1614

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 12, DECEMBER 2008

Replica Placement and Access Policies
In Tree Networks

Anne Benoit, Member, IEEE, Veronika Rehn-Sonigo, Student Member, IEEE, and
Yves Robert, Fellow, IEEE

Abstract—In this paper, we discuss and compare several policies to place replicas in tree networks, subject to server capacity and
Quality-of-Service (QoS) constraints. The client requests are known beforehand, while the number and location of the servers are to be
determined. The standard approach in the literature is to enforce that all requests of a client be served by the closest server in the tree.
We introduce and study two new policies. In the first policy, all requests from a given client are still processed by the same server,
but this server can be located anywhere in the path from the client to the root. In the second policy, the requests of a given client can be
processed by multiple servers. One major contribution of this paper is to assess the impact of these new policies on the total replication
cost. Another important goal is to assess the impact of server heterogeneity, both from a theoretical and a practical perspective.

In this paper, we establish several new complexity results and provide several efficient polynomial heuristics for NP-complete
instances of the problem. These heuristics are compared one to the other, and their absolute performance is assessed by comparison

with the optimal solution provided by an integer linear program.

Index Terms—Replica placement, tree networks, access policy, scheduling, complexity results, heuristics, linear program,

heterogeneous clusters.

1 INTRODUCTION

IN this paper, we consider the general problem of replica
placement in tree networks. Informally, there are clients
issuing requests to be satisfied by servers. The clients are
known (both their position in the tree and their number of
requests), while the number and location of the servers are
to be determined. A client is a leaf node of the tree, and its
requests can be served by one or several internal nodes.
Initially, there is no replica; when a node is equipped with a
replica, it can process a number of requests, up to its
capacity limit. Nodes equipped with a replica, also called
servers, can only serve clients located in their subtree (so
that the root, if equipped with a replica, can serve any
client); this restriction is usually adopted to enforce the
hierarchical nature of the target application platforms,
where a node has a knowledge only of its parent and
children in the tree.

The rule of the game is to assign replicas to nodes so
that some optimization function is minimized. Typically,
this optimization function is the total utilization cost of
the servers. If all the nodes are identical, this reduces to
minimizing the number of replicas. If the nodes are
heterogeneous, it is natural to assign a cost proportional
to their capacity (so that one replica on a node capable
of handling 200 requests per time unit is equivalent to
two replicas on nodes of capacity 100 each).

o The authors are with the Laboratoire de I'Informatique du Parallellsme
(UMR 5668, ENS Lyon—CNRS—INRIA—UCBL), Ecole Normale
Supérieure Lyon, University of Lyon, 69364 Lyon, France.

E-mail: { Anne.Benoit, Veronika.Sonigo, Yves.Robert}@ens-lyon.fr.

Manuscript received 13 July 2007; revised 22 Nov. 2007; accepted 21 Jan. 2008;
published online 1 Feb. 2008.

Recommended for acceptance by R. Eigenmann.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2007-07-0233.
Digital Object Identifier no. 10.1109/TPDS.2008.25.

1045-9219/08/$25.00 © 2008 IEEE

The core of the paper is devoted to the study of the
previous optimization problem, called REPLICA PLACEMENT
in the following. Additional constraints are introduced, in
order to guarantee some Quality of Service (QoS): requests
mustbe served in limited time, thereby prohibiting remote or
hard-to-reach replica locations. We focus on optimizing the
total utilization cost (or replica number in the homogeneous
case). There is a bunch of possible extensions: dealing with
several object types rather than one, including communica-
tion time into the objective function, enforcing additional
bandwidth constraints on each link, taking into account an
update cost of the replicas, and so on. For the sake of clarity,
we devote a special section (Section 8) to formulate these
extensions and to describe which situations our results and
algorithms can still apply to.

We point out that the distribution tree (clients and
nodes) is fixed in our approach. This key assumption is
quite natural for a broad spectrum of applications such as
electronic, ISP, or VOD service delivery [1], [2], [3], [4]. The
root server has the original copy of the database but cannot
serve all clients directly, so a distribution tree is deployed to
provide a hierarchical and distributed access to replicas of
the original data. On the contrary, in other more decen-
tralized applications (e.g., allocating Web mirrors in
distributed networks), a two-step approach is used: first,
determine a “good” distribution tree in an arbitrary
interconnection graph and then determine a “good”
placement of replicas among the tree nodes. Both steps
are interdependent, and the problem is much more complex
due to the combinatorial solution space (the number of
candidate distribution trees may well be exponential).

Many authors deal with the REPLICA PLACEMENT
optimization problem, and we survey related work in
Section 9. The objective of this paper is threefold:
1) introducing two new access policies and comparing
them with the standard approach, 2) assessing the impact

Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

BENOIT ET AL.: REPLICA PLACEMENT AND ACCESS POLICIES IN TREE NETWORKS

of server heterogeneity on the problem, and 3) assessing
the impact of QoS constraints.

In most, if not all, papers from the literature, all requests
of a client are served by the closest replica, i.e., the first
replica found in the unique path from the client to the root
in the distribution tree. This Closest policy is simple and
natural but may be unduly restrictive, leading to a waste of
resources. We introduce and study two different ap-
proaches: in the first one, we keep the restriction that all
requests from a given client are processed by the same
replica, but we allow client requests to “traverse” servers
so as to be processed by other replicas located higher in the
path (closer to the root). We call this approach the Upward
policy. The trade-off to explore is the following: the Closest
policy assigns replicas at a proximity of the clients but may
need to allocate too many of them if some local subtree
issues a great number of requests. The Upward policy will
ensure better resource usage, load-balancing the process of
requests on a larger scale; the possible drawback is that
requests will be served by remote servers, likely to take
longer time to process them. Taking QoS constraints into
account would typically be more important for the Upward
policy. In the second approach, we further relax access
constraints and grant the possibility for a client to be
assigned several replicas. With this Multiple policy, the
processing of a given client’s requests will be split among
several servers located in the tree path from the client to
the root. Obviously, this policy is the most flexible and
likely to achieve the best resource usage. The only
drawback is the (modest) additional complexity induced
by the fact that requests must now be tagged with the
replica server ID in addition to the client ID. As already
stated, one major objective of this paper is to compare
these three access policies, Closest, Upward, and Multiple.

The second major contribution of the paper is to assess
the impact of server heterogeneity and QoS constraints,
both from a theoretical and a practical perspective.
Recently, several variants of the REPLICA PLACEMENT
optimization problem with the Closest policy have been
shown to have polynomial complexity [2], [3], [4]. In this
paper, we establish several new complexity results. Those
for the homogeneous case are surprising: for the simplest
instance without QoS, the Multiple policy is polynomial (as
Closest), while Upward is NP-hard. With the addition of QoS
constraints, the Multiple policy becomes NP-complete for
the homogeneous case, and only Closest remains polyno-
mial. The three policies turn out to be NP-complete for
heterogeneous nodes, even without QoS, which provides
yet another example of the additional difficulties induced
by resource heterogeneity.

On the more practical side, we provide an optimal
algorithm for the Multiple problem with homogeneous
nodes and several heuristics for all three policies in the
heterogeneous case. We compare these heuristics through
simulations conducted for problem instances without or
with QoS constraints. Another contribution is that we are
able to assess the absolute performance of the heuristics, not
just comparing one to the other, owing to an optimal
solution for Multiple provided by a new formulation of the
REPLICA PLACEMENT problem in terms of an integer linear
program. The solution of this program allows us to build an
optimal solution for reasonably large problem instances.

1615

The rest of the paper is organized as follows: Section 2
is devoted to a detailed presentation of the target
optimization problems. In Section 3, we introduce the
three access policies, and we give a few motivating
examples. Next, in Section 4, we proceed to the complexity
results for the REPLICA PLACEMENT problem. Section 5
deals with the formulation of the REPLICA PLACEMENT
problem in terms of an integer linear program. In Section 6,
we introduce several polynomial heuristics to solve the
REPLICA PLACEMENT problem with the different access
policies. These heuristics are compared through simula-
tions, whose results are analyzed in Section 7. Section 8
discusses various extensions to the REPLICA PLACEMENT
problem, while Section 9 is devoted to an overview of
related work. Finally, we state some concluding remarks
in Section 10.

2 FRAMEWORK

This section is devoted to a precise statement of the
REPLICA PLACEMENT optimization problem. We start with
some definitions and notations. Next, we outline different
problem instances that we study in this paper.

2.1 Definitions and Notations

We consider a distribution tree 7 whose nodes are
partitioned into a set of clients C and a set of nodes N. The
set of tree edges is denoted as £. The clients are leaf nodes of
the tree, while N is the set of internal nodes. It would be
easy to allow client-server nodes, which play both the rule of
a client and of an internal node (possibly a server) by
dividing such a node into two distinct nodes in the tree,
connected by an edge with zero communication cost.

A client i € C is making requests to database objects. For
the sake of clarity, we restrict the presentation to a single
object type, hence, a single database. We deal with several
object types in Section 8.

A node j € N'may or may not have been provided with a
replica of the database. Nodes equipped with a replica (i.e.,
servers) can process requests from clients in their subtree. In
other words, there is a unique path from a client ¢ to the root
of the tree, and each node in this path is eligible to process
some or all the requests issued by ¢ when provided with a
replica.

Let r be the root of the tree. If j € AV, then children(j)
is the set of children of node j. If k# r is any node in
the tree (leaf or internal), parent(k) is its parent in the
tree. If [: k — k' = parent(k) is any link in the tree, then
succ(l) is the link K — parent(k’) (when it exists). Let
Ancestors(k) denote the set of ancestors of node k, i.e.,
the nodes in the unique path that leads from k up to the
root r (k excluded). If ¥ € Ancestors(k), then path[k — ¥/
denotes the set of links in the path from k to k; also,
subtree(k) is the subtree rooted in k, including k. We
introduce more notations to describe our system in the
following;:

e Clients ¢ € C. Each client i (leaf of the tree) is
sending r; requests per time unit. For such requests,
the required QoS (typically, a response time) is
denoted q;, and we need to ensure that this QoS will
be satisfied for each client.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

1616

e Nodes j € N. Each node j (internal node of the tree)
has a processing capacity W;, which is the total
number of requests that it can process per time unit
when it has a replica. A cost is also associated to each
node, sc;, which represents the price to pay to place a
replica at this node. With a single object type, it is
quite natural to assume that sc; is proportional to
W;: the more powerful a server, the more costly.
However, with several objects we may use non-
related values of capacity and cost.

e Communication links [€ £. The edges of the tree
represent the communication links between nodes
(leaf and internal). We assign a communication time
comny on link /, which is the time required to send a
request through the link.

2.2 Problem Instances

For each client i € C, let Servers(i) C N be the set of servers
responsible for processing at least one of its requests. We do
not specify here that access policy is enforced (e.g., one or
multiple servers), we defer this to Section 3. Instead, we let
r;s be the number of requests from client i processed by
server s (of course, Y ris = ;). In the following, Ris
the set of replicas:

seServers(i)
R={seN |Jiel, seServers(i)}.

2.2.1 Constraints

e Server capacity. The constraint that no server
capacity can be exceeded is present in all variants
of the problem:

Vs € R,

1€C|s€Servers(i)

Tis S Ws .

e QoS. Some problem instances enforce a quality of
service: the time to transfer a request from a client to
a replica server is bounded by a quantity q;. This
translates into

Vi € C,Vs € Servers(i), Z commy < q;.

lepathli—s]
Note that it would be easy to extend the QoS
constraint so as to take the computation cost of a
request in addition to its communication cost. This
former cost is directly related to the computational
speed of the server and the amount of computation
(in flops) required for each request.

2.2.2 Objective Function
The objective function for the REPLICA PLACEMENT
problem is defined as

Min Z SCy.
SER

As already pointed out, it is frequently assumed that the
cost of a server is proportional to its capacity, so, in most
problem instances, we let sc, = W;.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 12, DECEMBER 2008

2.2.3 Simplified Problems

We define a few simplified problem instances in the
following:

e QoS=distance. We can simplify the expression of the
communication time in the QoS constraint and only
consider the distance (in number of hops) between a
client and its server(s). The QoS constraint is then

Vi € C,Vs € Servers(i), d(i,s) < q;,

where the distance d(i,s) = |path[i — s]| is the
number of communication links between ¢ and s.

e No QoS. We may further simplify the problem by
completely suppressing the QoS constraints. In
this case, the servers can be anywhere in the tree,
their location is indifferent to the client. The
problem reduces to finding a valid solution of
minimal cost, where “valid” means that no server
capacity is exceeded. We name REPLICA COST this
fundamental problem.

e Replica counting. We can further simplify the
previous REPLICA COST problem in the homoge-
neous case: with identical servers, the REPLICA COST
problem amounts to minimize the number of
replicas needed to solve the problem. In this case,
the storage cost sc; is set to 1 for each node. We call
this problem REPLICA COUNTING.

3 AccESS POLICIES

In this section, we review the usual policies enforcing
which replica is accessed by a given client. Consider that
each client i is making 7; requests per time unit. There
are two scenarios for the number of servers assigned to
each client:

e Single server. Each client ¢ is assigned a single
server server (i), that is responsible for processing all
its requests.

e Multiple servers. A client i may be assigned several
servers in a set Servers(i). Each server s € Servers(i)
will handle a fraction r; ; of the requests.

To the best of our knowledge, the single server policy has
been enforced in all previous approaches. One objective of
this paper is to assess the impact of this restriction on the
performance of data replication algorithms. The single
server policy may prove a useful simplification but may
come at the price of a nonoptimal resource usage.

In the literature, the single server strategy is further
constrained to the Closest policy. Here, the server of client ¢
is constrained to be the first server found on the path that
goes from ¢ upwards to the root of the tree. In particular,
consider a client ¢ and its server server(i). Then, any other
client node ¢’ residing in the subtree rooted in server(i) will
be assigned a server in that subtree. This forbids requests
from ¢’ to “traverse” server(i) and be served higher (closer to
the root) in the tree.

We relax this constraint in the Upward policy, which is
the general single server policy. Notice that a solution to
Closest always is a solution to Upward, thus Upward is
always better than Closest in terms of the objective function.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

BENOIT ET AL.: REPLICA PLACEMENT AND ACCESS POLICIES IN TREE NETWORKS

1 1 1 2
(a) (b) ()

Fig. 1. Access policies.

Similarly, the Multiple policy is always better than Upward,
because it is not constrained by the single server restriction.

The following sections illustrate the three policies.
Section 3.1 provides simple examples, where there is a
valid solution for a given policy but none for a more
constrained one. Section 3.2 shows that Upward can be
arbitrarily better than Closest, while Section 3.3 shows that
Multiple can be arbitrarily better than Upward. We conclude
with an example showing that the cost of an optimal
solution of the REPLICA COUNTING problem (for any
policy) can be arbitrarily higher than the obvious lower
bound {

3.1

icc i
w

, where W is the server capacity.

Impact of the Access Policy on the Existence of
a Solution

We consider here a very simple instance of the REPLICA
COUNTING problem. In this example there are two nodes,
51 being the unique child of s,, the tree root (see Fig. 1). Each
node can process W = 1 request.

e If 51 has one client child making one request, the
problem has a solution with all three policies,
placing a replica on s; or on s; indifferently (Fig. 1a).

e If s; has two client children, each making one
request, the problem has no more solution with
Closest. However, we have a solution with both
Upward and Multiple if we place replicas on both
nodes. Each server will process the request of one of
the clients (Fig. 1b).

e Finally, if s; has only one client child making two
requests, only Multiple has a solution since we need
to process one request on s; and the other on sy, thus
requesting multiple servers (Fig. 1c).

This example demonstrates the usefulness of the new
policies. The Upward policy allows to find solutions when
the classical Closest policy does not. The same holds true for
Multiple versus Upward. In the following, we compare the
cost of solutions obtained with different strategies.

3.2 Upward versus Closest

In the following example, we construct an instance of
REPLICA COUNTING, where the Upward policy is arbi-
trarily better than the Closest policy. We consider the tree
network in Fig. 2, where there are 2n + 2 internal nodes,
each with W; =W =mn, and 2n+1 clients, each with
Ti=T= 1.

With the Upward policy, we place three replicas in sy,,
Son+1, and sg,19. All requests can be satisfied with these

1617

Son+2 W=n

Fig. 2. Upward versus Closest.

three replicas. When considering the Closest policy, first, we
need to place a replica in s9,42 to cover its client. Then:

e Either we place a replica on sg,.1. In this case, this
replica is handling n requests, but there remain n
other requests from the 2n clients in its subtree that
cannot be processed by sy,,2. Thus, we need to add
n replicas between s; ... s9;.

e Otherwise, n — 1 requests of the 2n clients in the
subtree of sy, can be processed by ss,+2 in addition
to its own client. We need to add n + 1 extra replicas
among Si, 52, ..., S2n.

In both cases, we are placing n + 2 replicas, instead of the

three replicas needed with the Upward policy. This proves

that Upward can be arbitrary better than Closest on some

REPLICA COUNTING instances.

3.3 Multiple versus Upward

In this section, we build an instance of the REPLICA
COUNTING problem, where Multiple is twice better than
Upward. We do not know whether there exist instances of
REPLICA COUNTING where the performance ratio of
Multiple versus Upward is higher than 2 (and we conjecture
that this is not the case). However, we also build an
instance of the REPLICA COST problem (with heterogeneous
nodes), where Multiple is arbitrarily better than Upward.

We start with the homogeneous case. Consider the
instance of REPLICA COUNTING represented in Fig. 3,
with 3n + 1 nodes of capacity W; =W = 2n. The root r
has n + 1 children, n nodes labeled s; to s, and a client
with r; = n. Each node s; has two children nodes, labeled
v; and w; for 1 < j < n. Each node v; has a unique child,
a client with r; = n requests; each node w; has a unique
child, a client with r; =n + 1 requests.

n n+1 n

n—+1 n n-+1 n

Fig. 3. Multiple versus Upward, homogeneous platforms.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

1618
S1, VVI =n
SQ,VVQ =n
s3, Wy = Kn
n—1 n+1

Fig. 4. Multiple versus Upward, heterogeneous platforms.

The Multiple policy assigns n + 1 replicas, one to the
root r and one to each node s;. The replica in s; can
process all the 2n + 1 requests in its subtree except one,
which is processed by the root.

For the Upward policy, we need to assign one replica to r
to cover its client. This replica can process n other requests,
for instance, those from the client child of v;. We need to
place at least a replica in s; or in wy, and 2(n — 1) replicas in
v; and w; for 2 < j < n. This leads to a total of 2n replicas;
hence, a performance factor WZ—J:’I whose limit is to 2 when n
tends to infinity.

We now proceed to the heterogeneous case. Consider the
instance of REPLICA COST represented in Fig. 4, with
three nodes s, s3, and s3, and two clients. The capacity of s;
and sy is W; = Wy = n while that of s3 is W3 = Kn, where
K is arbitrarily large. Recall that in the REPLICA COST
problem, we let sc; = W; for each node. Multiple assigns
two replicas, in s; and s, and hence has cost 2n. The Upward
policy assigns a replica to s; to cover its child, and then, it
cannot use sy to process the requests of the child in its
subtree. It must place a replica in s3, hence, a final cost
n + Kn = (K + 1)n arbitrarily higher than Multiple.

3.4 Lower Bound for the REPLICA COUNTING Problem
Obviously, the cost of an optimal solution of the REPLICA
COUNTING problem (for any policy) cannot be lower than
the obvious lower bound:

=]

where W is the server capacity. Indeed, this corresponds to
a solution where the total request load is shared as evenly
as possible among the replicas.

The following instance of REPLICA COUNTING shows that
the optimal cost can be arbitrarily higher than this lower
bound. Consider Fig. 5, with n + 1nodes of capacity W; = W.
The root r has n + 1 children, n nodes labeled s; to s, and a
client with r; = W. Each node s; has a unique child, a client
with r; = W /n (assume without loss of generality that W is
divisible by n). The lower bound is [%] =2 =2
However, each of the three policies Closest, Upward, and

Multiple will assign a replica to the root to cover its client and

will then need n extra replicas, one per client of 5;, 1 < j < n.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 12, DECEMBER 2008

W/n

W/n w

Fig. 5. The lower bound cannot be approximated for REPLICA
COUNTING.

The total cost is thus n + 1 replicas, arbitrarily higher than the

lower bound.

All the examples in Sections 3.1 to 3.4 give an insight of the
combinatorial nature of the REPLICA PLACEMENT optimiza-
tion problem, even in its simplest variants REPLICA COST and
REPLICA COUNTING. The following section corroborates this
insight: most problems are shown NP-hard, even though
some variants have polynomial complexity.

4 CoMPLEXITY RESULTS

One major goal of this paper is to assess the impact of the
access policy on the problem with homogeneous versus
heterogeneous servers and without QoS versus with QoS. We
restrict to the simplest problems, namely, the REPLICA COST
and REPLICA COUNTING problems introduced in Sec-
tion 2.2.3, and with or without QoS constraints, limited to
the QoS=distance problem. We consider a tree 7 =CUN
with or without QoS constraints. Each client ¢ € C has
r; requests; each node j € AV has processing capacity W;
and storage costsc; = W;. This problem comes in two flavors,
either with homogeneous nodes (W; =W, for all je N;
REPLICA COUNTING) or with heterogeneous nodes (servers
with different capacities/costs; REPLICA COST).

In the single server version of the problem, we need to
find a server server(i) for each client i € C. R is the set of
replica, i.e., the servers chosen among the nodes in A. The
constraint is that server capacities cannot be exceeded: this
translates into

T S Wj
ieCserver(i)=j

forall j € NV.

The objective is to find a valid solution of minimal
storage cost), p W;. As outlined in Section 3, there are
two variants of the single server version of the problem,
namely, the Closest and the Upward strategies.

In the Multiple policy with multiple servers per client,
for any client ¢ € C and any node j € NV, r;; is the number
of requests from ¢ that are processed by j (r;; =0 if j¢ R,
and ZjeN rij=1; for all i € C). The capacity constraint
now writes

Zr”' <W; foralljeR,

ieC

while the objective function is the same as for the single
server version.

For each of those problems, we can add the QoS=distance
constraint as specified in Section 2.2.3.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

BENOIT ET AL.: REPLICA PLACEMENT AND ACCESS POLICIES IN TREE NETWORKS

TABLE 1
Complexity Results

REPLICA COUNTING

REPLICA COST

Homogeneous Heterogeneous

No QoS With QoS No/With QoS

Closest polynomial [2], [4] | polynomial [4] NP-complete
Upward NP-complete NP-complete NP-complete
Multiple polynomial NP-complete NP-complete

The decision problems associated with the previous
optimization problems are easy to formulate: given a bound
on the number of servers (homogeneous version) or on the
total storage cost (heterogeneous version), is there a valid
solution that meets the bound?

Table 1 captures the complexity results. These com-
plexity results are all new, except for the Closest/
Homogeneous combination.

The NP-completeness of the Upward /Homogeneous case
comes as a surprise, since all previously known instances
were shown to be polynomial using dynamic programming
algorithms. In particular, the Closest/Homogeneous variant
remains polynomial when adding communication costs [2] or
QoS constraints [4]. We provide an elegant algorithm to show
the polynomial complexity of the Multiple/Homogeneous
problem. Another important contribution of this paper is the
NP-completeness of the Multiple policy with QoS constraints
for the homogeneous case, which gives a clear insight on the
additional complexity introduced by QoS constraints. In
addition, all problems become NP-complete when dealing
with resource heterogeneity (REPLICA COST problem).

Note that previous NP-completeness results involved
general graphs rather than trees, and the combinatorial
nature of the problem came from the difficulty to extract a
good replica tree out of an arbitrary communication graph.
Here, the tree is fixed, but the problem remains combina-
torial due to QoS or resource heterogeneity.

4.1 Multiple/Homogeneous/No-QoS

Theorem 1. The instance of the REPLICA COUNTING problem
without QoS and with the Multiple strategy can be solved in
polynomial time.

Proof. An algorithm is provided to solve the problem,
together with the proof of its optimality (which is
quite technical). Please refer to [5] or to the supple-
mental material on the Web, where we also outline a
detailed example to illustrate the step-by-step execu-
tion of the algorithm. O

4.2 NP-Completeness Results

Theorem 2. The instance of the REPLICA COUNTING problem
with the Upward strategy is NP-complete in the strong sense.

Theorem 3. The instance of the REPLICA COUNTING problem
with QoS constraints and the Multiple strategy is NP-complete.
This last result is interesting since the same problem with

no QoS was polynomial. Less surprisingly, the following

theorem assesses the complexity of the problem with
heterogeneous resources.

Theorem 4. All three instances of the REPLICA COST problem
with heterogeneous nodes are NP-complete.

Detailed proofs of these theorems are available in [5] and
[6] and in the supplemental material on the Web.

1619

5 LINEAR PROGRAMMING FORMULATION

In this section, we express the REPLICA PLACEMENT
optimization problem in terms of an integer linear program.
We deal with the most general instance of the problem on a
heterogeneous tree, including QoS constraints, and bounds
on server capacities. We derive a formulation for each of the
three server access policies, namely, Closest, Upward, and
Multiple. This is an important extension to a previous
formulation due to [7].

5.1 Single Server
We start with single server strategies, namely, the Upward
and Closest access policies. We need to define a few
variables:

Server assignment

e 1, is a Boolean variable equal to 1 if j is a server (for
one or several clients).

e y;;is a Boolean variable equal to 1 if j = server(s).

e If j¢ Ancestors(i), we directly set y;; = 0.

Link assignment

e 2;;isaBoolean variable equal to 1 if link [€ path[i — r]

is used when client i accesses its server server(i).

e If [¢ path[i —]|, we directly set z;; = 0.

The objective function is the total storage cost, namely,
> jen scjzj. We list below the constraints common to the
Closest and Upward policies. First, there are constraints for
server and link usage:

e Every client is assigned a server:

Z 3

Jj€Ancestors(i)

Vi e,

o All requests from i € C use the link to its parent:
Ziji—parent(i) — L

e Let :e€C and consider any link [:j—j =
parent(j) € path[i — r]. If j =server(:), then link
succ(l) is not used by i (if it exists). Otherwise,
Ziguee(l) = ZiJ- Thus, VieC, Vi:j— j =parent(j) €
path[i - 7"}, Zisucc(l) = il —Yig -

Next, there are constraints expressing that the processing

capacity of any server cannot be exceeded:

Vj e N, Z’I‘iyi,]‘ < le']‘.
ieC
Note that this ensures that if j is the server of i, there is

indeed a replica located in node j.
Finally, there remains to express the QoS constraints:

Vi € C,Vj € Ancests(i), dist(Z, j)yi; < q;,

where dist (i, j) = > _jc)i, commy. As stated previously,
we could take the computational time of a request into
account by writing (dist(4, j) + comp,)y; ; < q;, where comp;,
would be the time to process a request on server j.

Altogether, we have fully characterized the linear
program for the Upward policy. We need additional
constraints for the Closest policy, which is a particular case
of the Upward policy (hence, all constraints and equations
remain valid).

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

1620

We need to express that if node j is the server of client s,
then no ancestor of j can be the server of a client in the
subtree rooted at j. Indeed, a client in this subtree would
need to be served by j and not by one of its ancestors,
according to the Closest policy. A direct way to write this
constraint is Vi € C, Vj € Ancestors(i), Vi’ € C Nsubtree(j),
Vj € Ancestors(j), and y;; <1—yy ;. Indeed, if y;; =1,
meaning that j = server(i), then any client ¢’ in the subtree
rooted in j must have its server in that subtree, not closer to

the root than j. Hence, y; y = 0 for any ancestor j' of j.
There are O(s') such constraints to write, where s =

IC] + |NV] is the problem size. We can reduce this number
down to O(s®) by writing Vi € C, Vj € Ancestors(i) \ {r},
Vi’ € CNsubtree(s), ¥i; < 1 — 2z jparent(j)-

5.2 Multiple Servers
We now proceed to the Multiple policy. We define the

following variables:
Server assignment.

e z;is a Boolean variable equal to 1 if j is a server (for
one or several clients).

e y;; is an integer variable equal to the number of
requests from client ¢ processed by node j.

o If j¢ Ancestors(i), we directly set y; ; = 0.

Link assignment.

® z; is an integer variable equal to the number of
requests flowing through link I € path[i — r] when
client 7 accesses any of its servers in Servers(i).

e If [¢ path[i —]|, we directly set z;; = 0.

The objective function is unchanged, as the total storage
cost still writes >\ sc;z;. However, the constraints must
be modified. First, those for server and link usage, we have
the following;:

e Everyrequestis assigned a server:

2

jeAncestors(i)

Vi € C, Yij = Tq.

o All requests from i € C use the link to its parent:
Zii—parent(i) = Ti-

e Let i€C and consider any link [:j—j =
parent(j) € path[i — r]. Some of the requests from
i that flow through ! will be processed by node 7,
and the remaining ones will flow upwards through
link succ(l): Vi € C, Vi:j— 7 =parent(j) € path[i — 1],
Zisucc(l) = il —Yig -

The other constraints on server capacities and QoS are

slightly modified:

o Servers. VjeN, > . ovi; < Wjz;. Note that this
ensures that if j is the server for one or more
requests from ¢, there is indeed a replica located in
node j.

e QoS.VieC,Vje Ancestors(i), dist(7, 7)yi; < i -

Altogether, we have fully characterized the linear

program for the Multiple policy.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 12, DECEMBER 2008

5.3 An ILP-Based Lower Bound

The previous linear program contains Boolean or integer
variables, because it does not make sense to assign half a
request or to place one third of a replica on a node. Thus, it
must be solved in integer values if we wish to obtain an
exact solution to an instance of the problem, and there is no
efficient algorithm to solve integer linear programs (unless
P = NP). For each access policy, there is a large number of
variables, and the problem cannot be solved for platforms
of size s > 50, where s = |[N| 4 |C|. Thus, we cannot use this
approach for large-scale problems.

However, this formulation is extremely useful as it leads
to an absolute lower bound: we can solve the integer linear
program over the rationals. In this case, all constraints are
relaxed, and we assume that all variables can take rational
values. The optimal solution of the relaxed program can be
obtained in polynomial time (in theory, using the ellipsoid
method [8] and, in practice, using standard software
packages [9], [10]), and the value of its objective function
provides an absolute lower bound on the cost of any valid
(integer) solution. For all practical values of the problem
size, the rational linear program returns a solution in a few
minutes. We tested up to several thousands of nodes and
clients, and we always found a solution within 10 seconds.
Of course the relaxation makes the most sense for the
Multiple policy, because several fractions of servers are
assigned by the rational program.

However, we can obtain a more precise lower bound for
trees with up to s =400 nodes and clients by using a
rational solution of the Multiple instance of the linear
program with fewer integer variables. We treat the y; ; and
z;; as rational variables and only require the z; to be integer
variables. These variables are set to 1 if and only if there is a
replica on the corresponding node. Thus, forbidding to set
0 < z; < 1 allows us to get a realistic value of the cost of a
solution of the problem. For instance, a server might be
used only at 50 percent of its capacity, thus setting z = 0.5
would be enough to ensure that all requests are processed;
but, in this case, the cost of placing the replica at this node is
halved, which is incorrect: while we can place a replica or
not, it is impossible to place half of a replica.

In practice, this lower bound provides a drastic
improvement over the unreachable lower bound provided
by the fully rational linear program. The good news is that
we can compute the refined lower bound for problem
sizes up to s = 400, using GLPK [10]. In the next section,
we show that this refined bound is an achievable bound,
and we provide an exact solution to the Multiple instance
of the problem, based on the solution of this mixed integer
linear program.

5.4 An Exact MIP-Based Solution for Multiple

Theorem 5. The solution of the linear program detailed in
Section 5.2, when solved with all variables being rational
except the x;, is an achievable bound for the Multiple
problem, and we can build an exact solution in polynomial
time, based on the LP solution.

Detailed proof of this theorem is available in [6] and in
the supplemental material on the Web.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

BENOIT ET AL.: REPLICA PLACEMENT AND ACCESS POLICIES IN TREE NETWORKS

6 HEURISTICS FOR THE REPLICA COST PROBLEM

In this section, several heuristics for the Closest, Upward, and
Multiple policies are presented. As previously stated, our
main objective is to provide an experimental assessment of
the relative performance of these three access policies.

In a first step, we target heterogeneous trees without QoS
constraints, thus considering the REPLICA COST problem.
Then, we analyze the impact of QoS constraints on the
replica costs achieved by each policy. In this case, we
consider the simplified problem QoS=distance in which the
quality of service of a client is the number of hops that
requests from this client are allowed to traverse until they
reach their server(s).

All the heuristics described below have a worst case
quadratic complexity O(s?), where s=|C|+ |N]| is the
problem size. Indeed, most of the heuristics proceed by
traversing the tree, and the number of traversals is
bounded by the number of internal nodes (and is much
lower in practice).

We assume that each node k € N'UC\ {root} knows its
parent(k). Additionally, an internal node j € N knows its
children(j) and the set clients(j) of the clients in its subtree
subtree(j). At any step of the heuristics, we denote by inreq;
the number of requests in subtree(j), reaching j with the
current replicas already placed (initially, with no replica,
inreq; =) ; cclients(j) T)- We use a Boolean variable treated; to
mark if a node j has been treated during a tree traversal.
The set of replicas is initialized by replica = §).

The pseudocode of all heuristics is available in [5] and in
the supplemental material on the Web. Moreover, the code
of all heuristics can be found on the Web [11].

6.1 Without QoS Constraints

The first set of heuristics is not taking QoS constraints into
account. In the following, inreq; denotes the amount of
requests that reach an inner node j.

Closest Top Down All (CTDA). The basic idea is to
perform a breadth-first traversal of the tree. Every time a
node is able to process the requests of all the clients in its
subtree, the node is chosen as a server, and we do not
further explore that subtree. The procedure is called until
no more servers are added in a tree traversal.

Closest Top Down Largest First (CTDLF). The tree is
traversed in breadth-first manner as in CTDA. However, we
treat the subtree, which contains the most requests first
when considering the children of the tree. In addition,
instead of adding all possible servers in a single step, the
tree traversal is stopped as soon as a server that can process
all the requests in its subtree has been found, and it starts
from the root again. Thus, CTDLF is called exactly | R| times,
where R is the final set of replica.

Closest Bottom Up (CBU). The last heuristic for the
Closest policy performs a bottom-up traversal of the tree. A
node is chosen as a server if it can process all the requests of
the clients in its subtree. The procedure is initially called
with the root of the tree; while we do not reach the bottom
of the tree, we go down. Once arrived at the bottom, i.e.,
when the current node s has only clients as children or
when all its children have already been treated, the node is
marked as treated and added to the set replica if

1621

Wy > inreq,. Then, we go up in the tree until all nodes are
treated, performing recursive calls.

Each of these three heuristics is placing a number of
replicas, but none is ensuring whether a valid solution has
been found or not. We need to check the final value of
inreq,,;. If there still are some pending requests at the root,
there is no valid solution. However, if inreq,,, =0, the
heuristic has found a solution.

Upward Top Down (UTD). The top down approach
works in two passes. In the first pass, each node s € N/
whose capacity is exhausted by the number of requests in its
subtree (W <inreq,) is chosen by traversing the tree in
depth-first manner. When a server is chosen, we delete as
much clients as possible in nonincreasing order of their
number of requests r;, until the server capacity is reached or
no other client can be deleted. If not all requests can be
treated by the chosen servers, a second pass is started. In this
UTDSecondPass-procedure, servers with remaining requests
are added. Note that all these servers are nonexhausted by
the remaining requests (inreq, < W;). These two procedures
are each called only once, with s =root as a parameter.
Similar to the Closest heuristics, we need to check that
inreq,,,; = 0 at the end of UTD to find out whether a valid
solution has been found.

Upward Big Client First (UBCF). The second heuristic for
the Upward policy works in a completely different way than
all the other heuristics in this section. The basic idea here is to
treat all clients in nonincreasing order of their r; values. For
each client, we identify the server with minimal current
capacity (in the path from the client to the root) that can treat
all its requests. The capacity of a server is decreased each time
it is assigned some requests to process. If there is no valid
server to assign toa given client, the heuristic has failed to find
a valid solution.

Multiple Top Down (MTD). The top-down approach
for the Multiple policy is similar to the top-down approach
for Upward, with one significant difference: the delete
procedure. For Upward, requests of a client have to be
treated by a single server, and it may occur that after the
delete procedure a server still has some capacity left to treat
more requests, but all remaining clients have a higher
amount of requests than this leftover capacity. For Multiple,
requests of a client can be treated by multiple servers.
Therefore, if at the end of the delete procedure the server
still has some capacity, we delete this amount of requests
from the client with the largest r;.

Multiple Bottom Up (MBU). The first pass of this
heuristic performs a bottom-up traversal of the tree, as in
CBU. During this traversal, nodes s € ' are added to the
set replica if their capacity is exhausted (W, <inreq,),
similar to the first pass of the MTD procedure. The delete
procedure is identical to the MTD delete procedure,
except that clients are deleted in a nondecreasing order of
their r; values (instead of the nonincreasing order).
Intuitively, we aim at deleting many small clients rather
than fewer demanding ones.

Multiple Greedy (MG). The last heuristic performs a
greedy bottom-up assignment of requests. We add a replica
whenever there are some requests affected to a server. For
heterogeneous platforms, we may often return a cost far

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

1622

from the optimal, but we ensure that we always find a
solution to the problem if there exists one. It might be
particularly interesting to use MG only for problem
instances for which MBU or MTD fail to find a solution.

Mixed Best (MB). This heuristic unifies all previous
ones: for each tree, we select the best cost returned by the
previous heuristics. In fact, since each solution for Closest is
also a solution for Upward, which in turn is a valid solution
for Multiple, this heuristic provides a solution for the
Multiple policy.

6.2 With QoS Constraints

We now add QoS constraints to the clients. In the following,
we denote by inreqQoS; the amount of requests that reach
an inner node j within their QoS constraints and by inreq;
the total amount of requests that reach j (including requests
whose QoS constraints are violated). In this set of heuristics,
the difficulty is to find a good trade-off between favoring
clients with a large number of requests and clients with a
very constrained QoS.

Closest Big Subtree First (CBS). Here, we traverse the
tree in top-down manner. We place a replica on an inner
node j if inreqQoS; < W;. When the condition holds, we do
not process any other subtree of j. If this condition does
not hold, we process the subtrees of j in nonincreasing
order of inreq;. Once no further replica can be added, we
repeat the procedure. We stop when no new replica is
added during a pass.

Closest Small QoS First (CSQoS). This heuristic uses a
different approach. We do not execute a tree traversal.
Instead, we sort all clients by a nondecreasing order of g;.
In case of a tie, clients are sorted by a nonincreasing order
of r;. For each client, we look for the server that can process
its subtree (inreqQoS; < W;) and that which is the nearest
to the root. If no server is found for a client, we continue
with the next client in the list. Once we reach a client in the
list that is already treated by an earlier chosen server, we
delete all treated clients from the to-do list and restart at
the beginning of the remaining client list. The procedure
stops either when the list is empty or when the end of the
list is reached.

Upward Small QoS Started Servers First (USQoSS).
Clients are sorted by a nondecreasing order of q; (and a
nonincreasing order of r; in case of tie). For each client ¢ in
the list, we search for an appropriate server: we take the
next server on the way up to the root (i.e., an inner node
that is already equipped with a replica), which has enough
remaining capacity to treat all the client’s requests. Of
course, the QoS-constraints of the client have to be
respected. If there is no server, we take the first inner
node j that satisfies W; > r; within the QoS-range, and we
place a replica in j. If we still do not find any appropriate
node, then this heuristic has no feasible solution.

Upward Small QoS Minimal Requests (USQoSM). This
heuristic processes the clients in the same order as the
previous one, but the choice of the appropriate server
differs. Among the nodes in the QoS range of client i, the
node j with minimal (W; — inreqQoS;)-value is chosen as a
server if it can satisfy r; requests. Again, it may happen that
the heuristic cannot find a feasible solution, whenever no
inner node can be found for a client.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 12, DECEMBER 2008

Upward Minimal Distance (UMD). This heuristic
requires two steps. In the first step, so-called indispensable
servers are chosen, i.e., inner nodes that have a client that
must be treated by this very node. At the beginning, all
servers that have a child client with q = 1 will be chosen.
This step guarantees that in each loop of the algorithm, we
do not forget any client. The criterion for indispensable
servers is the following: for each client check, the number of
nodes eligible as servers; if there is only one, this node is
indispensable and chosen. The second step of UMD chooses
the inner node with minimal (W; — inreqQoS;)-value as
server (if inreqQoS; > 0). Note that this value can be
negative. Then, clients are associated to this server in order
of distance, i.e., clients that are close to the server are chosen
first, until the server capacity W; is reached or no further
client can be found.

Multiple Small QoS Close Servers First (MSQoSC).
The main idea of this heuristic is the same as for USQoSS
but with two differences. Searching for an appropriate
server, we take the first inner node on the way up to the
root that has some remaining capacity. Note that this makes
the difference between close and started servers. If this
capacity W; is not sufficient (client ¢ has more requests,
W, < r.), we choose other inner nodes going upwards to the
root until all requests of the client can be processed (this is
possible owing to the multiple-server relaxation). If we
cannot find enough inner nodes for a client, this heuristic
will not return a feasible solution.

Multiple Small QoS Minimal Requests (MSQoSM).
This heuristic is a mix of USQoSM and MSQoSC. Clients are
treated in a nondecreasing order of q;, and the appropriate
servers j are chosen by minimal (W; — inreqQoS;)-value
until all requests of clients can be processed.

Multiple Minimal Requests (MMR). This heuristic is
the counterpart of UMD for the Multiple policy and requires
two steps. Step one is the same as in UMD, with extension
to the multiple-server policy: servers are added in the
“indispensable” step, either when they are the only possible
server for a client or when the total capacity of all possible
inner nodes for a client ¢ is exactly ;. The server chosen in
the second step is also the inner node with minimal
(W; — inrquon)—value, but this time, clients are associated
in a nondecreasing order of min(q;,d(s,7)), where d(i,r) is
the number of hops between i and the root of the tree. Note
that the last client that is associated to a server, might not be
processed entirely by this server.

Mixed Best (MB). This heuristic unifies all previous ones
as for the case without QoS.

7 EXPERIMENTS

We have done several experiments to assess the impact of
the different access policies, the impact of QoS constraints,
and the performance of the polynomial heuristics described
in Section 6. We outline the experimental plan in Section 7.1.
Results without QoS constraints are given and analyzed in
Section 7.2, while results with QoS constraints are provided
in Section 7.3. In the following, we denote by s the problem
size: s = |C| + |V

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

BENOIT ET AL.: REPLICA PLACEMENT AND ACCESS POLICIES IN TREE NETWORKS

7.1 Experimental Plan

The important parameter in our tree networks is the load,
i.e., the total number of requests compared to the total
processing power:

We have performed experiments on 30 trees for each of the
nine values of A selected (A = 0.1,0.2,...,0.9). The trees have
been randomly generated, with a problem size 15 < s < 400.
Each node may have up to five children, where the exact
number of children is also randomly determined. The value
for the server capacity of the inner nodes is chosen between
50 < W; < 150. Depending on these former values, the
requests 7; of a client node ¢ obey the following law: r =
% x 50 x XA and r < r; < 2r. When) is small, the tree has a
light request load, while large values of A imply a heavy load
on the servers. In the latter case, we expect the problem to
have a solution less frequently.

For QoS-aware heuristics, we differentiate two types of
trees: 1) trees with a height between 4 and 7, called small trees,
and 2) trees with a height between 16 and 21, called big trees.
We study the behavior 1) when QoS constraints' are very tight
(q € {1,2}), 2) when QoS constraints are more relaxed (the
average value is set to half of the tree height height), and
3) without any QoS constraints (q = height + 1).

We have computed the number of solutions for each
lambda and each heuristic. Each instance of the problem
has been solved with the linear program, thus obtaining an
optimal solution for Multiple.

To assess performances, we have studied the relative
performance of each heuristic compared to the optimal
solution. This allows to compare the cost of the different
heuristics and thus to compare the different access policies.
For each), the cost is computed on the trees for which the
linear program has a solution. Let T be the subset of trees
with a solution. Then, the relative performance for the
heuristic h is obtained by 753~ 7, Cf;f,’}’}f‘? , where costp) is
the optimal solution cost returned by the linear program on
tree ¢, and cost)(t) is the cost involved by the solution
proposed by heuristic k. In order to be fair versus heuristics
who have a higher success rate, we set costy,(t) = +oo if the
heuristic did not find any solution.

Experiments have been conducted both on homogeneous
networks (REPLICA COUNTING problem) and on hetero-
geneous ones (REPLICA COST problem).

7.2 Results without QoS Constraints

Fig. 6b shows the percentage of success of each heuristic for
homogeneous platforms. The upper curve corresponds to
the result of the linear program and to the cost of the MG
and MB heuristics, which confirms that they always find a
solution when there is one. The UBCF heuristic seems very
efficient, since it finds a solution more often than MTD and
MBU, the other two Multiple policies. On the contrary, UTD,
which works in a similar way to MTD and MBU, finds
fewer solutions than these two heuristics, since it is further
constrained by the Upward policy. As expected, all the

1. Recall that q is the distance from the client to its server(s).

1623

ClosestTopDownAll —+—

ClosestTopDownLargestFirst ---¢---

ClosestBottomUp ---3--
UpwardsTopDown £}

V] igClientFirst —-m--

MultipleGreedy —&—
MultipleTopDown ---¢
MultipleBottomUp ---

MixedBest -
LP --

B>

AL d

100 |-

80 [

60 |-

percentage of trees

40 -

20 |-

100

80 [

60 |

percentage of trees

40

20 -

Fig. 6. Percentage of success. (a) Legend. (b) Homogeneous case.
(c) Heterogeneous case.

Closest heuristics find a smaller number of solutions as soon
as A reaches higher values: the bottom curve of the plot
corresponds to CTDA, CTDLF, and CBU, which find
identical solutions. This is inherent to the limitation of the
Closest policy: when the number of requests is high
compared to the total processing power in the tree, there
is little chance that a server can process all the requests
coming from its subtree and requests cannot traverse this
server to be served by a server located higher in the tree.
These results confirm that the new policies have a striking
impact on the existence of a solution to the REPLICA
COUNTING problem.

Fig. 7b represents the relative performance of the
heuristics compared to the LP-based lower bound. As
expected, the hierarchy between the policies is respected,
i.e., Multiple is better than Upward, which in turn is better
than Closest. For small values of), it happens that some
Closest heuristics give a better solution than those for
Upward or Multiple due to the fact that the latter heuristics
are not well optimized for small values of A. In addition,
UBCF is better than all the Multiple heuristics for A = 0.6.
Altogether, the use of the MixedBest heuristic MB allows to
always pick up the best result, thereby resulting in a very
satisfying relative performance for the Multiple instance of
the problem. The greedy MG should not be used for small
values of A but proves very efficient for large values, since it
is the only heuristic to find a solution for such instances. To
conclude, we point out that MB always achieves a relative

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

1624

ClosestTopDownAll —+—
ClosestTopDownLargestFirst --->--
ClosestBottomUp ---3---

UpwardsTopDown {3
igClientFirst --M-—-

MultipleGreedy —&—
MultipleTopDown ---@--
MultipleBottomUp ---4x---

MixedBest &

0.8

06

04

relative performance

02

lambda

(b)

08

0.6 |

0.4

relative performance

02

lambda

(©)

Fig. 7. Relative performance. (a) Legend. (b) Homogeneous case.
(c) Heterogeneous case.

performance of at least 85 percent, thus returning a replica
cost within 17 percent of that of the LP-based lower bound.
This is a very satisfactory result for the absolute perfor-
mance of our heuristics.

The heterogeneous results (see Figs. 6¢ and 7c) are very
similar to the homogeneous ones, which clearly shows that
our heuristics are not much sensitive to the heterogeneity of
the platform. Altogether, we have provided an efficient
polynomial-time approach to find a satisfactory solution to
all the NP-hard problems stated in Section 4.

7.3 Results with QoS Constraints

Due to lack of space, we do not present exhaustive results
(they can be found in [6]). Rather, we point out the influence
of QoS constraints on the three policies.

When QoS constraints are tight (q € {1,2}), there is a big
gap between the best Closest heuristic CBS and the
heuristics of the other two policies, particularly when A is
small (see Fig. 8b). For small A, the Upward and Multiple
policies perform nearly the same, but when A\ > 0.4,
Multiple outperforms Upward. “Outperform” in this case
means that there exists a Multiple heuristic that has a better
relative performance than the best Upward heuristic.

When QoS is less tight, i.e., in the case average, =height /2,
we can observe similar behaviors (see Fig. 8c). Closest has
still the poorest relative performance, whereas the gap to the
other policies is less important. The difference of Upward and
Multiple once again grows with increasing A. In the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 12, DECEMBER 2008

Multiple_SQoS_Close —6—
Multiple_SQoS_MinReq ---@--
Multiple_MinQoS_Indisp ---#---

MixedBest &

Closest_BigSubtreeFirst —+—
Closest_SmallQoSFirst --->--
Upwards_SQoS_Started ---%---
Upwards_SQoS_MinReq {3
Upwards_DistServer_Indisp —-B--

08 [

relative performance

L L i L
0 02 04 0.6 0.8 1

relative performance

lambda

08 |

06

04 |

relative performance

02|

Fig. 8. Relative performance. (a) Legend. (b) Small trees, q € {1,2}.
(c) Bigtrees, average, =height/2. (d) Smalltrees, q =height+1—mno QoS.

configuration with small trees, A € {0.1,0.2}, and no QoS
(see Fig. 8d), Closest contradicts our expectations, since it
shows the best performance. This is an artifact, which can be
explained as follows: the heuristics for Upward and Multiple
used in this experiment have been tuned so that their
first priority is to take QoS constraints into account, and their
counterparts tuned for the case without QoS constraints (see
Section 6.1) should be used in this case. Finally, for A > 0.3,
we once again retrieve the previous hierarchical behavior.
Globally, all the results show that QoS constraints do not
modify the relative performance of the three policies: with

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

BENOIT ET AL.: REPLICA PLACEMENT AND ACCESS POLICIES IN TREE NETWORKS

or without QoS, Multiple is better than Upward, which in
turn is better than Closest, and their difference in perfor-
mance is not sensitive to QoS tightness. This is an enjoyable
result, which could not be predicted a priori. Altogether,
when QoS is tight, we conclude that MSQoSM is the best
choice for small values of A and that MSQoSC is to prefer
for larger values. In the case of less tight QoS values, we
choose MMR for A up to 0.4 and then MSQoSC. Generally,
when X is high, MSQoSC never performs poorly. Concern-
ing the Upward policy, USQoSS behaves the best for tight
QoS; in the other cases, UMD achieves better results.
Finally, CBS always outperforms CSQoS.

8 EXTENSIONS

In this paper, we have considered a simplified instance of
the replica problem. We outline here some important
generalizations such as dealing with bandwidth con-
straints and several objects. We also discuss changing the
objective function.

8.1 With Bandwidth Constraints and Several

Objects
First, we point out that it is not difficult to add link
bandwidth constraints in addition to server capacity and
QoS constraints. For each communication link, [€ £ such a
constraint would write (with the notations of Section 2.2):

’r’i’s S BWZ

1€C,s€Servers(i)|lepathli—s]

For each of the three policies, such constraints can directly
be integrated into the linear program [5]. It is important to
point out that the Closest policy for the REPLICA COUNTING
problem remains of polynomial complexity with both QoS
and bandwidth constraints [12].2

In this paper, we have restricted the study of the problem
to a single object, which means that all replicas are identical
(of the same type). We can envision a system in which
different types of objects need to be accessed. The clients are
then having requests of different types, which can be served
only by an appropriate replica. Thus, for an object of type k,
client i € C issues rik) requests for this object. To serve a
request of type k, a node must be provided with a replica of
that type. Nodes can be provided with several replica types.
A given client is likely to have different servers for different
objects. The QoS may also be object-dependent (qgk))

To refine further, new parameters can be introduced such
as the size of object k and the computation time involved for
this object. Node parameters become object-dependent too, in
particular the storage cost and the time required to answer a
request. The server capacity constraint must then be a sum on
all the object types, while the QoS must be satisfied for each
object type. The link capacity also is a sum on the different
object types, taking into account the size of each object. There
remains to modify the objective function: we simply aim at
minimizing the cost of all replicas of different types that have
been assigned to the nodes in the solution to get the extended
replica cost for several objects. Because the constraints add up
linearly for different objects, it is not difficult to extend the
linear programming formulation of Section 5 to deal with

2. Recall that Upward and Multiple are already NP-hard with QoS but
without bandwidth constraints.

1625

several objects. In addition, the three access policies Closest,
Upward, and Multiple could naturally be extended to handle
several objects. However, designing efficient heuristics for
various object types, especially with different communication
to computation ratios and different QoS constraints for each
type, is a challenging algorithmic problem.

8.2 More Complex Objective Functions

Several important extensions of the problem consist in
having a more complex objective function. In fact, either
with one or with several objects, we have restricted so far to
minimizing the cost of the replicas (and even their number
in the homogeneous case). However, several other factors
can be introduced in the objective function:

e Communication cost. This cost is the read cost, i.e.,
the communication cost required to access the
replicas to answer requests. It is thus a sum on all
objects and all clients of the communication time
required to access the replica. If we take this criteria
into account in the objective function, we may prefer
a solution in which replicas are close to the clients.

e Update cost. The write cost is the extra cost due to an
update of the replicas. An update must be performed
when one of the clients is modifying (writing) some of
the data. In this case, to ensure the consistency of the
data, we need to propagate the modification to all
other replicas of the modified object. Usually, this cost
is directly related to the communication costs on the
minimum spanning tree of the replica, since the
replica that has been modified sends the information
to all the other replicas.

e Linear combination. A quite general objective
function can be obtained by a linear combination
of the three different costs, namely, replica cost, read
cost, and write cost. Informally, such an objective
function would write &} o ohjects TePlica cost +
B requests T€AA COSt + 7 D7 gares Write cost, where the
application-dependent parameters «, (3, and v would
be used to give priorities to the different costs.

Again, designing efficient heuristics for such general
objective functions, especially in the context of heteroge-
neous resources, is a challenging algorithmic problem.

9 RELATED WORK

In the literature, there are two main approaches for the replica
placement problem. A first set of papers deals with general
graphs and aims in a first step atextracting a “good” spanning
tree, i.e., a spanning tree that will optimize some global
objective function. In a second step, replicas are placed along
the spanning tree, typically in order to optimize a more
refined function. However, the process of extracting a
spanning tree is of combinatorial nature, as it generalizes
the well-known NP-hard K-center problem [13]. Therefore,
several authors propose sophisticated heuristics whose goal
is to solve both steps simultaneously.

The second set of papers considers that the spanning tree
is given [1], [2], [3], [4] and aims at optimizing replica
placement on that tree. Because this paper falls into this
latter line of research, we refer the reader to the survey
paper [14] for more references to the former two-step
approach and merely point out that proposed heuristics are

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

1626

of widely different nature, including greedy strategies [15],
graph-theoretic algorithms [16], linear-programming tech-
niques [17], [18], and game-related strategies [19].2

Early work on replica placement by Wolfson and Milo [20]
has shown the impact of the write cost and motivated the use
of a minimum spanning tree to perform updates between the
replicas. In this work, they prove that the replica placement
problem in a general graph is NP-complete, even without
taking into account storage costs. Thus, they address the case
of special topologies and, in particular, tree networks. They
give a polynomial solution in a fully homogeneous case and a
simple model with no QoS and no server capacity. Their
work uses the closest server access policy (single server) to
access the data.

Using this Closest policy, Cidon et al. [2] studied an
instance of the problem with multiple objects. In this work,
the objective function has no update cost but integrates a
communication cost. Communication cost in the objective
function can be seen as a substitute for QoS. Thus, they
minimize the average communication cost for all the clients
rather than ensuring a given QoS for each client. They target
fully homogeneous platforms since there are no server
capacity constraints in their approach. A similar instance of
the problem has been studied by Liu et al. [4], adding a QoS in
terms of a range limit (QoS=distance), and the objective being
the REPLICA COUNTING problem. In this latter approach, the
servers are homogeneous, and their capacity is bounded.

Cidon et al. [2] and Liu et al. [4] both use the Closest
access policy. In each case, the optimization problems are
shown to have polynomial complexity. However, the
variant with bidirectional links is shown NP-complete by
Kalpakis et al. [1]. Indeed, in [1], requests can be served
by any node in the tree, not just the nodes located in the
path from the client to the root. The simple problem of
minimizing the number of replicas with identical servers
of fixed capacity, without any communication cost or
QoS constraints, directly reduces to the classical bin-
packing problem.

Kalpakis et al. [1] show that a special instance of the
problem is polynomial, when considering no server capa-
cities, but with a general objective function taking into
account read, write, and storage costs. In their work, a
minimum spanning tree is used to propagate the writes, as
was done in [20]. Different methods can, however, be used
such as a minimum cost Steiner tree, in order to further
optimize the write strategy [21].

All papers listed above consider the Closest access
policy. As already stated, most problems are NP-complete,
except for some very simplified instances. Karlsson et al.
[7], [17] compare different objective functions and several
heuristics to solve these complex problems. They do not
take QoS constraints into account but, instead, integrate a
communication cost in the objective function, as was done
in [2]. Integrating the communication cost into the
objective function can be viewed as a Lagrangian relaxa-
tion of Qo0S constraints.

Tang and Xu [18] have been one of the first authors to
introduce actual QoS constraints in the problem formaliza-
tion. In their approach, the QoS corresponds to the latency
requirements of each client. Different access policies are

3. This small list of references is not intended to be comprehensive.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 12, DECEMBER 2008

considered. First, a replica-aware policy in a general graph
is proven to be NP-complete. When the clients do not know
where the replicas are (replica-blind policy), the graph is
simplified to a tree (fixed routing scheme) with the Closest
policy, and in this case, again, it is possible to find a
polynomial algorithm using dynamic programming.

In [3], Wang et al. deal with the QoS aware replica
placement problem on grid systems. In their general graph
model, QoS is a parameter of communication cost. Their
research includes heterogeneous nodes and communication
links. A heuristic algorithm is proposed and compared to
the results of Tang and Xu [18].

Another approach, this time for dynamic content distribu-
tion systems, is proposed by Chen et al. [22]. They present a
replica placement protocol to build a dissemination tree
matching QoS and server capacity constraints. Their work
focuses on Web content distribution built on top of peer-to-
peer location services: QoS is defined by a latency within
which the client has to be served, whereas server capacity is
bounded by a fan-out-degree of direct children. Two
placement algorithms (anative and a smart one) are proposed
to build the dissemination tree over the physical structure.

To the best of our knowledge, there is no related work
comparing different access policies, neither on tree net-
works nor on general graphs. Most previous works impose
the Closest policy. The Multiple policy is enforced by
Rodolakis et al. [23] but in a very different context. In fact,
they consider general graphs instead of trees; so, they face
the combinatorial complexity of finding good routing paths.
In addition, they assume an unlimited capacity at each
node, since they can add numerous servers of different
kinds on a single node. Finally, they include some QoS
constraints in their problem formulation, based on the
round trip time (in the graph) required to serve the client
requests. In such a context, this (very particular) instance of
the Multiple problem is shown to be NP-hard.

10 CONCLUSION

In this paper, we have introduced and extensively analyzed
two important new policies for the replica placement
problem. The Upward and Multiple policies are natural
variants of the standard Closest approach, and it may seem
surprising that they have not already been considered in the
published literature.

On the theoretical side, we have fully assessed the
complexity of the Closest, Upward, and Multiple policies,
both for homogeneous and heterogeneous platforms, and
with or without QoS constraints. The polynomial complex-
ity of the Multiple policy in the homogeneous case without
QoS constraints is quite unexpected, and we have provided
an elegant algorithm to compute the optimal cost for this
policy. When adding QoS constraints, the same problem
becomes NP-complete, which illustrates the additional
complexity induced by such constraints. Not surprisingly,
all three policies turn out to be NP-complete for hetero-
geneous nodes, which provides yet another example of the
additional difficulties induced by resource heterogeneity.

On the practical side, we have designed several heur-
istics for the Closest, Upward, and Multiple policies, and we
have compared their performance for several problem
instances with or without QoS constraints. In the experi-
ments, the total cost was the sum of the server capacities (or

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

BENOIT ET AL.: REPLICA PLACEMENT AND ACCESS POLICIES IN TREE NETWORKS

their number in the homogeneous case). The impact of the
new policies is impressive: the number of trees that admit a
solution is much higher with the Upward and Multiple
policies than with the Closest policy. Finally, we point out
that the absolute performance of the heuristics is quite
good, since their cost is close to the optimal solution based
upon the solution of the integer linear program.

There remains much work to extend the results of this
paper, in several important directions. In the short term, we
need to conduct more simulations for the REPLICA COST
problem, varying the shape of the trees, the distribution law
of the requests and the degree of heterogeneity of the
platforms. We also aim at designing efficient heuristics for
more general instances of the REPLICA PLACEMENT problem,
taking bandwidth constraints into account. Including band-
width constraints may require a better global load balancing
along the tree, thereby favoring Multiple over Upward.

In the longer term, designing efficient heuristics for the
problem with various object types, all with different
communication to computation ratios and different QoS
constraints is a demanding algorithmic problem. In addi-
tion, we would like to extend this work so as to handle more
complex objective functions, including communication
costs and update costs, as well as replica costs; this seems
to be a very difficult challenge to tackle, especially in the
context of heterogeneous resources.

ACKNOWLEDGMENT

The authors thank the reviewers for their numerous
comments and suggestions, which greatly improved the
final version of the paper.

REFERENCES

[1] K. Kalpakis, K. Dasgupta, and O. Wolfson, “Optimal Placement of
Replicas in Trees with Read, Write, and Storage Costs,” IEEE
Trans. Parallel and Distributed Systems, vol. 12, no. 6, pp. 628-637,
June 2001.

[2] I Cidon, S. Kutten, and R. Soffer, “Optimal Allocation of
Electronic Content,” Computer Networks, vol. 40, pp. 205-218, 2002.

[3] H.Wang, P. Liu, and J.-J. Wu, “A QoS-Aware Heuristic Algorithm
for Replica Placement,” Proc. Seventh Int’l Conf. Grid Computing
(GRID '06), pp. 96-103, 2006.

[4] P.Liu, Y.-F. Lin, and J.-J. Wu, “Optimal Placement of Replicas in
Data Grid Environments with Locality Assurance,” Proc. Int’l
Conf. Parallel and Distributed Systems (ICPADS), 2006.

[S] A. Benoit, V. Rehn, and Y. Robert, “Strategies for Replica
Placement in Tree Networks,” Research Report 2006-30, LIP,
ENS Lyon, Oct. 2006.

[6] A. Benoit, V. Rehn, and Y. Robert, “Impact of QoS on Replica
Placement in Tree Networks,” Research Report 2006-48, LIP,
ENS Lyon, Dec. 2006.

[71 M. Karlsson, C. Karamanolis, and M. Mahalingam, “A Framework
for Evaluating Replica Placement Algorithms,” Research Report
HPL-2002-219, HP Laboratories, 2002.

[8] A. Schrijver, Theory of Linear and Integer Programming. John Wiley
& Sons, 1986.

[9] B.W. Char, K.O. Geddes, G.H. Gonnet, M.B. Monagan, and
S.M. Watt, Maple Reference Manual. Watcom Publications, 1988.

[10] GLPK: GNU Linear Programming Kit, http://www.gnu.org/
software/glpk/, 2008.

[11] Source Code for the Heuristics, http://graal.ens-lyon.fr/~vrehn/
code/replicaQoS/, 2008.

[12] V. Rehn, “Optimal Closest Policy with QoS and Bandwidth
Constraints for Placing Replicas in Tree Networks,” Research
Report 2007-10, LIP, ENS Lyon, Mar. 2007.

[13] MR. Garey and D.S. Johnson, Computers and Intractability—A
Guide to the Theory of NP-Completeness. W.H. Freeman, 1979.

1627

[14] T. Loukopoulos, I. Ahmad, and D. Papadias, “An Overview of
Data Replication on the Internet,” Proc. Int'l Symp. Parallel
Architectures, Algorithms and Networks (ISPAN), 2002.

[15] C.-M. Wang, C.-C. Hsu, P. Liu, H-M. Chen, and J.-J. Wuy,
“Optimizing Server Placement in Hierarchical Grid Environ-
ments,” Proc. First Int’'l Conf. Grid and Pervasive Computing
(GPC '07), pp. 1-11, 2007.

[16] L. Qiu, V.N. Padmanabhan, and G.M. Voelker, “On the Placement
of Web Server Replicas,” Proc. INFOCOM '01, pp. 1587-1596, 2001.

[17] M. Karlsson and C. Karamanolis, “Choosing Replica Placement
Heuristics for Wide-Area Systems,” Proc. 24th Int’l Conf. Dis-
tributed Computing Systems (ICDCS '04), pp. 350-359, 2004.

[18] X. Tang and J. Xu, “QoS-Aware Replica Placement for Content
Distribution,” IEEE Trans. Parallel Distributed Systems, vol. 16,
no. 10, pp. 921-932, Oct. 2005.

[19] S.U. Khan and I. Ahmad, “RAMM: A Game Theoretical Replica
Allocation and Management Mechanism,” Proc. Int’l Symp. Parallel
Architectures, Algorithms and Networks (ISPAN), 2005.

[20] O. Wolfson and A. Milo, “The Multicast Policy and Its Relation-
ship to Replicated Data Placement,” ACM Trans. Database Systems,
vol. 16, no. 1, pp. 181-205, 1991.

[21] K. Kalpakis, K. Dasgupta, and O. Wolfson, “Steiner-Optimal Data
Replication in Tree Networks with Storage Costs,” Proc. Int’l
Symp. Database Eng. and Applications (IDEAS '01), pp. 285-293,
2001.

[22] Y. Chen, RH. Katz, and].D. Kubiatowicz, “Dynamic Replica
Placement for Scalable Content Delivery,” Proc. First Int'l Workshop
Peer-to-Peer Systems (IPTPS '02), pp. 306-318, Mar. 2002.

[23] G. Rodolakis, S. Siachalou, and L. Georgiadis, “Replicated Server
Placement with QoS Constraints,” IEEE Trans. Parallel Distributed
Systems, vol. 17, no. 10, pp. 1151-1162, Oct. 2006.

Anne Benoit received the PhD degree from the
Polytechnical Institute of Grenoble (INPG) in
2003. From 2003 to 2005, she was a research
associate in the School of Informatics, University
of Edinburgh, United Kingdom. She is currently
an associate professor at the Laboratoire de
I’Informatique du Parallellsme, Ecole Normale
Supérieure, Lyon, France. Her research inter-
ests include performance evaluation, high-level
parallel programming, and algorithms and sche-
duling for distributed heterogeneous platforms. She is a member of the
IEEE and the IEEE Computer Society.

Veronika Rehn-Sonigo is currently working
toward the PhD degree at the LIP Laboratory,
ENS Lyon. She is mainly interested in parallel
algorithms and replica placement, as well as
scheduling for distributed platforms. She is a
student member of the IEEE and the IEEE
Computer Society.

Yves Robert received the PhD degree from
Institut National Polytechnique de Grenoble in
1986. He is currently a full professor with the
Laboratoire de I'Informatique du Parallellsme,
ENS Lyon. His main research interests are
scheduling techniques and parallel algorithms
for clusters and grids. He served on many
editorial boards, including IEEE Transactions
on Parallel AND Distributed Systems (TPDS).
He was the program chair of HiPC '06 in
Bangalore and of IPDPS 08 in Miami. He is a fellow of the IEEE and
the IEEE Computer Society. He has been elected a senior member of
Institut Universitaire de France in 2007.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

