due dates dj :
I lateness: Lj = Cj − dj

I tardiness: Tj = max{0, Cj − dj}
I unit penalty: Uj = 0 if Cj ≤ dj , 1 otherwise

I maximum lateness: Lmathrmmax = maxLj

I total tardiness
∑
Tj

I total weighted tardiness
∑
wjTj

I number of late activities
∑
Uj

I weighted number of late activities
∑
wjUj
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Single processor scheduling

I n jobs J1, . . . , Jn with processing times pj

I 1 processor

I precedence constraint

Example:

I 5 jobs, with processing times 3, 2, 4, 2, 5
I precedence constraints: 1→ 3, 2→ 4, 4→ 5

- t
1 2 3 4 5

0 3 5 9 11 14
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Parellel processor scheduling

I m identical processors P1, . . . , Pm

I all tasks have the same processing time Pj on all processors

I ⇔ RCPSP with one machine, R1 = m
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Variants:

I unrelated processors: pj,k depends on Pk and Jj

I uniform processors: pj,k = Pj/sk, sk is the speed of processor
Pk
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Multi-processor task scheduling

I jobs J1, . . . Jn

I processors P1, . . . , Pm

I each job Jj has processing time pj , and makes use of a subset
of processor µj ⊆ {P1, . . . , Pm}

I + precedence constraints

another variant: identical processors, and each job Jj makes us of
any subset of sizej processors
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Shop scheduling

Jobs consist in several operations, to be processed on different
resources.

General shop scheduling problem:

I jobs J1, . . . Jn

I processors P1, . . . , Pm

I Jj consists in nj operation O1,j , . . . , Onj ,j

I two operations of the same job cannot be processed at the
same time

I a processor can process one operation at a time

I operations Oi,j has processing time pi,j and makes use of
processor µi,j

I arbitrary precedence pattern
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Shop scheduling

job-shop scheduling problem:

I chain of precedence constraints:

O1,j → O2,j → · · · → Onj ,j

flow-shop scheduling problem:

I special job-shop scheduling problem

I nj = m for all j, and µi,j = Pi for all i, j:
operation Oi,j must be processed by Pi

open-shop scheduling problem

I like a flow-shop, but no precedence constraints
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Graham notation

Classes of scheduling problems can be specified in terms of the
three-field classification α|β|γ where

I α specifies the machine environment,

I β specifies the job characteristics,

I γ and describes the objective function(s).
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Graham notation – machines

To describe the machine environment the following symbols are
used:

I 1 single machine

I P parallel identical

I Q uniform machines

I R unrelated machines

I MPM multi-purpose machines

I J job-shop

I F flow-shop

I O open-shop

The above symbols are used if the number of machines is part of
the input. If the number of machines is fixed to m we write Pm,
Qm, Rm, MPMm, Jm, Fm, Om.
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Graham notation – Job characteristics

I pmtn preemption

I rj release times

I dj deadlines

I pj = 1 or pj = p or pj ∈ 1, 2: restricted processing times

I prec : arbitrary precedence constraints

I intree: (outtree) intree (or outtree) precedences

I chains: chain precedences

I series-parallel: a series- parallel precedence graph
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Graham notation – Objectives

I makespan Cmax

I maximum lateness: Lmax

I mean flow-time
∑
Ci

I mean weighted flow-time
∑
wiCi

I sum of tardiness
∑
Tj

I sum of weighted tardiness
∑
wjTj

I number of late jobs
∑
Uj

I weighted number of late activities
∑
wjUj

( lateness: Lj = Cj − dj , tardiness: Tj = max{0, Cj − dj}, unit penalty:
Uj = 0 if Cj ≤ dj , 1 otherwise)
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Graham notation – Examples

1|rj ; pmtn|Lmax

P2|pj = p; rj ; tree|Cmax

Jm|pi,j = 1|
∑

wjUj
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Polynomial problems

I a solution to a scheduling problem is a function h:
I x is the input (parameters)
I h(x) is the solution (starting times, etc.)

I |x| defined as the length of some encoding of x
I usually, binary encoding: integer a encoded in log2 a bits

I Complexity of an algorithm computing h(x) for all x: running
time

I An algorithm is called polynomial, if it computes h(x) for all x
it at most O(p(|x|) steps, where P is a polynomial

I A problem is called polynomial if it can be solved by a
polynomial algorithm
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Pseudo-polynomial problems

If we replace the binary encoding by an unary encoding (integer a
encoded with size a): we can solve more difficult problems in time
polynomial with |x|.

I An algorithm is pseudo-polynomial if it solves the problem for
all x with a number of steps at most O(p(|x|) steps, where P
is a polynomial and |x| the size of of an unary encoding of x.

Example:
An algorithm for a scheduling problem, whose running time is
O(pj) is pseudo-polynomial.
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P and NP

I Decision problems

I To each optimization problem, we can define a decision
problem

I P: class of polynomially solvable decision problems

I NP: class of polynomially checkable decision problems
for each ”yes”-answer, a certificate exists which can be used
to check the answer in polynomial time

I Decisions problems of scheduling problems belongs to NP

I P ⊆ NP . P
?= NP still open
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NP-complete problems

I a decision problem Q is NP-complete if all problems in NP
can be polynomially reduced to Q

I if any single NP-complete decision problem Q could be solved
in polynomial time then we would have P = NP.

I To prove that a problem is NP-complete: reduction to a
well-known NP-complete problem

I Weakly NP-complete (or binary NP-complete): strongly
depends on the binary coding of the input. If unary coding is
used, the problem might become polynomial
(pseudo-polynomial).

I 2-Partition vs 3-Partition
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How to solve NP-complete problems ?

Exact methods:

I Mixed integer linear programming

I Dynamic programming

I Branch and bound methods

(usually limited to small instances)

Approximate methods:

I Heuristics (no guarantee)

I Approximation algorithms
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Approximation algorithms

Consider a minimization problem. On a given instance x,
f(x): value of the objective in the solution given by the algorithm
f∗(x): optimal value of the objective

An algorithm is a ρ-approximation if for any instance x ,
f(x) ≤ ρ× f∗(x)

APX class: problems for which there exists a polynomial-time
ρ-approximation algorithm, for some ρ > 0

An algorithm is a PTAS (Polynomial Time Approximation Scheme)
if for any instance x and any ε > 0, the algorithm computes a
solution f(x) with f(x) ≤ (1 + ε)× f∗(x) in time polynomial in
the problem size.

An algorithm is a FPTAS (Fully Polynomial Time Approximation
Scheme) if for any instance and any ε > 0, it produces a solution
f(x) such that f(x) ≤ (1 + ε)× f∗(x), in time polynomial in the
problem size and in 1ε.
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1||
∑

wiCi, or the Smith-ratio

I Objective: weighted sum of completion times
I Intuitions:

I put high weight first
I put longer tasks last

I ⇒ Order task by non-increasing Smith ratio:
w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn

Proof:
I Consider a different optimal schedule S
I Let i and j be two consecutive tasks in this schedule such

that wi/pi < wj/pj

I contribution of these tasks in S:
Si = (wi + wj)(t+ pi) + wjpj

I contribution of these tasks if switched:
Sj = (wi + wj)(t+ pj) + wipi

I we have
Si−Sj

wiwj
= pi

wi
− pj

wj

Thus we decrease the objective by switching these tasks.
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P |prec|Cmax, Graham 2-approx

I NP-complete

I reduction to 2-partition (or 3-partition, → unary
NP-complete)
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Graham list scheduling approximation

I Theorem: Any list scheduling heuristic gives a schedule,
whose makespan is at most 2− 1/p times the optimal.

I Lemma: there exists a precedence path Ψ such that
Idle ≤ (p− 1)× w(Ψ)

I Consider the task with maximum termination time T1

I Let t1 be the last moment (strictly) before σ(T1) when a
processor is not active

I Since a processor is inactive at time t1, there exists a task T2,
finishing at time t1, which is an ancestor of T1 (unless T1

would be free and scheduled at time t1 or before)
I Iterate the process
I All idle times occur during the processing of these tasks, at

most on p− 1 processors

I Notice that pCmax = Idle + Seq, with Seq =
∑
w(Ti)

I We also have Seq ≤ pCopt
max, thus

Cmax ≤
(
(p− 1)× w(Ψ)

)
+
(
pCopt

max

)
I We also have w(Ψ) ≤ Copt

max, qed.
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The approximation bound is tight

T
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1||
∑

Ui, Moore-Hodgson algorithm

One machine, minimize the number of late jobs

Example:

job 1 2 3 4 5

dj 6 7 8 9 11
pj 4 3 2 5 6

Tasks are sorted by non-decreasing di : d1 ≤ · · · ≤ dn

I A := ∅
I For i = 1 . . . n

I Ifp(A) + pi ≤ di, then A := A ∪ {i}
I Otherwise,

I Let j be the longest task in A ∪ {i}
I A := A ∪ {i} − {j}

Optimal solution : A = {2, 3, 5}



40/ 43

Feasibility

We first prove that the algorithm produces a feasible schedule:

I By induction: if not task is rejected, ok
I Assume that A is feasible, prove that A ∪ {i} − {j} is feasible

too
I all tasks in A before j: no change
I all tasks in A after j: shorter completion
I task i: let k be the last task in A: p(A) ≤ dk

since task j is the longest: pi ≤ pj , thus
p ∪ {i} − {j} ≤ p(A) ≤ dk ≤ di (because tasks are sorted)
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Optimality

Assume that there exist an optimal set O different from the set Af

output by the Moore-Hodgson algorithm

I Let j be the first task rejected by the algorithm

I We prove that there exists an optimal solution without j

I We consider the set A = {1, . . . , i− 1} at the moment when
task j is rejected from A, and i the task being added at this
moment

I A+ i is not feasible, thus O does not contain {1, . . . , i}
I Let k be a task of {1, . . . , i} which is not in O

I Since the algorithm rejects the longest task,
p(O ∪ {k} − {j}) ≤ p(O), and by the same arguments than
before, O ∪ {k} − {j} is feasible

I We can suppress j from the problem instance, without
modifying the behavior of the algorithm or the objective

We can repeat this process, until we get the set of tasks scheduled
by the algorithm.
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Other types of scheduling problems

I Online problems
I contrarily to offline, information about future jobs is not

known in advance
I competitive ratio: ratio to the optimal offline algorithm

I Distributed scheduling
I use only local information

I Multi-criteria scheduling
I several objectives to optimize simultaneously
I and/or several users, link with game theory

I Cyclic scheduling
I infinite but regular pattern of tasks
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