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Platform model

main memory

PCI express bus

GPU
memory
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GPU

GPUs provide large speed-ups for reduced energy, but:
I limited memory within GPU
I connected through bus with limited bandwidth
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Taming HPC platforms with runtime systems

I Write you application as function calls (tasks),
I Specify data input/output (dependencies)
I Provide function codes for specific cores/GPUs
I Let the system do the scheduling at runtime!
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for(i=0; i<N; i++)
for(j=0; j<N; j++)

for(k=0; k<N; k++)
MULT_ADD(C[i,j], A[i,k], B[k,j])

At any time step: consider only available tasks
I Independant tasks
I Sharing some input data
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Independant tasks sharing data

T1 T2 T3 T4 T5

D1 D2 D3 D4 D5 D6
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D6

D1

timeT1 T2 T3 T4 T5

data in memory

processed tasks

I Bipartite graph modeling data sharing among tasks
I Only 3 data allowed in memory (in this example)
I Some data may be evicted/reloaded (D1 here)
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Problem modeling

T1 T2 T3 T4 T5

D1 D2 D3 D4 D5 D6

I Bipartite graph (tasks sharing input
data)

I Homogeneous data (size=1)
I Homogeneous tasks (duration=1)
I Limited memory M

Objective: minimize data loads

Execution framework: repeat these 3 phases
1. Evict some data from the memory
2. Load some new data
3. Compute next task

A priori: complex description of the solution
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I Bipartite graph (tasks sharing input
data)

I Homogeneous data (size=1)
I Homogeneous tasks (duration=1)
I Limited memory M

Objective: minimize data loads

Execution framework: repeat these 3 phases
1. Evict some data from the memory → which data to evict?
2. Load some new data → which data to load?
3. Compute next task → which task order?

A priori: complex description of the solution
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Simplifying the solution

Say we decided the task order.

Theorem (straightforward).
Thou shalt load data as late as possible.

⇒ Load (missing) data for a task right before its processing.

Theorem (adaptation of Belady’s rule).
Thou shalt evict data whose next usage is the furthest in the future.

Belady’s rule: optimal policy for cache management
I Difference: here each task requests several data

So we only need to compute the best task order!
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Back to our problem

T1 T2 T3 T4 T5

D1 D2 D3 D4 D5 D6

I Tasks sharing input data
I Limited memory M

I Objective: minimize data loads

Repeat:
1. If needed, evict data used furthest in the future
2. Load missing data for next task
3. Compute next task

Until all tasks are processed.

Single question: find task order



8 / 17

Link to cutwidth minimization
Special case:
I Each data shared by at most 2 tasks
I Objective: Load each data exactly once (never evict useful data)

Another graph model: vertices=tasks, edges=data shared among tasks

T1

T2

T3

T4

T5

T6

T3 T1 T4 T5 T2 T6

I Ordering tasks ⇔ Linear arrangement of vertices
I Amount of data in memory ⇔ cutwidth

(maximum number of edges cut by a vertical line)

Our problem is NP-complete by reduction to Cutwidth Minimization.
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Building packages of tasks

When the problem is too hard
I Change the problem!

Build packages of tasks sharing a lot of common data
I All inputs within a package fit in memory
I Minimal number of packages

Then, schedule packages one after the others

Unfortunately, this is also an NP-complete problem /
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Heuristic to build packages

Hierarchical Fair Packing:
1. Start with each task being a package
2. Merge small packages sharing many input data
3. Stop when total input data exceed memory bound

Optimizations:
I Package flipping:

reverse some package to improve data reuse
Pstart
i Pend

iPi : Pstart
j Pend

jPj :

Pstart
i Pend

i
rev(Pstart

j )rev(Pend
j )Pi + rev(Pj):

I Continue merging packages when the memory bound is reached:
improve locality among packages
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Validation – data movements
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I Schedulers implemented in StarPU
I Main competitor: DMDAR

(actual scheduler of StarPU)
I (Allocate tasks to the resource

that will complete it the earliest)
I Reorder tasks at runtime to favor

tasks with fewest load requests

I EAGER: follow submission order

I 3D matrix multiplication
I Data-movements close to the lower bounds
I DMDAR leads to large data-movement as soon as memory is limited
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Validation – performance in simulations
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I Optimizing data movements allows to keep peak performance even
when memory is limited
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Validation – performance in real experiments
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I Performance very similar to simulation for small sizes
I Impact of the complexity for large sizes



14 / 17

Shortcomings & final objective

I Large pre-computation time for large sizes
(comparing and merging the packages)

I Real objective: distributed setting
Several GPUs, with their own memory, sharing the bus

main memory

PCI express bus

CPU

GPU

GPU
memory

GPU
memory

Two problems:
I Partition tasks among GPUs
I Order tasks within a GPU
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Demand-driven heuristics

Whenever a GPU requires some more work:
I Find the new data that enables the greatest number of available tasks
I Transfer this new data
I Allocate all enabled tasks to the GPU

What about eviction:
I No complete vision of the future /
I Window of allocated tasks ,
I Perform Belady’s rule with this limited

prediction

T1 T2 T3 T4 T5

D1 D2 D3 D4 D5 D6

DARTS (Data-Aware Reactive Task Scheduling)
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Performance on 2 GPUs (real experiments)
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I DARTS is able to achieve peak performance
I Good eviction policy is critical !

(LUF:adapted Belady’s rule, otherwise:LRU)
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Conclusion

Take-away messages:
I Concentrate on data movements is the key for performance

I Runtime scheduling of task graphs → independant tasks at each step

I Need for very fast heuristics
(pre-computation can be allowed)

I Cache management with good knowledge of future requests

Next step:
I Trade-off data locality vs. task affinity (CPU/GPU)


