Scheduling
Lecture 1: Introduction

Loris Marchal

1 My first scheduling problem

1.1 Definition of scheduling

e allocation of limited resources to activities over time

e activities: tasks in computer environment, steps of a construction project, opera-
tions in a production process, lectures at the University, etc.

e resources: processors, workers, machines, lecturers, rooms, etc.

e objective: minimize total time, energy consumption, average service time

Many variations on the model, on the resource/activity interaction and on the objec-
tive.

1.2 Small scheduling problem, to introduce the vocabulary

e n jobs (or tasks) j =1,...n,

r renewable resources i =1,...,r

e Rj: amounts of resource k available at any time

activity j processed for p; time units, using an amount r;; of resource k

e Integer numbers

Objective: find starting time S; (or o(j)) for each activity, such that

e At each time, the total resource demand is less than (or equal to) the resource
availability for each resource

e Objective: Makespan Chax = max C; is minimized, with C; = S; + p,

e S defines a schedule

e S is called feasible if all resource constraints are fulfilled

Exemples:

e Road construction, resource 1 is the number of available trucks, and resource 2 is
the number of available caterpillars (or excavators). Jobs involve a given number
of each machine.

e 2 resources with Ry =5 and Ry =7

e 4 jobs
R1:5 ”””””””””””””” R1:5 ””””””””””””
] 4 1
st s | 151 3 R
A Ry=T1----
4
4
j 1234 2] 2 .
p |4 3 5 8 1 I 1 |8
a2 L2 2 ible schedule b) An optimal schedul
ria |3 5 2 4 (a) A feasible schedule (b) An optimal schedule

NB: these figures are called Gantt charts.

1.3 Common additionnal constraints

e precedence: j cannot start before i is completed
precendence constraints are often modeled as a Directed Acyclic Graph (concept of
predecessor and successor in this graph)

e communication delays d; ; is the delay between the completion of ¢ and the starting
time of j

2 Processor scheduling & Graham notation

(Classes of scheduling problems can be specified in terms of the three-field classification
a|Bly where

e « specifies the machine environment,
e [3 specifies the job characteristics,
e 7 and describes the objective function(s).

We will illustrate this notation on all following scheduling problems.

3

First example, with new objective, 1||) w;C;, poly-
nomial (Smith-ratio)

1 machine

no constraints on tasks (length p;)

Objective: weighted sum of completion times

Intuitions:

— put high weight first
— put longer tasks last

= Order task by non-increasing Smith ratio: wy/p; > we/pe > -+ > w,/pn

Proof:

Consider a different optimal schedule S
Let ¢ and j be two consecutive tasks in this schedule such that w;/p; < w;/p,

contribution of these tasks in S:
Si = (w; +w;)(t + pi) +w;p;

contribution of these tasks if switched:
Sj = (wz + wj)(t +pj) + W;P;

we have
Si=Si _ pi _ Pj
Wi W w; w;

Thus we decrease the objective by switching these tasks.

More machines, example of P|prec|Cy,.x, NP-completeness
and Graham 2-approximation algorithm

More machines in the Graham notation:

P parallel identical

Q uniform machines
each machine has a given speed speed;, and all jobs have a size size;, the processing
time is given by size;/speed;

R unrelated machines
the processing time of job 7 on machine ¢ is given by ¢, ;, without any other con-
straints

e P: identical parallel machines
e prec: precedence constrants between tasks

o (. minimizing the maximum makespan

Rersults:
e NP-complete

e reduction to 2-partition (or 3-partition, — unary NP-complete)

4.1 Recall on NP-completeness

Polynomial problems:

e a solution to a scheduling problem is a function h:

— x is the input (parameters)

— h(z) is the solution (starting times, etc.)

e |x| defined as the length of some encoding of x
— usually, binary encoding: integer a encoded in |a|y = log, a bits
e Complexity of an algorithm computing h(z) for all x: running time

An algorithm is called polynomial, if it computes h(x) for all z it at most O(p(|x|2))
steps, where P is a polynomial

e A problem is called polynomial if it can be solved by a polynomial algorithm

Pseudo-polynomial problems
If we replace the binary encoding by an unary encoding (integer a encoded with size
lal; = O(a)): we can solve more difficult problems in time polynomial with |z|.

e An algorithm is pseudo-polynomial if it solves the problem for all with a number
of steps at most O(p(x)) steps, where P is a polynomial.

Example:
An algorithm for a scheduling problem, whose running time is O(p;) is pseudo-polynomial.
P and NP

e Decision problems

To each optimization problem, we can define a decision problem

P: class of polynomially solvable decision problems

NP: class of polynomially checkable decision problems
for each "yes”-answer, a certificate exists which can be used to check the answer in
polynomial time

e Decisions problems of scheduling problems belongs to NP

e PCNP. P = NP still open
NP-complete problems

e a decision problem Q is NP-complete if all problems in NP can be polynomially
reduced to Q

e if any single NP-complete decision problem Q could be solved in polynomial time
then we would have P = NP.

e To prove that a problem is NP-complete: reduction to a well-known NP-complete

problem

e Weakly NP-complete (or binary NP-complete): strongly depends on the binary
coding of the input. If unary coding is used, the problem might become polynomial
(pseudo-polynomial).

— 2-Partition vs 3-Partition

How to solve NP-complete problems 7
Exact methods:

e Mixed integer linear programming/Constraint Programming
e Dynamic programming

e Branch and bound methods (A*)

(usually limited to small or simple instances)

Approximate methods:

e Heuristics (no guarantee)

e Approximation algorithms

Approximation algorithms
Consider a minimization problem. On a given instance x,

f(z): value of the objective in the solution given by the algorithm
f*(z): optimal value of the objective

An algorithm is a p-approximation if for any instance z , f(x) < p x f*(z)

APX class: problems for which there exists a polynomial-time p-approximation algo-

rithm, for some p > 0

An algorithm is a PTAS (Polynomial Time Approximation Scheme) if for any instance

x and any € > 0, the algorithm computes a solution f(z) with f(z) < (1+€) x f*(z) in
time polynomial in the problem size.

An algorithm is a FPTAS (Fully Polynomial Time Approximation Scheme) if for any

instance and any € > 0, it produces a solution f(z) such that f(z) < (1+¢€) x f*(z), in
time polynomial in the problem size and in le.

bt

4.2 Graham list scheduling approximation

A list scheduling algorithm is a heuristic which never leaves a processor idle when there
is some free tasks to schedule.

e Theorem: Any list scheduling heuristic gives a schedule, whose makespan is at most
2 — 1/p times the optimal.

e Lemma: there exists a precedence path ¥ such that
Idle < (p— 1) x w(WV)
— Consider the task with maximum termination time 7T}
— Let t; be the last moment before o(7}) when a processor is not active

— Since a processor is inactive at time t;, there exists a task T5, finishing at time
t1 (since at time t;, a new task can be started on the idle processor, freed by
the completion of Ty). T is an ancestor of 77, otherwise 77 would 77 would
be free and scheduled at time ¢, (or before).

— We iterate the processor and build up a path of dependent tasks W.

— All idle times occur during the processing of the tasks on this dependency
path, and there are at most p — 1 processors, which concludes the proof of the
lemma.

e Notice that pCi.x = Idle 4+ Seq, with Seq = > w(T;)
e We also have Seq < pCoPt | thus Chax < ((p — 1) x w(¥)) + (pCL)

max’ max

e We also have w(¥) < Ct | qed.

4.3 The approximation bound is tight

Let K > 0 be some large integer. Consider the following problem:
o p— 1 tasks 71,...T, 1 of weight K(p — 1),
e a task 7T}, of weight 1,
o p tasks Tpiq,..., T, of weight K

e one task 5, of weight K(p —1).

as discribed by the following DAG:

7"
K(p—1 K(p—1 K(p—1
(K) K) (K)
K(p—1
T2(p+(f)

A list scheduling heuristic will schedule all tasks 77, ...,7}, at time 0. Then p — 1 of
the tasks of weight K will be scheduled on the processor holding 7;,, and the last one on
another processor. The last task then starts at time K (p —1) + K, and last for K(p —1)
time-units, reaching a makespan of:

Cro = Kp+ K(p—1)=K(2p—1)

In the optimal schedule, we delay the processing of tasks T4,...,7,—1 to the end: a
single processor processes T}, then all processors process one task of weight /', then all
tasks of weight K (p — 1) are processed in parallel. This gives a makespan of

CP =1+K+K(p-1)=Kp+1

max

(list K(Op—1 m—1 2 —1 1
cw” Kp+1 p plKp+1) p

5 More objectives, example of 1|| > U;, Moore-Hodgson
algorithm
Other objectives in the Graham notations:
e Using C;
— Total flow time: » 7, C}
— Weighted (total) flow time: 37 | w;C}
e With due dates d; (appears in the job characteristics):

— lateness: L; = C; —d,
— tardiness: T; = max{0,C; — d,}
— unit penalty: U; =0 if C; < dj, 1 otherwise

7

wich gives the following objectives:

— maximum lateness: Ly = max L;
total tardiness) T;
— total weighted tardiness) w,T;

— number of late activities) U;

— weighted number of late activities > w;U;

e With release dates r;: flow becomes C; — r;
(online, stretch)

One machine, minimize the number of late jobs

job|1 2 3 4 5
Example: d 16 7 8 9 11

Tasks are sorted by non-decreasing d; : d; < --- <d,
o A:=1)
e Fori=1...n

— If p(A) + p; < d;, then A := AU {i}
— Otherwise,

« Let j be the longest task in AU {i}
x A:=AU{i} — {j}

Optimal solution : A = {2,3,5}

Proof. e Feasibility:
We first prove that the algorithm produces a feasible schedule:

— By induction: if no task is rejected, ok
— Assume that A is feasible, prove that AU {i} — {j} is feasible too

x all tasks in A before j: no change

x all tasks in A after j: shorter completion

x task i: let k be the last task in A: p(A) < di
since task j is the longest: p; < p;, thus p(AU{i} —{j}) < p(A) < di, < d,
(because tasks are sorted)
That is, the new task i terminates earlier than k before ;7 was rejected.
Since d; > dj, this is enough.

e Optimality:

Assume that there exist an optimal set O different from the set A; output by the
Moore-Hodgson algorithm

— Let j be the first task rejected by the algorithm
— We prove that there exists an optimal solution without j

— We consider the set A = {1,...,7— 1} at the moment when task j is rejected
from A, and i the task being added at this moment

— A+ is not feasible, thus O does not contain {1,...,i}
— Let k be a task of {1,...,7} which is not in O

— Since the algorithm rejects the longest task, p(O U {k} — {j}) < p(O), and by
the same arguments than before, O U {k} — {j} is feasible

— We can suppress j from the problem instance, without modifying the behavior
of the algorithm or the objective

We can repeat this process, until we get the set of tasks scheduled by the algorithm.
]

6 Shop and Job-Shop problems, and other variants

6.1 Shop scheduling

Jobs consist in several operations, to be processed on different resources.

General shop scheduling problem:

e jobs Jy,...J,
e processors Py, ..., P,
e J; consists in n; operation Oy, ..., 0, ;

e two operations of the same job cannot be processed at the same time
® a processor can process one operation at a time
e operations O; ; has processing time p; ; and makes use of processor p; ;

e arbitrary precedence pattern

6.2 Job-Shop scheduling problem

e chain of precedence constraints:

O = Oz = -+ = Ony

flow-shop scheduling problem:

e special job-shop scheduling problem

e n; = m for all j, and p,; ; = P, for all 7, 5:
operation O; ; must be processed by P

open-shop scheduling problem:

e like a flow-shop, but no precedence constraints
Graham notations:

e J job-shop

e I flow-shop

e O open-shop

6.3 Other variants
Other job characteristics in Graham notation:
e p; =1orp; =porp; €1,2: restricted processing times
e prec : arbitrary precedence constraints
e intree: (outtree) intree (or outtree) precedences
e chains: chain precedences
e series-parallel: a series- parallel precedence graph

Other types of scheduling problems, that we will discover in the next lectures:

Online problems

— contrarily to offline, information about future jobs is not known in advance

— competitive ratio: ratio to the optimal offline algorithm

Distributed scheduling

— use only local information

Multi-criteria scheduling

— several objectives to optimize simultaneously

— and/or several users, link with game theory

Cyclic scheduling

— infinite but regular pattern of tasks

10

	1 My first scheduling problem
	1.1 Definition of scheduling
	1.2 Small scheduling problem, to introduce the vocabulary
	1.3 Common additionnal constraints

	2 Processor scheduling & Graham notation
	3 First example, with new objective, 1||wi Ci, polynomial (Smith-ratio)
	4 More machines, example of P|prec|Cmax, NP-completeness and Graham 2-approximation algorithm
	4.1 Recall on NP-completeness
	4.2 Graham list scheduling approximation
	4.3 The approximation bound is tight

	5 More objectives, example of 1||Ui, Moore-Hodgson algorithm
	6 Shop and Job-Shop problems, and other variants
	6.1 Shop scheduling
	6.2 Job-Shop scheduling problem
	6.3 Other variants

