
Overview

Table des matières

1 The context 1

2 Routing packets with fixed communication routes 1

3 Resolution of the “fluidified” problem 2

4 Building a schedule 4

5 Routing packets with freedom on the communication paths 7

1 The context

Platform
Platform : heterogeneous and distributed :
– processors with different capabilities ;
– communication links of different characteristics.

Applications
Application made of a very (very) large number of tasks, the tasks can be clustered

into a finite number of types, all tasks of a same type having the same characteristics.

Principle

When we have a very large number of identical tasks to execute, we can imagine
that, after some initiation phase, we will reach a (long) steady-state, before a termination
phase.

If the steady-state is long enough, the initiation and termination phases will be negli-
gible.

2 Routing packets with fixed communication routes

The problem

Problem : sending a set of message flows.

In a communication network, several flow of packets must be dispatched, each packet
flow must be sent from a route to a destination, while following a given path linking the
source to the destination.

Notations
– (V,A) an oriented graph, representing the communication network.

– A set of nc flows which must be dispatched.

– The k-th flow is denoted (sk, tk, Pk, nk), where
– sk is the source of packets ;
– tk is the destination ;
– Pk is the path to be followed ;
– nk is the number of packets in the flow.

We denote by ak,i the i-th edge in the path Pk.

Hypotheses

– A packet goes through an edge A in a unit of time.

– At a given time, a single packet traverses a given edge.

Objective
We must decide which packet must go through a given edge at a given time, in order

to minimize the overall execution time.

Lower bound on the duration of schedules
We call congestion of edge a ∈ A, and we denote by Ca, the total number of packets

which go through edge a :

Ca =
∑

k | a∈Pk

nk Cmax = max
a

Ca

Cmax is a lower bound on the execution time of any schedule.
C∗ ≥ Cmax

A “fluid” (fractional) resolution of our problem will give us a solution which executes
in a time Cmax.

3 Resolution of the “fluidified” problem

Fluidified (fractional) version : notations
Principle :
– we do not look for an integral solution but for a rational one.

– nk,i(t) (fractional) number of packets waiting at the entrance of the i-th edge of the
k-th path, at time t.

– Tk,i(t) is the overall time used by the edge ak,i for packets of the k-th flow, during
the interval of time [0; t].

2

Fluidified (fractional) version : writing the equations

1. Initiating the communications

nk,1(t) = nk − Tk,1(t), for each k

2. Conservation law

nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

3. Resource constraints∑
(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) ≤ t2 − t1,∀a ∈ A, ∀t2 ≥ t1 ≥ 0

4. Objective

Minimize Cfrac =

∫ ∞
0

1

(∑
k,i

nk,i(t)

)
dt

Lower bound
– nk,1(t) = nk − Tk,1(t), for each k
– nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

– At any time t,
i∑

j=1

nk,j(t) = nk − Tk,i(t)

– For each edge a :
∑

(k,i)|ak,i=a

i∑
j=1

nk,j(t) =
∑

(k,i)|ak,i=a

nk −
∑

(k,i)|ak,i=a

Tk,i(t) ≥ Ca − t

As long as t < Ca, there are packets in the system.

Therefore, Cfrac ≥ maxa Ca = Cmax

A candidate for the solution
For t ≤ Cmax

– Tk,i(t) =
nk

Cmax

t, for each k and i.

– nk,1(t) = nk − Tk,1(t) = nk −
nk

Cmax

t = nk

(
1− t

Cmax

)
, ∀k

– nk,i(t) = 0, for each k and i ≥ 2.

For t ≥ Cmax

– Tk,i(t) = nk

– nk,i(t) = 0

This solution is a schedule of makespan Cmax. We still have to show that it is feasible.

3

Checking the solution (for t ≤ Cmax)

1. nk,1(t) = nk − Tk,1(t), for each k

Satisfied by definition.

2. nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

Tk,i(t)− Tk,i+1(t) = nk

Cmax
t− nk

Cmax
t = 0 = nk,i+1(t)

3.
∑

(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) ≤ t2 − t1,∀a ∈ A,∀t2 ≥ t1 ≥ 0

∑
(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) =
∑

(k,i) | ak,i=a

nk

Cmax

(t2 − t1) =
Ca

Cmax

(t2 − t1) ≤ t2 − t1

4 Building a schedule

Definition of a round

– Ω ≈ duration of a round (will be defined later).

– mk : number of packets of k-th flow distributed in a single round.

mk =

⌈
nkΩ

Cmax

⌉
.

– Da =
∑

(k,i)|ak,i=a 1 = |{k|a ∈ Pk}|

Dmax = max
a

Da ≤ nc

– Period of the schedule : Ω + Dmax.

Schedule

During the time interval [j(Ω + Dmax); (j + 1)(Ω + Dmax)] :

The link a forwards mk packets of the k-th flow if there exists i such that ak,i = a.

The link a remains idle for a duration of :

Ω + Dmax −
∑

(k,i)|ak,i=a

mk

(If less than mk packets are waiting in the entrance of a at time j(Ω + Dmax), a
forwards what is available and remains idle longer.)

4

Feasibility of the schedule

∑
(k,i)|ak,i=a

mk =
∑

(k,i)|ak,i=a

⌈
nkΩ

Cmax

⌉

≤
∑

(k,i)|ak,i=a

(
nkΩ

Cmax

+ 1

)
≤ Ca

Cmax

Ω + Da

≤ Ω + Dmax

Behavior of the sources

– Nk,i(t) : number of packets of the k-th flow waiting at the entrance of the i-th edge,
at time t.

– ak,1 sends mk packets during [0,Ω + Dmax].
Nk,1(Ω + Dmax) = nk −mk

– ak,1 sends mk packets during [Ω + Dmax, 2(Ω + Dmax)].
Nk,1(2(Ω + Dmax)) = nk − 2mk

– We let T =

⌈
Cmax

Ω

⌉
(Ω + Dmax)

Nk,1(T) ≤ nk −
T

Ω + Dmax

mk ≤ nk −
nkΩ

Cmax

Cmax

Ω
= 0

Propagation delay
– ak,1 sends mk packets during [0,Ω + Dmax].
Nk,1(Ω + Dmax) = nk −mk Nk,2(Ω + Dmax) = mk

Nk,i≥3(Ω + Dmax) = 0

– ak,1 sends mk packets during [Ω + Dmax, 2(Ω + Dmax)].
Nk,1(2(Ω + Dmax)) = nk − 2mk Nk,2(2(Ω + Dmax)) = mk

Nk,3(2(Ω + Dmax)) = mk Nk,i≥4(2(Ω + Dmax)) = 0

– The delay between the time a packet traverses the first edge of the path Pk and the
time it traverses its last edge is, at worst :

(|Pk| − 1)(Ω + Dmax)
We let L = maxk |Pk|.

5

Makespan of the schedule

Ctotal ≤ T + (L− 1)(Ω + Dmax)

=

⌈
Cmax

Ω

⌉
(Ω + Dmax) + (L− 1)(Ω + Dmax)

≤
(
Cmax

Ω
+ 1

)
(Ω + Dmax) + (L− 1)(Ω + Dmax)

= Cmax + LDmax +
DmaxCmax

Ω
+ LΩ

The lower bound is minimized by Ω =

√
DmaxCmax

L

Ctotal ≤ Cmax + 2
√
CmaxDmaxL + DmaxL

Asymptotic optimality

Cmax ≤ C∗ ≤ Ctotal ≤ Cmax + 2
√

CmaxDmaxL + DmaxL

1 ≤ Ctotal

Cmax

≤ 1 + 2

√
DmaxL

Cmax

+
DmaxL

Cmax

With Ω =

√
DmaxCmax

L

Resources needed

∑
(k,i)|ak,i=a,k≥2

mk ≤
∑

(k,i)|ak,i=a,k≥2

(
nk

Cmax

√
DmaxCmax

L
+ 1

)

≤
√

DmaxCmax

L
+ Dmax

Conclusion
– We forget the initiation and termination phases
– Rational resolution of the steady-state
– Round whose size is the square-root of the solution :

– Each round “loses” a constant amount of time
– The sum of the waisted times increases less quickly than the schedule
– Buffers of size the square-root of the solution

6

5 Routing packets with freedom on the communica-

tion paths

Problem

– Same problem than previously, but the communication paths are not fixed.

– A set of nc collection of packets which must be dispatched.

– Each collection of packets is dispatched through a set of flows (the packets of a
same collection may follow different paths).

– nk,l the total number of packets to be dispatched from k to l.

– nk,l
i,j : the total number of packets to be dispatched from k to l and which go through

the edge (i, j).

Congestion : Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j Cmax = maxi,j Ci,j.

Writing the equations (1)

1. Initiating the communications ∑
j|(k,j)∈A

nk,l
k,j = nk,l

2. Receiving the messages sent ∑
i|(i,l)∈A

nk,l
i,l = nk,l

3. Conservation law ∑
i|(i,j)∈A

nk,l
i,j =

∑
i|(j,i)∈A

nk,l
j,i ∀(k, l), j 6= k, j 6= l

Writing the equations (2)

4. Congestion
Ci,j =

∑
(k,l)|nk,l>0 n

k,l
i,j

7

5. Defining the objective

Cmax ≥ Ci,j, ∀i, j

6. Objective function
Minimiser Cmax

Linear program in rational numbers : can be solved in polynomial time by any linear
program solver.

Routing algorithm

1. Compute the optimal value Cmax of the previous linear program.

2. Let Ω be some value later defined.

During the interval [pΩ, (p + 1)Ω], the edge (i, j) forwards :

mk,l
i,j =

⌊
nk,l
i,jΩ

Cmax

⌋
packets which go from k to l.

3. Starting at time :

T ≡
⌈
Cmax

Ω

⌉
Ω ≤ Cmax + Ω

we process the M remaining sequentially, which takes a time ML (at worst) where
L is the maximal length of a simple path in the network.

The schedule is feasible

∑
(k,l)

mk,l
i,j ≤

∑
(k,l)

nk,l
i,jΩ

Cmax

=
Ci,jΩ

Cmax

≤ Ω

Makespan

– We define Ω by : Ω =
√

Cmaxnc.

– The total number of packets remaining in the network at time T is at worst :

2|A|
√

Cmaxnc + |A|nc

– The makespan is then

Cmax ≤ C∗ ≤ Cmax +
√

Cmaxnc + 2|A|
√
Cmaxnc|V |+ |A|nc|V |

8

	1 The context
	2 Routing packets with fixed communication routes
	3 Resolution of the ``fluidified'' problem
	4 Building a schedule
	5 Routing packets with freedom on the communication paths

