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Abstract 

The search for efficient algorithms for reg- 
ister allocation dates back to the time of the 
first Fortran compiler for the IBM 704. Since 
then, many variants of the problem have been con- 
sidered; depending on two factors: (i) the par- 
ticular model for registers, and (2) the defini- 
tion of the term "computation of a program" e.g. 
whether values may be computed more than once. 
We will show that several variants of the reg- 
ister allocation problem for straight line pro- 
grams are polynomial complete. In particular we 
consider, (i) the case when each value is computed 
exactly once, and (2) the case when values may be 
recomputed as necessary. The completeness of the 
third problem considered is surprising. A 
straight line program starts with a set of initial 
values, and computes intermediate and final 
values. Suppose, for each value, the register 
that value must be computed into is preassigned. 
Then, (3) the problem of determining if there is 
a computation of the straight line program, that 
computes values into the assigned registers, is 
polynomial complete. 

Keywords and phrases: register allocation, 
program optimization, polynomial complete, 
straight line program, dag. 

i. Introduction 

That register allocation is of interest is 
evident from the number of studies that have 
considered variants of the problem. While the 
primary motivation has been the desire to produce 
decent object code [1-15]; the problem has also 
been found to occur during the removal of 
recursion from programs [16]. The relation 
between aspects of register allocation and aspects 
of memory allocation has also been noted [17]. 
Register allocation therefore seems to be an 
instance of a more general allocation problem. 

Since flow of control within a program intro- 
duces a level of uncertainty, many of the studies 
cited have dealt only with straight line programs 
[3-6,8,9,11-15]. For the class of straight line 
programs that have no common subexpressions, 
linear time, optimal allocation algorithms are 
available [12-14]. We will study register 
allocation for straight line programs in the 
context of a set of graph games defined by 

Walker [15]. 

Graphical representations of straight line 
programs are intuitive, and fairly straightforward. 
Arithmetric expressions have traditionally been 
represented by trees. If common subexpressions are 
merged, a tree becomes a directed acyclie graph 
(dag) [18]. 

EXAMPLE I.i: Consider the evaluation of the 

polynomial a + bx + cx 2 using the expression 
(c*x+b) *x+a (Homer's rule). The dag correspond- 
ing to this expression is given by figure 1.2. 

t$ 

~3 

Figure 1.2 

Suppose all computation is done in registers. 
Using three registers, the above dag might be 
computed as follows: 

reg I + c 
reg 2 ÷ x 
reg I ÷ reg I * reg 2 
reg 3 ÷ b 
reg i ÷ reg i + reg 3 
reg i ÷ reg i * reg 2 
reg 2 ÷ a 
reg 3 ÷ reg i + reg 2 

However, if only two registers are available, 
then the following program might he used: 

reg i ÷ c 
reg 2 + x 
reg i ÷ reg I * reg 2 
reg 2 ÷ b 
reg I ÷ reg i + reg 2 
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reg 2 + x 
reg 1 ÷ reg 1 * reg 2 
reg 2÷a 
reg I ÷ reg i + reg 2 

In the latter program, node x is computed 
twice. 

For a formal definition of dag, and an 
algorithm to construct a dag from a straight line 
program, see [18]. 

Several problems, like that of determining 
the chromatic number of a graph, have long defied 
a nonenumerative solution. A class of such pro- 
blems, referred to as the class of (polynomial) 
complete problems has been defined in [19,21]. 
The class has the important property that if any 
member of the class can be solved in time a poly- 
nomial in some characteristic of the problem, 
then all members of the class can be solved in 
polynomial time. More importantly, if any 
complete problem can be solved in polynomial time, 
then all languages accepted by nondetermlnistic 
Turing machines in polynomial time can be accepted 
by deterministic Turing machines in polynomial 
time [19,21]. Background results relating to the 
term "polynomial complete" may be found in section 
2. 

Informally, the computation of a dag will be 
viewed as a game played on the dag. The game 
assumes that there is an infinite supply of label- 
ed stones, where a stone represents a register. 
Placing a stone on a node corresponds to computing 
the node. Thus, a stone may be placed on a non- 
leaf node x only when there are stones on all 
directed descendants of x. It will be assumed in 
section 3 that a node in a dag is computed exactly 
once. The rules will be generalized in section 4 
to permit a node to be recomputed. In each case, 
it will be shown that given an integer k, the 
problem of determining if a dag can be computed 
using no more than k registers, is polynomial 
complete. 

When no node in a dag is recomputed, an 
allocation for the dag may be viewed as a function 
from nodes to registers. It should be clear that 
not all functions from nodes to registers are 
allocations. For example, it would not do to 
assign all nodes to the same register. A some- 
what less trivial example is given by Figure 1.3. 
It will be shown in section 5 that the problem of 
determining if a function from nodes to registers 
is an allocation, is polynomial complete. 

Figure 1.3 

In order to appreciate why the last result 
mentioned is surprising, consider the colouring 
problem, which may be stated as follows: Given 
an undirected graph G, a colouring of ~ is a 
function from nodes in G to colours, such that 
no two nodes, joined by an edge in G, may have 
the same colour. Given an integer k, determine 
if there is a colouring of G that uses no more 
than k colours. 

While it is known [21], that the colouring 
problem is polynomial complete, given a function 
from nodes to colours, it is easy to check if the 
function is a colouring of the graph. In contrast 
to checking for an allocation, all that needs to 
be done is to check that no two nodes joined by an 
edge are assigned the same colour. 

Section 6 considers the implications of the 
results in sections 3 and 4 to other register 
allocation problems. 

2. Polynomial Completeness 

In order to define the class of "polynomial 
complete problems", a number of concepts that are 
basic to any discussion in language theory are 
required. We will not define such terms as 
deterministic Turing machines, nondeterministic 
Turin$ machines, moves made by such machines, and 
languages accepted by such machines. These 
definitions may be found, for example, in [20]. 

Let Z be some alphabet. Let P be the 
class of languages over Z, accepted by poly- 
nomial time bounded deterministic Turing machines, 
and let NP be the class of languages accepted 
by polynomial time bounded nondeterministic 
Turing machines. P is clearly a subset of NP. 
It is not known if P = NP. 

Just as languages accepted by Turing machines 
are defined, it is possible to define the 
"function computed" by a Turing machine. See [21], 

for instance. 

Let ~ be the class of functions from 
e 

into Z computed by polynomial time bounded 
deterministic Turing machines. Let L and M 
be languages. L is said to be reducible to 
M, if there exists a function f ~ H, such that 
f(x) is in M if and only if x is in L. L 
is called (polynomial) complete if L is in NP, 
and every language in NP is reducible to L. 
Either all complete languages are in P, or none 
of them is. The former alternative holds if and 
only if P = NP [21]." 

Demonstrating that all languages in NP are 
reducible to a given language L is facilitated 
by a theorem due to Cook [19]. Informally, Cook 
showed that acceptance of a string in any lan- 
guage in NP is reducible to determining if a 
formula in the propositional calculus is satis- 
fiable. We will have occasion to deal with this 
problem in some detail. 

DEFINITION: There is a set {Xl,X2,...,Xn} 
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of variables. If x is a variable, then the 

symbols "x" and "x" are called literals, x 

is called a complement of x, and x is called a 
complement of x. A clause is a subset of the set 

of literals. A clause C = {yl,Y2,...ym } will 

often be represented by "C - Yl v Y2 v ... v Ym'" 

If CI,C2,...,C m are clauses, then C, the 

conjunction of the clauses, will be represented by 

"C 1 A C 2 ^ ... ^ Cm". C will also be referred to 

as an m~clause satisfiability problem over n 
variables. 

C is said to be satisfiable, if there exists 
a set S which is a subset of the set of 
literals, such that: 

i. S does not contain a pair of complemen- 
tary literals. 

2. S n C. # ~, for i = 1,2 .... ,m. 
i 

If the set S exists, then a literal y in 
S will be said to be true, or have value ~, and 
the complement of the literal will be said to be 
false, or have value 0. If a literal in a class 
is true, the clause will be said to be true. D 

It is easy to associate a language with the 
set of satisfiability problems. Following Cook 
[19], each variable can be represented by some 
element in Z, followed by a number in binary 
notation. Note that there may be an arbitrarily 
large number of variables. The complement of a 
variable can be represented, say, by the symbol 
"~." followed by the representation of the 
variable. The other connectives are "v" and 
"^". When no confusion can occur, the term 
"satisfiability problem" will be used to refer to 
the corresponding string, generated as outlined 
in this paragraph. 

THEOREM (Cook): If a language L is in NP, 
then L is reducible to the set of satisfiability 
problems. 

PROOF: See [19]. 

Just as satisfiability problems were deflned~ 
it is possible to define satisfiability problems 
in with each clause has exactly three literals. 

THEOREM (Cook): If a language L is in NP, 
then L is reducible to the set of satisfiability 
problems with exactly three literals per clause. 

PROOF: Immediate from the result for satisfi- 
ability problems with at most three literals per 
clause [19]. D 

The approach in the following sections will 
be to show that the problem on hand can be 
associated with a language L in NP, and that 
the set of satisfiability problems with exactly 
three literals per clause is reducible to L. 

3. S atisfiability to Minimal AlloCation 

Following Walker [15], the "computation" of a 
dag will be viewed as a game played on the dag. 

GAME i: Let there be an infinite supply of 
labelled stones, where the stones may be thought of 
as registers. 

A move in game i is one of the following: 

i. place a stone on a leaf 
2. pick up a stone from a node 

if there are stones on every direct descendant of a 
node x, then: 

3. place a stone on x, or 
4. move a stone to x from one of the 

direct descendants of x. 

DEFINITION 3.1: A computation of a dag is a 
sequence of moves in game l,that starts with no 
stones on any node in the dag, place a stone at 
most once on any node, and ends with stones on all 
roots in the dag. D 

PROBLEM I: Given an integer k, does there 
exist a computation of a dag that uses no more than 
k registers (nodes may not be recomputed). D 

The polynomial completeness of problem 1 will 
be demonstrated as follows: Given an m-clause 
satisfiability problem over n variables, with 
exactly 3 literals per clause, a dag D will be 
constructed. If the problem is satisfiable, it 
will be possible to compute D using some number, 
say k, of registers. If the problem is not 
satisfiable, then at least k + 1 registers will 
be required to compute D. 

D will have 2n nodes Xl,Xl,...,Xn,Xn, 

that correspond to the literals, and m nodes 

Cl,C2,...Cm, that correspond to the clauses. The 

first stage of the computation of D will be to 
compute exactly one of x k and Xk, for all k, 

1 < k < n. This stage may be thought of as 
"assigning" values to the literals. 

EXAMPLE 3.2: Consider the schematic diagram 
of a dag in Figure 3.3. Circles at nodes mean 
that once placed, a stone may not be picked up from 
these nodes. This effect can be achieved by defin- 
ing a new node called the final node, and making a 
all circled nodes direct descendants of the final 
node. Since no nodes may be recomputed, a stone 
placed on a circled node must remain there until 
the final node is computed. 

Triangles at some of the leaves mean that the 
computation begins by placing stones on these 
leaves. This feature can be implemented by defin- 
ing a new node called the initial node, and making, 
(a) all leaves with triangles direct descendants of 
the initial node, and (b) all other nonleaf nodes 
ancestors of the initial node. 
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., Figure 3.3 

Suppose that in addition to the stones on 
leaves with triangles, there are 2n stones in 
hand. If any node other than z I is now computed 

we will never be able to compute z I. Once 

computed, z I will hold a stone, and 2n-i stones 

will then be available. 

We now have a choice. We may either compute 

Wl, or one of x I and Xl" Suppose x I is 

computed. One stone will then be held at Xl, 

leaving 2n-2 stones free. Note that at Ull is 

now free to go to w . The 2n-2 free stones can- 
i 

not be used to compute Xl' but z 2 can easily 

be computed. It is easy to see that for all 

i, i < i < n, exactly one of x i and ~i can 

be computed. Note also that had w I not been 

present, it would have been possible to compute 

both x 2 and x2, by skipping the computation of 

x I or x I. D 

The second stage computes the nodes 
Cl,C2,...c m. If the "assignment" of values to 

literals is such that each clause is true, then no 
extra registers will be required. Otherwise an 
extra register will have to be used. The 

computation of these m nodes releases enough 
stones to compute any nodes that are left to be 
computed. 

EXAMPLE 3.4: Consider a clause with two 

literals Yl and Y2" (The generalization to 

three literals is immediate). Figure 3.5 depicts 

a portion of a day. Nodes Yi' Yl and Y2 are 

in the part of the dag that is not shown. Yl is 

Figure 3.5 

a direct ancestor of fl' ~i and Y2 are direct 

ancestors of f2" Nodes Yl and Yl are such 

that Yl can be computed if and only if Yl is 

not computed. Let stone i be on fl and stone 2 

on f2" 
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Since the reduction of the satisfiability 
problem to problem 1 will be sensitive to the 
number of stones available, we want to ensure that 
(I) if either Yl or Y2 is computed, a stone can 

be moved to e, and (2) even if both Yl and Y2 

are computed, neither of the stones can be picked 
up (node c will hold a stone). 

Since Yl is computed if and only if ~i is 

not, it should be evident that the construction in 
figure 3.5 satisfies both the above criteria. 

The use of the letters c, f, r-u, w-z will 
be consistent with their use in figures 3.3 and 
3.5. 

REDUCTION I: Given an m-clause satisfi- 
ability problem over the n variables 

Xl,X2,...,Xn, where for all i, 1 < i < m, 

clause i has exactly three literals, Yil,Yi2 

and Yi3' construct a dag D as follows: 

Nodes: A u B u C u F u M u RST u U u W u X u Z 

A = {aj I i ~ j ~ 2n + i} 

B = {b. I i ! J < 2n - m} 
3 

C = {C i I 1 < i < m} 

F = {fij I i <i < m, l!j J3} 

M = {initial, d, final} 

RST = {rkj I i < k < n, i ! J ! 2n-2k+2} u 

{Skj,tkj I i !k ~ n, i ! J ! 2n-2k+l} 

U " {ukj I i < k < n, i i J i 2} 

W = {w k I 1 < k < n} 

X = {Xk, ~ I i < k < n} 

Z = {z k I 1 < k < n} 

The nodes in the set A,B,F and U will be 
leaves that are direct descendants of the initial 
node. Stones will first be placed on these nodes. 
Nodes in A will have only one direct ancestor - 
the initial node. The first step will be to move 
a stone from a node in A to the initial node. 
The initial node, being a direct descendant of the 
final node will hold one stone. The 2n stones 
on the remaining nodes in A can be picked up. 

These 2n stones will be used to "assign" 
values to the literals, as in figure 3.3. Once 
values have been "assigned" to all the literals, 
i.e. w and z have been computed, there will 

n n 
be no stones free. As in figure 3.5, nodes in C 
will be computed without using any stones in 
addition to those already on nodes in F, if and 
only if at least one literal in each clause is 
true. Node d is computed when all the nodes in 
C have been computed, releasing the stones on the 
nodes in B. The set B is used to ensure that, 
regardless of the value of m, at least 2n-I 
stones will be free after d is computed, so 
that the remaining nodes in X can be computed. 

Edges E1 u E2 u...u El0 

E1 = {(initial,g) I g e A U B U F u U} 

E2 = {(g,initial) I g e C u RST u W} 

E3 = {(final,g) I g ~ W u X u Z u {initial,d}} 

E4 = {(Xk,Zk) , (i,Zk), (Xk,Ukl) (~,uk2) I 

l<k<n} 

E5 = {(Wk,Ukj ) I I < k < n, 1 <_ j <_ 2} 

E6 = {(Xk,Skj), (Xk,tkj) I !<--k<-- n' l<_J<2n-2k+l} u 

{ (zk,rkj) l<k<n, l<_J_<2n-2k+2} 

E7 = {(Zk,Wk_l) , (Zk,Zk_l) I 2 < k < n} u 

{(ci,Wn), (ci,z n) I i < i < m} 

E8 = {(ci,fi$ ) [ i < i <_ m, i <_ j ! 3} 

E9 {(d,g) | g e B u C} 

For all i, 1 < i < m, clause i consists 

of the literals Yil,Yi2 and Yi3" For all j, 

1 ~ j ~ 3, since Yij is a literal, there exists 

a k, 1 < k < n, such that Yij is either X k or 

• . or the definition of the set El0, if 

Yij = Xk' we use the symbol "Yij" to refer to 

node Xk, and "Yij"_ to refer to node ~. 

Otherwise, if_ Yij = Xk, we use the symbol "Yij" 

to refer to x k and "Yij" to refer to x k. 

El0 = {(Yij,fij )' (~ij'fik) I i < i < m, 

I i J ~ 3, j + i < k < 3} D 

DEFINITION: Given a set S, let #S give 
the number of elements in S. 

DEFINITION: Let the term (m-3,n) satisfi- 
ability problem be used to refer to an m-clause 
satisfiability problem over n variables, with 
exactly three literals per clause. 

LEMMA 3.6: Let D be the dag created by 
reduction 1 for an (m-3,n) satisfiability problem. 
If the problem is satisfiable, then D can be com- 
puted using 3m + 4n + 1 + #B registers. 

PROOF: Let q = 3m + 4n + 1 + #B. We will 
give an algorithm to compute D using q stones. 
Let the stones be numbered 1,2,...,q. 

i. D has q leaves, given by the sets 
A,B,F, and U. Place q stones on the leaves of 
D as follows: stones 1,2,...3m on nodes in F; 
stones 3m + l,...,3m + #B on the elements of B; 
stones 3m + #B + l,...,3m + #B + 2n on the 
elements of U; the remaining 2n + 1 stones on 
the elements of A. 

2. Let p = 3m + 2n + 1 + #B. Note that 
stone p is on an element of A, and that the 
initial node is the only direct ancestor of the 
nodes in A. Move stone p up to the initial node, 
and pick up stones p+l,p+2,...,p+2n. 

3. Do 4 for k = 1,2,...,n. (See figure 
3.3). 

186 



4. Place stone p+2k-l,...,p+2n on nodes 
rkj, l_<j<2n-2k+2. Move stone p+2k-i up to Zk, 

and pick up stones p+2k,...,p+2n. If the literal 
x k is true for the problem to be satisfiable, then 

place stone p+2k,...,p+2n on nodes Ski , 

l<j<_2n - 2k+l. Move stone p + 2k up to node Xk, 

and pick up the stones p+2k+l,...,p+2n. Move the 

stone at Ukl to w k. 

If the literal x k is false, then place 

stones p+2k,...,p+2n on nodes tkl, 

l<j<_2n - 2k + I. Move stone p + 2k up to node 

~, and pick stones p+2k+l,...,p+2n. Move up 

the stone at Uk2 to w k. 

If the value of x k is undefined, then 

proceed as if x k were true. 

5. Do 6 for i = 1,2,...,m. (see figure 3.5) 

6. For clause i, Yil v Yi2 v Yi3' if Yil 

is true, then move the stone which is at fil' up 

c..l Otherwise, if Yi2 is true, then move the 

stone at fi2 to c i. If Yi2 is also false, 

then the conjunction of the clauses being satis- 
fiable, Yi3 must be true. So move the stone at 

fi3 to c i . 

7. Move the stone at c I up to d. Pick up 

• and the stones on the the stones at e2,c3, ..Cm, 

elements of B. By construction, 

m - 1 + #B > 2n - I. 

8. Use the 2n-i stones in hand to compute 
the nodes that remain to be computed. 

It is easy to verify that the above algorithm 
does indeed compute D. 

D 

LEMMA 3.7: Let D be the dag constructed by 
reduction 1 for an (m-3,n) satisfiabillty pro- 
blem. Let D be computed using 3m + 4n + 1 + #B 
registers. Then, for all k, 1 < k < n, just 

after z k is computed, 

(a) for all j, 1 ~ j ~ k - i, at most one 

of x. and x. has been computed. 
3 ] 

(b) 2n - 2k + 1 stones are free. 

PROOF: Since the initial node is a direct 
ancestor of all the leaves, and a descendant of 
all other nonleaves, the first moves in the 
computation must be to place stones on all the 
leaves. 

Since all elements of the set C are direct 

ancestors of Zn, just after z n is computed, 

none of the elements of C can have been computed. 
Therefore stones on nodes in the set F cannot be 
free. Node d, being an ancestor of the nodes in 
C cannot have been computed, so stones on nodes 

in the set B cannot be free. Moreover, the 
initial node, being a direct descendant of the 
final node will hold a stone• Therefore 
3m + i + #B stones cannot be free. 

basis: k = i. Node z I has 2n direct 

descendants, rll,rl2,...,rl,2n. Since z I has 

just been computed, at least 2n - i stones are 
free. 

Since all nodes in the set X are ancestors 
of Zl, all nodes in X have yet to be computed. 

Hence, stones on nodes in U cannot be free. 
That leaves 2n stones, one of which is at z 1. 

Hence, exactly 2n - i stones are free. 

inductive step: Assume the lemma is true for 
all smaller values, and consider Zk+ I. 

From the inductive hypothesis, 2n - 2k + i 
stones are free just after z k is computed. 

Note that since 2n - 2k + 1 stones are free, 
none of the elements of the set 

{Xl,X 1 ..... Xk_l,i_ I} that remain to be computed 

can be touched. 2n - 2j + i stones are required 

to compute either x. or x.. For j < k, 
] 3 

2n - 2j + i > 2n - 2k + I. 

By accounting for the number of stones held, 
it can be seen that w k cannot have a stone on 

it. Thus, the next node computed is either one of 

and i' or w k. Suppose one of x k and x k 

is computed. Then a stone can be moved from one 

of Ukl and Uk2, as appropriate, to w k. More- 

once one of x k and ~ is computed, over, 

2n - 2k stones will be free, and the other element 

of {Xk, i} cannot be computed• 

If neither x k nor ~ is computed, w k 

must still be computed before Zk+ I. Therefore, 

again, 2n - 2k stones will be free. Since 
Zk+ I requires 2n - 2k stones, the free stones 

must be saved for the direct descendants of Zk+l• 

D 

LEMMA 3.8: Let D be ~he dag constructed 
by reduction i for an (m-3,n) satisflability 
problem. For all moves between (and not including) 
the moves at which w and d are computed, 

n 
there are no stones free. 

PROOF: From lemma 3.7, I stone is free when 
z is computed. It is easy to see that just 
n 

after w is computed, ther are no stones free. 
n 

Suppose the lemma is false• Then at some 
move between the moves at which w n and d are 

computed, there is at least one stone free. Let 
move k + i be the first such move at which 
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there is a free stone. 

Consider move k. By hypothesis, there are 
no free stones at move k. Thus move k computes 
a node, say v, by taking a stone from a direct 
descendant of v, to v. Since we are interest- 
ed only in moves between the moves that compute 
w and d, v can only be an element of the set 
C~ Since nodes in C have d as a direct 
ancestor, the stone at node v cannot be free at 
the next move. Hence the stone that is freed must 
be on a direct descendant of v. 

Since v is an element of C, let v be 
ci, for some i~ 1 < i < m. By construction, c i 

has fil' fi2 and fi3 as direct descendants. 

Let clause i be Yil v Yi2 v Yi3" For all j, 

i ~ j j 3, let Yij and Yij refer to elements 

of the set X, as given in the specificication of 
the set EiO of edges. 

Case I: A stone is moved from fil to c..l 

Then node Yil' a direct ancestor of fil must 

have already been computed. From lermna 3.7, Yil 

has not yet been computed. Thus fi2 and fi3 

have a direct ancestor, Yil' that has yet to be 

computed. Hence, the stones at fi2 and fi3 can- 

not be free, contradicting the supposition that 
there is a free stone at move k + i. 

The remaining cases follow quite simply. 
0 

LEMMA 3.9: Let D be the dag constructed 
by reduction 1 for an (m-3,n) satisfiability 
problem. If D is computed using ? ~+ 4n # ~ 
3m + 4n + 1 + #B registers, then the conjunction 
of the clauses is satisfiable. 

PROOF: From lemma 3.7, for all k, l<k<_n, 

at most Jne of x k and ~ has been computed, 

just after the computation of z n. If ~k has 

been computed, assign the value true to the 

literal Xk, and false to ~. Otherwise assign 

the value false to Xk, and true to ~. Suppose 

this assignment of values is such that the con- 
junction of the clauses is not satisfied. Then 
we will show that a contradiction must occur. 

If the conjunction is not satisfied, there 
must be at least one clause, say i, l<_i<_m, 
such that all literals in caluse i are false. 

Let these literals be Yil' Yi2 and Yi3" Since 

Yil is a literal, for some k, l<k<n, Yil is 

either x k or __ ~. If Yil is Xk, then from 

the assignment of values to literals, Yil being 

false, x k has not yet been computed. 

Similarly if Yil is ~, then ~ has not yet 

been computed. Evidently, fil will have a direct 

ancestor that has not yet been computed. Similarly, 

fi2 and fi3 will also have direct ancestors 

that have not been computed. Thus the stones at 

fil' fi2 and fi3 will be held there. 

From lemma 3.8, there are no free stones when 
c i is computed~ Hence c i cannot be computed 

without using an extra stone. But then D cannot 
be computed using 3m + 4n + i + #B stones. 
Contradiction 

LEMMA 3.10: Problem I is in NP. 

PROOF: If k ~ n, the number of nodes in a 

dag D, then the dag can be computed using no 
more than k registers. Therefore, suppose k<n. 

Given the dag D, and the integer k, let T 
be a multitape nondeterministic Turing machine 
that generates a sequence of n pairs, 

(il,Xl),(i2,x2),...,(in,Xn), 1 _< i.] _< k, and xj 

is a node in D. The integers can be represented 
in binary notation, and the nodes by the symbol 
"x" followed by an integer in binary notation. 
The length of the sequence will be O(n log n). 

Intuitively, the pair (i,x) may be thought 
of as specifying that the stone i is placed on 
node x. 

The Turing machine then scans the sequence 
generated to see if there is a computation of D 
that corresponds to the sequence. The time taken 
by T is clearly polynomial in n, and indepen- 
dent of k. From [20], there is a one-tape non- 
deterministic Turing machine that accepts problem 
1 in polynomial time. 

THEOREM 3.11: Given an integer k, the pro- 
blem of determining if there is a computation of a 
dag that uses no more than k registers, is poly- 
nomial complete (no recomputation of nodes). 

PROOF: Note that the statement of the 
theorem refers to problem i. 

From [19,21], the satisfiability problem with 
exactly three literals per clause is polynomial 
complete. Therefore, given lemmas 3.6-3.10, 
all we need to show is that the dag D construct- 
ed by reduction 1 for an (m-3,n) satisfiability 
is constructed deterministically in polynomial 
time. 

Note that the number of nodes in D depends 
only on n, the number of variables, and m, the 
number of clauses. Moreover, the number of nodes 

in D is 0(n2+m). Of the sets EI-Ei0 of edges, 
Ei-E9, depend only on n and m. A list of 
ordered pairs of nodes, specifying the edges in D 
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can be constructed in one pass over the satisfi- 
ability problem. 

0 

4. Permittin$ Recomputation 

The reduction of the last section relied 
heavily on the ability to hold stones at designat- 
ed nodes. If recomputation is permitted, the con- 
structions of the last section are no longer 
adequate. However, we will show how minor modifi- 
cations of the construction in the last section 
permit the reduction to work. 

DEFINITION 4.1: The computation of a dag is 
a sequence of moves in game i, that starts with no 
stones on any node in the dag, and ends with 
stones on all the roots in the dag. 

EXAMPLE 4.2: Consider the dag in figure 4.3. 
In order to compute node b, m stones must be 
placed on the nodes al,a2,...,a m. In order to 

compute node d, stones must be placed on nodes 
in the set 

C~ 

Figure 4.3 

C = {Cl,C2,...,Cm}. If there are exactly m 

stones that may be used, once stones are placed 
on all nodes in the set C, none of the nodes in 
C may be recomputed. In order to recompute a node 
in C, there must be a stone on b. Since it 
takes m stones to compute b, recomputing a 
node in C is tantamount to starting afresh. 

Clearly, treating d as the "initial" node, 
and elements of C as "leaves", we can ensure 
that no "leaves" are recomputed. 

D 

EXAMPLE 4.4: Consider the dag in figure 4.5. 
As in example 3.2, let a circle at a node mean 
that the node is a direct descendant of a final 
node that is the last node to be computed. Tri- 
angles at leaves h I and h 2 mean that the 

computation starts by placing stones on these 
leaves. Moreover, assume that h I and h 2 may 

not be recomputed. From example 4.2, such an 
assumption is enforceable. We will show how a 
stone may be held at node z. 

h~ 

Figure 4.5 

Suppose that in addition to the 2 stones on 

h I and h2, there are 3 stones available. 

Since z must be computed before x, there is 
little point in placing one of these three stones 
on Sl-S 3. In order to compute z, there must be 

stones on rl-r 4. Since h 2 may not be recomputed, 

the remaining four stones must be placed on rl-r 4. 

The important point is that a stone may not be held 
at h I. Since h I may not be recomputed, neither 

r I or r 2 may be recomputed. Node rl, being a 

direct descendant of the "final" node, will the~e- 
fore hold a stone. 

Consider node z. Since z is a direct des- 
cendant of the "final" node, there must be a stone 
on z when the "final" node is computed. In order 
to compute node x, there must be stones on 

Sl,S2,S 3 and z. Since at most five stones may be 

used, and one is held at rl, stones may not be 

held at either h 2 or r 2. Since r 2 may not 5e 

recomputed, the stone at z must remain there 
until the "final" node is computed. 

D 

REDUCTION 2: Let the terms used here be as in 
reduction I. Let sets C,F,U,W,X, and Z be as 
in reduction i. 

Nodes: AuBuCuFuHuLuMuRSTVuUuWuXuZ 

A = {ajll ! j ! 2n + 2} 

B = {bjll ! J ! 2n - m + i} 

H = {hill ! J ! 4n} 

L = {£jll ! J J 3m + 8n + 2 + #B} 

M = {pivot, initial, d, final} 

RSTV = {rkjll < k < n, I ! J ~ 2n - 2k + 4} u 

{Skj,tkj,Vkjll < k < n, 1 < j < 2n - 2k+3} 

Edses: E0 u E1 u...u El0 
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~, X, .." • 
o" 

/ 

q' V ~ '~" ~+~ 

E0 = {(pivot,g) Jg£L}u{(g,pivot)JgEAuBuFuHuU} 

E1 = {(initial,g) Jg£AuBuFuHuU} 

E2 = {(g,initial) JgeCuRSrV} 

m3 = {(final,g) JgEWuXuZu{rkl,Skl,tkl,Vk2Jl<k<n} 

U {initial,d,Vnl}} 

E4 = {(Xk,Zk) , (~,Zk),(Xk,Ukl),(~,uk2) l<k<n} 

E5 = {(Vkl,Ukj)Jl<k<n , l<_j!2}u{(Vnl,h4n)} 

E6 = {(~k,Skj),(~,tkj),(Wk,Vkj)Jl<k<n, 

l<_j~2n - 2k + 3} u 

{(zk,rkj)Jl<k<n, l~j~2n - 2k + 4} 

E6' = {(rkj,h4k_3),(Skj,h4k_2),(tkj,h4k_l) , 

(Vk,j+l,h4k) Jl!k~n , l!j!2} 

sets E7-Ei0 are as for reduction i. 0 

THEOREM 4.7: Given an integer k, the pro- 
blem of determining if there is a computation of a 
dag that uses no more than k registers is poly- 
nomial complete. 

PROOF: Similar to the proofs in section 3. 
For further details see [22]. D 

5. Validating Register Allocations 

In this section we consider a seemingly 
simpler problem in register allocation. Suppose 
no value is computed more than once. Then, for 
any computation, a register can be associated with 
each node. In other words, each computation de- 
fines a function from nodes to registers. From 
figure 1.3, the converse - for each function from 
nodes to registers, there exists a computation - 
is not true. Here we examine, if given a function 
from nodes to registers, there exists a compu- 
tation that computes nodes into those registers. 

DEFINITION: Let Q = XlX2...x n be a 

sequence of nodes in a dag. Node u is said to 
appear before node v in Q, if for some 
i, j, 1 < i < j ! n, u is x° and v is x.. 

-- l j 

Node v is said to appear after node u in Q. 
If a node u appears before node v, and v 
appears before node w in Q, then v is said 
to appear between u and w in Q. The term 
occur may sometimes be substituted for "appear". 

D 
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DEFINITION: Let Q = XlX2...x n be a sequence 

of nodes in a dag D. Q is called a complete 
sequence of nodes in D if every node in D 
appears exactly once in Q. 

DEFINITION: Given a dag D, let L be a 
function from nodes in D into the set of names. 
L will be called an allocation for D. The pair 
(D,L) will often be referred to as a program dag, 
or just program. 

0 

Suppose a value is in a specified register. 
It should be retained in the register, at least as 
long as it is needed. It will be needed until all 
its direct ancestors have been computed. 

DEFINITION: Given a program (D,L), Let Q 
be a sequence of nodes in D. (Q,L) is said to 
be consistent, if for all nodes u, v and w in 
D, if 

(i) u is a direct descendant of w, and 
(2) v appears between u and w, 

then L(u) ~ L(v). 

DEFINITION: Let Q be a complete sequence 
of nodes in a dag D. Q is called a realization 
of a program (D,L), if (W,L) is consistent, 
and for all nodes u and v in D, if u 
appears before v in D, then v is not a 
descendant of u. 

Completeness of a sequence ensures that an 
attempt will be made to compute every node. A 
realization also forces descendants to he computed 
before their ancestors. Consistency ensures that 
the value of a node will be retained in the 
appropriate register, as long as it is needed. 

EXAMPLE 5.1: Example I.i gave a program to 
compute the dag in figure 1.2 using three reg- 
isters. The realization corresponding to that 
program is given by figure 5.2. 

node c x tl b t2 t3 a t4 

stone i 2 1 3 i I 2 3 

Figure 5.2 

e b ~ a ~ l  t2 t3 t4 

i 2 3 2 i i I 3 

Figure 5.3 

Consider the sequence Q in figure 5.3. Q 
is complete, since it contains all the nodes in D. 
Moreover descendants appear before their ancestors 
in Q. However Q is not a realization of D, 
since (Q,L) is not consistent -- the value of 
node x is needed to compute tl, but placing a 
into register 2 destroys the value of x before 
it can be used. 

0 

PROBLEM 3: Given a program dag (D,L), does 
(D,L) have a realization? [] 

REDUCTION 3: Given an m-clause satisfl- 
ability problem over n variables Xl,X2,...,Xn, 

where for all i, i < i < m, clause i has 

exactly 3 llterals, Yil,Yi2 and Yi3' construct 

a program dag (D,L) as follows: 

1. For all k, i < k < n, construct two 

leaves s k and ~k' corresponding to the 

literals x k ~. Let L(s k) = S k. 

2. For all i, j, i < i < m, i ~ j ~ 3, 

construct nodes Pij,qij, rij and ~l]' as in 

figure 5.4, and edges (qij,Pi]), (plj,rij). Let 

L(Pij) = Pij' e(qij)= Qij and L(rij)=e(~ij)=Rij. 

Also construct the edges (qil,ri2), (qi2,ri3) 

and (qi3,~il). 

The subdag created in figure 5.4 corresponds 

to clause i. The nodes rij and rij corres- 

pond to the literals Ylj and Yij" 

3. For all i, i < i < m, clause i con- 

sists of the llterals Yil' Yi2 and Yi3" For 

all J, 1 ~ j ~ 3, since Yij is a literal, 

there exists a k, I < k < n, such that Yi] is 

either x k or ~. If Yi] = Xk' we use the 

symbol "Yij" to refer to node Sk, and "~ij" to 

refer to node ~k" Otherwise, if Yl] = Xk' we 

use the symbol "Yij" to refer to node s k and 

"Yij" to refer to node s k- 

For all i, J, I < ~ < m, I ~ j ~ 3, con- 

struct the edges (rij,Yij) and (rij,Yij) . 

LEMMA 5.5: Let (D,L) be the program con- 
st~cted by reduction 3 for an (m-3,n) satisfl- 
ability problem. If the conjunction of clauses is 
satisfiable, then (D,L) has a realization. 

PROOF: We will construct a realization for 
(D,L). 

I. Initially the sequence Q is empty. As 
a convention, nodes may be added to Q on the 
right only. Do 2 for k = 1,2,...,n. 

2. If the literal x k is true for the con- 

junction of clauses to be satisfiable, then add 

Sk, all direct ancestors of Sk, and Sk to Q. 

Otherwise, add ~., all direct ancestors of 
and s k to Q. 

Note that all direct ancestors of s k and 

are elements of the set 

{rij,ri] i < i < m, i ! J ~ 3}. Each element of 
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this set has only one direct descendant. Moreover, 
by construction, for all i, j, I < i < m, 

i ~ j ! 3, both rij and rij cannot both be 

direct ancestors of the same node. Therefore only 

one of rij and rij has been added to Q. 

Since L(rij) is equal only to L(rij) , (Q,L) 

must so far be consistent. 

3. For all i, j, i < i < m, i ~ j ! 3, if 

rij has been added to Q, then add Pij and ~ij 

to Q. Note that Pij is the unique direct 

ancestor of rij , and that for all nodes x in 

D, if x # Pij' then e(x) # L(Pij). 

4. At this stage, note that for all i, j, 

i < i < m, i j j j 3, ~ij has been added to the 

list, but that rij may not have. For all i, 

i < i < m, do 5. 

5. Consider clause i, given by 
Yil v Yi2 v Yi3" Since the conjunction of clauses 

is satisfiable, clause i must be true. Without 
loss of generality let Yil be true. We will 

show that ril appears in Q before ~il" 

Since Yil is a literal, for some k, 

1 < k < n, Yil is either x k or ~. If Yil 

is Xk, then, by construction, ril is a direct 

ancestor of s k. Since Yil is true x k must be 

true, so from part 2, above, s k and ril are 

added to Q. 

If, on the other hand, Yil is ~, then, 

by construction, ril is a direct ancestor of ~K. 

Since Yil is true, ~ is true, and Sk and 

ril are added to Q by part 2. 

Since both Pil and ri2 have been added to 

Q, node qil can now be added to the sequence 

Q. Once qil is added to Q, L(ri2), which 

ri2 shares with ri2 , can be used for ri2 , un- 

less of course, ri2 is already in Q. In 

either case, qi2 can now be computed, and 

similarly qi3" 

U 

Figure 5.6 

LEMMA 5.7: Let u I, u 2, v I and v 2 be nodes 

in a dag D such that for i = 1,2, u is a 
i 

direct ancestor of v i. Let L(u I) = L(u 2) and 

L(v I) = L(v2). Let Q be a realization of (D,L). 

Then V 1 appears before v 2 in Q if and only if 

u I appears before u 2. 

PROOF: Suppose u I appears before u2, but 

that v 2 appears before v I. We will show that a 

contradiction must occur. 

Since Q is a realization of (D,L), descen- 
dants must appear before their ancestors. Since 
v I is a descendant of Ul, it follows that the 

nodes appear in the order v 2, v I, u I, u 2. Since 

u 2 is a direct ancestor of v2, and L(Vl)=L(v2) , 

(Q,L) cannot be consistent. Hence Q cannot be a 
realization of (D,L) contradiction. 

The converse follows similarly. 

LEMMA 5.8: Let (D,L) be the program con- 
structed by reduction 3 for an (m-3,n) satisfi- 

19e 



ability problem. Let Q be a realization of 
(D,L). Then for all i, i < i < m there exists 
a J, I ~ j ~ 3, such that rij appears before 

rij in Q. 

PROOF: Suppose the lemma is false. Then 
there exists an i, 1 < i < m, such that for all 

j, 1 ~ j ~ 3, rij appears before rlj in Q. We 

will show that a contradiction must occur. 

(In figure 5.4) note that L(~ij) = L(rij). 

Thus, for (Q,L) to be consistent, any direct 

ancestors of rij must appear before rlj in Q. 

Note also that rij , being a descendant of qlj' 

must appear before qij in Q. We therefore 

conclude that: 

qil before ri2 

ri2 before qi2 

qi2 before ri3 

ri3 before qi3 

qi3 before rll 

rll before qil 

Thus Q cannot be a realization of (D,L) con- 
tradiction. 

LEMMA 5.9: Let (D,L) be the program con- 
structed by reduction 3 for an (m-3,n) satisfl- 
ability problem. (D,L) has a realization if and 
only if the conjunction of clauses is satisfiable. 

PROOF: The if part is provided by lemma 
5.5. So we only need to show that if (D,L) has 
a realization then the conjunction of clauses is 
satisfiable. 

Let Q be a realization for (D,L). For all 
k, i < k < n, if s k is computed before Sk, 

assign the value true to Xk, otherwise assign 

the value false to x k. 

Suppose this assignment of values is such 
that the conjunction of clauses is not satisfied. 
Then we will show that a contradiction must occur. 

Since the conjunction of clauses is not 
satisfied, there must be at least one clause such 
that all the literals in the clause are false. 
Let clause i be such a clause. 

From lemma 5.8, there exists a j, I ~ j ~ 3, 

such that rij appears before rij. Without loss 

of generality, let j be I. For some_ k, 

i < k < n, ril either has s k or s k as 

direct descendant. 

case i: s k is a direct descendant of ril. 

Since ril appears before ril, from lemma 5.7, 

before Sk" Thus x k is assigned the S k appears 

value true. By construction, the literal Yll 

must be x k. Hence Yil must be true. Con- 

tradiction. 

The other case follows similarly. 

D 

LEnA 5.10: Problem 3 is in NP. 

PROOF: Straightforward. D 

THEOREM 5.11: Given a program (D,L) the 
problem of determining if (D,L) has a realiza- 
tion is polynomial complete. 

PROOF: The construction of reduction 3 can 
clearly be performed in polynomial time. The 
theorem follows from lemma 5.5, 5.7-5.10. 

D 

6. Other Problems 

The problems in sections 3 and 4 were con- 
cerned with the number of registers used. When 
recomputatlon is permitted, another concern might 
be the length of the computation. Clearly, the 
lower bound on the length of the computation is 
given by the case in which no nodes are re- 

computed. + This bound can be achieved by placing 
a fresh stone on every node. Therefore it only 
makes sense to talk of limiting the length of a 
computation if there is also a bound on the 
number of registers. 

In addition to the game that has been con- 
sidered so far, Walker [15], considers a number 
of other games. For example, we may have a game 
that models two levels of storage -- registers 
and core memory. 

GAME 2: Let there be a finite set of r 
red stones (registers) RI,R 2 .... ,Rr, and an 

infinite set of black stones (core locations) 

Li,L2,-.- 

A move in ~ame 2 is one of the following: 

i. place a black stone on a leaf 
2. exchange a red stone for a black stone 
3. exchange a black stone for a red stone 

if there are red stones on every direct descen- 
dant of a node x, then: 

4. place a red stone on x, or 
5. move a red stone to x from one of the 

direct descendants of x 
0 

+We should really exclude moves that pick up 
stones when determining the length of a com- 
putation, since such a move is not necessary in 
practice. 
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Given a fixed value of r, there are 0(n r) 
ways of arranging red stones on nodes in the dag. 
Note that the black stones can be treated as 
indistinguishable. Thus it is expected that pro- 
blems based on game 2 will be in NP. Moreover, 
problems based on game 2 easily encompass problems 
based on game i. 

Another possible game arises from the incor- 
poration of "parallel assignment" instructions. 
Note that the dag in figure 7.1 would require three 

Figure 6.1 

stones if computed using the definition of com- 
putation in sections 3 and 4. But, if instead of 
allowing a stone to be placed on only one node at 
a time, stone could be placed on all direct 
ancestors of a set of nodes, then the dag in 
figure 6.1 could be computed using two stones. 

GAME 3: Let there be an infinite supply of 
labelled stones. A move in same 3 is one of the 
following: 

i. place a stone on a leaf 
2. pick up a stone from a node 

if there are stones on all direct descendants of 
a set of nodes X = {Xl,X2,...,Xn} , then: 

3. places stones on a subset of X, or 
4. for some subset W of X, move stones 

to nodes in W as follows: 

For all w c W, move a stone to w from a direct 
descendant of w. 

Note that it is not necessary to consider 
combinations of 3 and 4 above. 

D 

It is expected that the reductions in 
sections 3 and 4 would also work for problems based 
on game 3. 

7. Practical Sisnificance 

Fortunately, the dags used in the reductions 
in this paper tend not to occur in practice. In 
most programs straight line sections tend to be 
fairly small. The practical significance of the 
results that have been presented is twofold: (i) 
Since the dags that occur in practice tend to be 
simple, it would be worthwhile to study register 
allocation for restricted classes of dags; (2) If 
the dags are small enough, then efficient enumer- 
ative techniques might be worth considering. 

and Jeff Ullman are greatly appreciated. 
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