
1/ 43

Scheduling
Lecture 1: Introduction

Loris Marchal

CNRS
INRIA GRAAL project-team

Laboratoire de l’Informatique du Parallélisme
École Normale Supérieure de Lyon, France

January 28, 2009

2/ 43

Welcome

I Who am I ?: CNRS researcher at LIP, used to be a student of
ENS Lyon, and a PhD student at LIP.

I Any information about the class:
loris.marchal@ens-lyon.fr + website (google me)

I Mosty on the board, but slides will be available on the website
I Outline of the class:

I today: introduction to scheduling
I after: study of particular scheduling problems
I focus on scheduling for large-scale platforms
I at the end: more on-going research stuff
I evaluations: research papers

I Slides and documentation source:
I myself (a little bit)
I Frédéric Vivien http://graal.ens-lyon.fr/~fvivien/
I EPIT school http:

//graal.ens-lyon.fr/~fvivien/EPIT2007.html,
forthcoming book

loris.marchal@ens-lyon.fr
http://graal.ens-lyon.fr/~fvivien/
http://graal.ens-lyon.fr/~fvivien/EPIT2007.html
http://graal.ens-lyon.fr/~fvivien/EPIT2007.html

3/ 43

Outline

Vocabulary
Basic complex scheduling problem
Processor scheduling

Graham classification

Types of results: easy and hard problems

Some scheduling problems
1||
∑
wiCi, polynomial (Smith-ratio)

P |prec|Cmax, NP-hard, Graham 2-approx
1||
∑
Ui, Moore-Hodgson algorithm

Other types of scheduling problems ?

4/ 43

Outline

Vocabulary
Basic complex scheduling problem
Processor scheduling

Graham classification

Types of results: easy and hard problems

Some scheduling problems
1||
∑
wiCi, polynomial (Smith-ratio)

P |prec|Cmax, NP-hard, Graham 2-approx
1||
∑
Ui, Moore-Hodgson algorithm

Other types of scheduling problems ?

5/ 43

What is scheduling ?

I allocation of limited resources to activities over time

I activities: tasks in computer environment, steps of a
construction project, operations in a production process,
lectures at the University, etc.

I resources: processors, workers, machines, lecturers, rooms,
etc.

Many variations on the model, on the resource/activity interaction
and on the objective.

6/ 43

Outline

Vocabulary
Basic complex scheduling problem
Processor scheduling

Graham classification

Types of results: easy and hard problems

Some scheduling problems
1||
∑
wiCi, polynomial (Smith-ratio)

P |prec|Cmax, NP-hard, Graham 2-approx
1||
∑
Ui, Moore-Hodgson algorithm

Other types of scheduling problems ?

7/ 43

Basic complex scheduling problem

Resource-constrained project scheduling problem:
Schedule activities over time on scarce resources, such that some
constraints are satisfied and some objective function is optimized

I n activities (jobs) j = 1, . . . n,

I r renewable resources i = 1, . . . , r

I Rk: amounts of resource k available at any time

I activity j processed for pj time units,
using an amount rj,k of resource k

I Integer numbers

I Rk = 1 ⇔ resource disjunctive (0 ⇔ resource cumulative)
I Precedence constraints: i→ j

I j cannot start before i is completed

I Precedence constraint graph: DAG (directed acyclic graph)

8/ 43

Basic complex scheduling problem

Objective: find starting time Sj for each activity, such that

I At each time, the total resource demand is less than (or equal
to) the resource availability for each resource

I Precedence constraints are satisfied: Si + pi ≤ Sj if i→ j

I conceptMakespan Cmax = maxCj is minimized, with
Cj = Sj + pj

I Cj = Sj + pj implies no preemption (activity splitting).

I Dummy starting activity 0 + dummy termination activity
n+ 1, with S0 = 0 and Cmax = Cn+1

I Without preemption, vector S defines a schedule

I S is called feasible if all resource and precedence constraints
are fulfilled

9/ 43

Basic complex scheduling problem – Example

j 1 2 3 4

pj 4 3 5 8
rj,1 2 1 2 2
rj,2 3 5 2 4

(a) A feasible schedule

-

-1

1

2

2

3

3

4

4

1

1

0 4 7 12 15

R1 = 5

R2 = 7

(b) An optimal schedule

-

-2

2

3

3

4

4

1

11

1

0 4 7 12

R1 = 5

R2 = 7

10/ 43

Generalization of precedence relations

I Generalize precedence relation: Si + di,j ≤ Sj

I different cases + models all relations between start/finish times

I Release times rj and deadlines
dj : S0 + rj ≤ Sj , Sj − (dj − pj) ≤ S0

I Communication delays ci,j

i

j-dij
j

i�−dij

(a) positive time-lag (b) negative time-lag

11/ 43

Other objectives

I Total flow time:
∑n

j=1Cj

I Weighted (total) flow time:
∑n

j=1wjCj

I With due dates dj :
I lateness: Lj = Cj − dj

I tardiness: Tj = max{0, Cj − dj}
I unit penalty: Uj = 0 if Cj ≤ dj , 1 otherwise

I maximum lateness: Lmathrmmax = maxLj

I total tardiness
∑
Tj

I total weighted tardiness
∑
wjTj

I number of late activities
∑
Uj

I weighted number of late activities
∑
wjUj

12/ 43

Outline

Vocabulary
Basic complex scheduling problem
Processor scheduling

Graham classification

Types of results: easy and hard problems

Some scheduling problems
1||
∑
wiCi, polynomial (Smith-ratio)

P |prec|Cmax, NP-hard, Graham 2-approx
1||
∑
Ui, Moore-Hodgson algorithm

Other types of scheduling problems ?

13/ 43

Single processor scheduling

I n jobs J1, . . . , Jn with processing times pj

I 1 processor

I precedence constraint

Example:

I 5 jobs, with processing times 3, 2, 4, 2, 5
I precedence constraints: 1→ 3, 2→ 4, 4→ 5

- t
1 2 3 4 5

0 3 5 9 11 14

14/ 43

Parellel processor scheduling

I m identical processors P1, . . . , Pm

I all tasks have the same processing time Pj on all processors

I ⇔ RCPSP with one machine, R1 = m

j j j
j j
j
j j

1
1

2
3

3
4

4
2

5
2

6
3

7
1

8
5-

--

-

�
�>

Z
Z~

Z
Z~

�
�>

2 6 7

1 3 5

4 8

P1

P2

P3 -
0 1 3 4 5 7 8 9

Variants:

I unrelated processors: pj,k depends on Pk and Jj

I uniform processors: pj,k = Pj/sk, sk is the speed of processor
Pk

15/ 43

Multi-processor task scheduling

I jobs J1, . . . Jn

I processors P1, . . . , Pm

I each job Jj has processing time pj , and makes use of a subset
of processor µj ⊆ {P1, . . . , Pm}

I + precedence constraints

another variant: identical processors, and each job Jj makes us of
any subset of sizej processors

16/ 43

Shop scheduling

Jobs consist in several operations, to be processed on different
resources.

General shop scheduling problem:

I jobs J1, . . . Jn

I processors P1, . . . , Pm

I Jj consists in nj operation O1,j , . . . , Onj ,j

I two operations of the same job cannot be processed at the
same time

I a processor can process one operation at a time

I operations Oi,j has processing time pi,j and makes use of
processor µi,j

I arbitrary precedence pattern

17/ 43

Shop scheduling

job-shop scheduling problem:

I chain of precedence constraints:

O1,j → O2,j → · · · → Onj ,j

flow-shop scheduling problem:

I special job-shop scheduling problem

I nj = m for all j, and µi,j = Pi for all i, j:
operation Oi,j must be processed by Pi

open-shop scheduling problem

I like a flow-shop, but no precedence constraints

18/ 43

Outline

Vocabulary
Basic complex scheduling problem
Processor scheduling

Graham classification

Types of results: easy and hard problems

Some scheduling problems
1||
∑
wiCi, polynomial (Smith-ratio)

P |prec|Cmax, NP-hard, Graham 2-approx
1||
∑
Ui, Moore-Hodgson algorithm

Other types of scheduling problems ?

19/ 43

Graham notation

Classes of scheduling problems can be specified in terms of the
three-field classification α|β|γ where

I α specifies the machine environment,

I β specifies the job characteristics,

I γ and describes the objective function(s).

20/ 43

Graham notation – machines

To describe the machine environment the following symbols are
used:

I 1 single machine

I P parallel identical

I Q uniform machines

I R unrelated machines

I MPM multi-purpose machines

I J job-shop

I F flow-shop

I O open-shop

The above symbols are used if the number of machines is part of
the input. If the number of machines is fixed to m we write Pm,
Qm, Rm, MPMm, Jm, Fm, Om.

21/ 43

Graham notation – Job characteristics

I pmtn preemption

I rj release times

I dj deadlines

I pj = 1 or pj = p or pj ∈ 1, 2: restricted processing times

I prec : arbitrary precedence constraints

I intree: (outtree) intree (or outtree) precedences

I chains: chain precedences

I series-parallel: a series- parallel precedence graph

22/ 43

Graham notation – Objectives

I makespan Cmax

I maximum lateness: Lmax

I mean flow-time
∑
Ci

I mean weighted flow-time
∑
wiCi

I sum of tardiness
∑
Tj

I sum of weighted tardiness
∑
wjTj

I number of late jobs
∑
Uj

I weighted number of late activities
∑
wjUj

(lateness: Lj = Cj − dj , tardiness: Tj = max{0, Cj − dj}, unit penalty:
Uj = 0 if Cj ≤ dj , 1 otherwise)

23/ 43

Graham notation – Examples

1|rj ; pmtn|Lmax

P2|pj = p; rj ; tree|Cmax

Jm|pi,j = 1|
∑

wjUj

24/ 43

Outline

Vocabulary
Basic complex scheduling problem
Processor scheduling

Graham classification

Types of results: easy and hard problems

Some scheduling problems
1||
∑
wiCi, polynomial (Smith-ratio)

P |prec|Cmax, NP-hard, Graham 2-approx
1||
∑
Ui, Moore-Hodgson algorithm

Other types of scheduling problems ?

25/ 43

Polynomial problems

I a solution to a scheduling problem is a function h:
I x is the input (parameters)
I h(x) is the solution (starting times, etc.)

I |x| defined as the length of some encoding of x
I usually, binary encoding: integer a encoded in log2 a bits

I Complexity of an algorithm computing h(x) for all x: running
time

I An algorithm is called polynomial, if it computes h(x) for all x
it at most O(p(|x|) steps, where P is a polynomial

I A problem is called polynomial if it can be solved by a
polynomial algorithm

26/ 43

Pseudo-polynomial problems

If we replace the binary encoding by an unary encoding (integer a
encoded with size a): we can solve more difficult problems in time
polynomial with |x|.

I An algorithm is pseudo-polynomial if it solves the problem for
all x with a number of steps at most O(p(|x|) steps, where P
is a polynomial and |x| the size of of an unary encoding of x.

Example:
An algorithm for a scheduling problem, whose running time is
O(pj) is pseudo-polynomial.

27/ 43

P and NP

I Decision problems

I To each optimization problem, we can define a decision
problem

I P: class of polynomially solvable decision problems

I NP: class of polynomially checkable decision problems
for each ”yes”-answer, a certificate exists which can be used
to check the answer in polynomial time

I Decisions problems of scheduling problems belongs to NP

I P ⊆ NP . P
?= NP still open

28/ 43

NP-complete problems

I a decision problem Q is NP-complete if all problems in NP
can be polynomially reduced to Q

I if any single NP-complete decision problem Q could be solved
in polynomial time then we would have P = NP.

I To prove that a problem is NP-complete: reduction to a
well-known NP-complete problem

I Weakly NP-complete (or binary NP-complete): strongly
depends on the binary coding of the input. If unary coding is
used, the problem might become polynomial
(pseudo-polynomial).

I 2-Partition vs 3-Partition

29/ 43

How to solve NP-complete problems ?

Exact methods:

I Mixed integer linear programming

I Dynamic programming

I Branch and bound methods

(usually limited to small instances)

Approximate methods:

I Heuristics (no guarantee)

I Approximation algorithms

30/ 43

Approximation algorithms

Consider a minimization problem. On a given instance x,
f(x): value of the objective in the solution given by the algorithm
f∗(x): optimal value of the objective

An algorithm is a ρ-approximation if for any instance x ,
f(x) ≤ ρ× f∗(x)

APX class: problems for which there exists a polynomial-time
ρ-approximation algorithm, for some ρ > 0

An algorithm is a PTAS (Polynomial Time Approximation Scheme)
if for any instance x and any ε > 0, the algorithm computes a
solution f(x) with f(x) ≤ (1 + ε)× f∗(x) in time polynomial in
the problem size.

An algorithm is a FPTAS (Fully Polynomial Time Approximation
Scheme) if for any instance and any ε > 0, it produces a solution
f(x) such that f(x) ≤ (1 + ε)× f∗(x), in time polynomial in the
problem size and in 1ε.

31/ 43

Outline

Vocabulary
Basic complex scheduling problem
Processor scheduling

Graham classification

Types of results: easy and hard problems

Some scheduling problems
1||
∑
wiCi, polynomial (Smith-ratio)

P |prec|Cmax, NP-hard, Graham 2-approx
1||
∑
Ui, Moore-Hodgson algorithm

Other types of scheduling problems ?

32/ 43

Outline

Vocabulary
Basic complex scheduling problem
Processor scheduling

Graham classification

Types of results: easy and hard problems

Some scheduling problems
1||
∑
wiCi, polynomial (Smith-ratio)

P |prec|Cmax, NP-hard, Graham 2-approx
1||
∑
Ui, Moore-Hodgson algorithm

Other types of scheduling problems ?

33/ 43

1||
∑

wiCi, or the Smith-ratio

I Objective: weighted sum of completion times
I Intuitions:

I put high weight first
I put longer tasks last

I ⇒ Order task by non-increasing Smith ratio:
w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn

Proof:
I Consider a different optimal schedule S
I Let i and j be two consecutive tasks in this schedule such

that wi/pi < wj/pj

I contribution of these tasks in S:
Si = (wi + wj)(t+ pi) + wjpj

I contribution of these tasks if switched:
Sj = (wi + wj)(t+ pj) + wipi

I we have
Si−Sj

wiwj
= pi

wi
− pj

wj

Thus we decrease the objective by switching these tasks.

34/ 43

Outline

Vocabulary
Basic complex scheduling problem
Processor scheduling

Graham classification

Types of results: easy and hard problems

Some scheduling problems
1||
∑
wiCi, polynomial (Smith-ratio)

P |prec|Cmax, NP-hard, Graham 2-approx
1||
∑
Ui, Moore-Hodgson algorithm

Other types of scheduling problems ?

35/ 43

P |prec|Cmax, Graham 2-approx

I NP-complete

I reduction to 2-partition (or 3-partition, → unary
NP-complete)

36/ 43

Graham list scheduling approximation

I Theorem: Any list scheduling heuristic gives a schedule,
whose makespan is at most 2− 1/p times the optimal.

I Lemma: there exists a precedence path Ψ such that
Idle ≤ (p− 1)× w(Ψ)

I Consider the task with maximum termination time T1

I Let t1 be the last moment (strictly) before σ(T1) when a
processor is not active

I Since a processor is inactive at time t1, there exists a task T2,
finishing at time t1, which is an ancestor of T1 (unless T1

would be free and scheduled at time t1 or before)
I Iterate the process
I All idle times occur during the processing of these tasks, at

most on p− 1 processors

I Notice that pCmax = Idle + Seq, with Seq =
∑
w(Ti)

I We also have Seq ≤ pCopt
max, thus

Cmax ≤
(
(p− 1)× w(Ψ)

)
+
(
pCopt

max

)
I We also have w(Ψ) ≤ Copt

max, qed.

37/ 43

The approximation bound is tight

T
(K(p−1))
1 T

(K(p−1))
2 · · · T

(K(p−1))
p−1

T
(1)
p

T
(K)
p+1 T

(K)
p+2 T

(K)
2p· · ·

T
(K(p−1))
2p+1

C list
max = Kp+K(p− 1) = K(2p− 1)

Copt
max = 1 +K +K(p− 1) = Kp+ 1

C list
max

Copt
max

>
K(2p− 1)
Kp+ 1

=
2p− 1
p
− 2p− 1
p(Kp+ 1)

= (2− 1
p

)− ε(K),

38/ 43

Outline

Vocabulary
Basic complex scheduling problem
Processor scheduling

Graham classification

Types of results: easy and hard problems

Some scheduling problems
1||
∑
wiCi, polynomial (Smith-ratio)

P |prec|Cmax, NP-hard, Graham 2-approx
1||
∑
Ui, Moore-Hodgson algorithm

Other types of scheduling problems ?

39/ 43

1||
∑

Ui, Moore-Hodgson algorithm

One machine, minimize the number of late jobs

Example:

job 1 2 3 4 5

dj 6 7 8 9 11
pj 4 3 2 5 6

Tasks are sorted by non-decreasing di : d1 ≤ · · · ≤ dn

I A := ∅
I For i = 1 . . . n

I Ifp(A) + pi ≤ di, then A := A ∪ {i}
I Otherwise,

I Let j be the longest task in A ∪ {i}
I A := A ∪ {i} − {j}

Optimal solution : A = {2, 3, 5}

40/ 43

Feasibility

We first prove that the algorithm produces a feasible schedule:

I By induction: if not task is rejected, ok
I Assume that A is feasible, prove that A ∪ {i} − {j} is feasible

too
I all tasks in A before j: no change
I all tasks in A after j: shorter completion
I task i: let k be the last task in A: p(A) ≤ dk

since task j is the longest: pi ≤ pj , thus
p ∪ {i} − {j} ≤ p(A) ≤ dk ≤ di (because tasks are sorted)

41/ 43

Optimality

Assume that there exist an optimal set O different from the set Af

output by the Moore-Hodgson algorithm

I Let j be the first task rejected by the algorithm

I We prove that there exists an optimal solution without j

I We consider the set A = {1, . . . , i− 1} at the moment when
task j is rejected from A, and i the task being added at this
moment

I A+ i is not feasible, thus O does not contain {1, . . . , i}
I Let k be a task of {1, . . . , i} which is not in O

I Since the algorithm rejects the longest task,
p(O ∪ {k} − {j}) ≤ p(O), and by the same arguments than
before, O ∪ {k} − {j} is feasible

I We can suppress j from the problem instance, without
modifying the behavior of the algorithm or the objective

We can repeat this process, until we get the set of tasks scheduled
by the algorithm.

42/ 43

Outline

Vocabulary
Basic complex scheduling problem
Processor scheduling

Graham classification

Types of results: easy and hard problems

Some scheduling problems
1||
∑
wiCi, polynomial (Smith-ratio)

P |prec|Cmax, NP-hard, Graham 2-approx
1||
∑
Ui, Moore-Hodgson algorithm

Other types of scheduling problems ?

43/ 43

Other types of scheduling problems

I Online problems
I contrarily to offline, information about future jobs is not

known in advance
I competitive ratio: ratio to the optimal offline algorithm

I Distributed scheduling
I use only local information

I Multi-criteria scheduling
I several objectives to optimize simultaneously
I and/or several users, link with game theory

I Cyclic scheduling
I infinite but regular pattern of tasks

	Vocabulary
	Basic complex scheduling problem
	Processor scheduling

	Graham classification
	Types of results: easy and hard problems
	Some scheduling problems
	1||wi Ci, polynomial (Smith-ratio)
	P|prec|Cmax, NP-hard, Graham 2-approx
	1||Ui, Moore-Hodgson algorithm

	Other types of scheduling problems ?

