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Introduction & Motivation

I (Fast) Memory: place to store data for compute
I Always been a limited resource (4KB in Apollo 11 computer)
I Not limited anymore ?

a few GB (laptops) – 1TB (servers)

I But problem size always gets bigger. . .

I . . . And this is rather a question of speed!
I Annual improvements:

I Time per flop (computation): 59%

I Data movement:
Bandwidth Latency

Network 26% 15%
DRAM 23% 5%

Numbers from Getting up to speed: The future of supercomputing, 2005, National
Academies Press (2004 figure based on data on the period 1988-2002)



2 / 41

Introduction & Motivation

I (Fast) Memory: place to store data for compute
I Always been a limited resource (4KB in Apollo 11 computer)
I Not limited anymore ?

a few GB (laptops) – 1TB (servers)

I But problem size always gets bigger. . .

I . . . And this is rather a question of speed!
I Annual improvements:

I Time per flop (computation): 59%

I Data movement:
Bandwidth Latency

Network 26% 15%
DRAM 23% 5%

Numbers from Getting up to speed: The future of supercomputing, 2005, National
Academies Press (2004 figure based on data on the period 1988-2002)



2 / 41

Introduction & Motivation

I (Fast) Memory: place to store data for compute
I Always been a limited resource (4KB in Apollo 11 computer)
I Not limited anymore ?

a few GB (laptops) – 1TB (servers)

I But problem size always gets bigger. . .

I . . . And this is rather a question of speed!
I Annual improvements:

I Time per flop (computation): 59%

I Data movement:
Bandwidth Latency

Network 26% 15%
DRAM 23% 5%

Numbers from Getting up to speed: The future of supercomputing, 2005, National
Academies Press (2004 figure based on data on the period 1988-2002)



3 / 41

Flop per byte moved ratio

ratio computing speed/communication speed
From http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characte

ristics-over-time/

http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
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Beyond the memory wall

I Time to move the data > Time to compute on the data
I Similar problem in microprocessor design: “memory wall”
I Traditional workaround:

add a faster but smaller “cache” memory
I Now a hierarchy of caches !
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Computing with bounded cache/memory

I Limited amount of fast cache
I Performance sensitive to data locality
I Optimize data reuse
I Avoid data movements between memory and cache(s)

(time-consuming and energy-consuming)

In this talk: some algorithmic approaches to this problem
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Outline

Impact of Algorithm Design on Data Movements

Scheduling Task Graphs with Limited Memory

Reducing Data Movements for Independant Tasks on GPUs
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Example: matrix-matrix product

I Consider two square matrices A and B (size n × n)
I Compute generalized matrix product: C ← C + AB

Simple-Matrix-Multiply(n,C ,A,B)
for i = 0→ n − 1 do

for j = 0→ n − 1 do
for k = 0→ n − 1 do

Ci ,j = Ci ,j + Ai ,kBk,j

Assume simple two-level memory model:
I Slow but infinite disk storage

(where A and B are originally stored)
I Fast and limited memory (size M)

disk

memory processor

data movements

Objective: limit data movement between disk/memory
NB: also applies to other two-level systems (memory/cache, etc.)
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Simple algorithm analysis
Simple-Matrix-Multiply(n,C ,A,B)
for i = 0→ n − 1 do

for j = 0→ n − 1 do
for k = 0→ n − 1 do

Ci ,j = Ci ,j + Ai ,kBk,j

I Assume the memory cannot store half of a matrix: M < n2/2
I Question: How many data movement in this algorithm ?

Answer:
I all elements of B accessed during one iteration of the outer loop
I At most half of B stays in memory
I At least n2/2 elements must be read per outer loop
I At least n3/2 read for entire algorithms
I Same order of magnitude of computations: O(n3)

I Very bad data reuse / Question: How to do better ?



9 / 41

Simple algorithm analysis
Simple-Matrix-Multiply(n,C ,A,B)
for i = 0→ n − 1 do

for j = 0→ n − 1 do
for k = 0→ n − 1 do

Ci ,j = Ci ,j + Ai ,kBk,j

I Assume the memory cannot store half of a matrix: M < n2/2
I Question: How many data movement in this algorithm ?

Answer:
I all elements of B accessed during one iteration of the outer loop
I At most half of B stays in memory
I At least n2/2 elements must be read per outer loop
I At least n3/2 read for entire algorithms
I Same order of magnitude of computations: O(n3)

I Very bad data reuse / Question: How to do better ?



10 / 41

Blocked matrix-matrix product

I Divide each matrix into blocks of size b × b:
Ab
i ,k is the block of A at position (i , k)

I Perform “coarse-grain” matrix product on blocks
I Perform each block product with previous algorithms

Blocked-Matrix-Multiply(n,A,B,C)
b ←

√
M/3

for i = 0,→ n/b − 1 do
for j = 0,→ n/b − 1 do

for k = 0,→ n/b − 1 do
Simple-Matrix-Multiply(n,Cb

i ,j ,A
b
i ,k ,B

b
k,j)
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Blocked matrix-matrix product – Analysis
Blocked-Matrix-Multiply(n,A,B,C)
b ←

√
M/3

for i = 0,→ n/b − 1 do
for j = 0,→ n/b − 1 do

for k = 0,→ n/b − 1 do
Simple-Matrix-Multiply(n,Cb

i ,j ,A
b
i ,k ,B

b
k,j)

Question: Number of data movements ?

I Iteration of inner loop: 3 blocks of size b × b =
√
M/3

3
= M/3

→ fits in memory
I At most M +M/3 (O(M)) data movements for each inner loop

(reading/writing)
I Number of inner iterations: (n/b)3 = n3/(M/3) = O(n3/M

√
M)

I Total number of data movements: O(n3/
√
M)

Question: Can we do (significantly) better ?
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Decompose the Computation into Phases

I Phase: consecutive subsequence of computation with exactly M read
operations
(last phase may have < M reads)

I Number of data available for computation in each phase:

≤ M (initially in the memory) +M (read during the phase)

I Crude bound on the number of elements of A, B and C
used/computed: NA ≤ 2M, NB ≤ 2M,NC ≤ 2M
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A Helpful Geometric Lemma

Theorem (Irony, Toledo, Tiskin, 2008).
Using NA elements of A, NB elements of B and NC elements of C , we can
perform at most

√
NANBNC distinct products.

V2 V

V3

k

i

j

V1

V1

V2

V

Theorem (Discrete Loomis-Whitney Inequality).
Let V be a finite subset of Z3 and V1,V2,V3 denotes the orthogonal projections
of V on each coordinate planes, we have

|V |2 ≤ |V1| · |V2| · |V3|,
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I/0 Bound

I Number of elementary product done in one phase:
at most

√
NANBNC ≤

√
(2M)3

I In total: n3 elementary products

I Number of phases: at least
n3√
(2M)3

I Number of reads: at least
n3

2
√
2
√
M

Theorem (refined version, Langou 2019).
The total volume of I/Os is bounded by:

VI/O ≥
2N3
√
M

+ N2 − 2M
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Optimal algorithm

Consider the following algorithm sketch:
I Partition C into blocks of size (

√
M − 1)× (

√
M − 1)

I Partition A into block-columns of size (
√
M − 1)× 1

I Partition B into block-rows of size 1× (
√
M − 1)

I For each block Cb of C :
I Load the corresponding blocks of A and B on after the other
I For each pair of blocks Ab,Bb, compute Cb ← Cb + AbBb

I When all products for Cb are performed, write back Cb
1:8 • Tyler Michael Smith, Bradley Lowery, Julien Langou, and Robert A. van de Geijn

Algorithm C

Algorithm B

Algorithm A

+=

+=

+=

Data in cache.

Data in main memory.

Fig. 1. Three algorithms for matrix multiplication that a!ain the lower bound for a single level of cache.

!e read cost of this algorithm, illustrated in Figure 1, is essentially equal to the I/O lower bound, but it
requires many writes to slow memory and so cannot be considered I/O optimal. On the other hand, processors
o"en have full-duplex memory bandwidth (meaning that the bandwidth available for reads is separate from the
bandwidth available for writes), so the write cost may not be visible if it is less than or equal to than the read
cost and if the reads and writes can be overlapped. Since that is the case for this algorithm, it may execute just
as e#ciently as the algorithm presented in Section 4.2. !us, we can say that this algorithm is read-optimal and
write-hidden. !is becomes important when we later discuss practical implementations.

Algorithm A. We now present an algorithm that is in some sense the mirror image to Algorithm B, keeping a
square block of A in fast memory instead instead of a square block of B. Partition:

C →
!""
#

C0
...

CM−1

$%%
&
, A →

!""
#

A0,0 · · · A0,K−1
...

...

AM−1,0 · · · AK−1,N−1

$%%
&
, B →

!""
#

B0
...

BK−1

$%%
&
,

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Purely theoretical algorithm?



BLAS: Basic Linear Algebra Subprograms

I Introduced in the 80s as a standard
for LA computations

I Written first in FORTRAN
I Library provided by the vendor to

ease use of new machines
I Automatic Tuning: ATLAS
I GotoBLAS

Matrix product: still a large share of LA
computations

1:10 • Tyler Michael Smith, Bradley Lowery, Julien Langou, and Robert A. van de Geijn

+=

+=

+=

+=

+=

+=

Partition n with blocksize nc

Partition k with blocksize kc

Partition m with blocksize mc

Partition n with blocksize nr

Partition m with blocksize mr

Micro-kernel

Pack
B̃

Pack
Ã

Matrix partition is reused in L3 cache.

Matrix partition is reused in L2 cache.

Matrix partition is reused in L1 cache.

Matrix partition is reused in registers.

Fig. 2. Diagram of Goto’s Algorithm implemented in BLIS.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.
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Outline

Impact of Algorithm Design on Data Movements

Scheduling Task Graphs with Limited Memory

Reducing Data Movements for Independant Tasks on GPUs
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Taming HPC platforms with runtime systems

I Write you application as function calls (tasks),
I Specify data input/output (dependencies)
I Provide function codes for specific cores/GPUs
I Let the system do the scheduling at runtime!

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

for(i=0; i<N; i++)
for(j=0; j<N; j++)

for(k=0; k<N; k++)
MULT_ADD(C[i,j], A[i,k], B[k,j])

Graph of tasks: Directed Acyclic Graph (DAG)
I Tasks linked with data dependency
I Wide literature on DAG scheduling
I What about memory and data movements (I/Os) ?
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Task graph scheduling and memory

I Consider a simple task graph
I Tasks have durations and memory demands

A

B

C

D

E

F

I Peak memory: maximum memory usage
I Trade-off between peak memory and makespan
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Going back to sequential processing

I Temporary data require memory
I Scheduling influences the peak memory

A

B

C

D

E

F
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A B C D E F

A BC D E F



21 / 41

Tree-shaped task graphs

I Multifrontal sparse matrix factorization
over runtimes

I Task graph: tree (with dependencies
towards the root)

I Large temporary data

f3f2

f5f4

n3n2

n5n4

n1

4 5

2 3

1
I Output data of size fi
I Execution data of size ni
I Memory for processing node i : ∑

j∈Children(i)

fj

+ ni + fi
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Liu’s best post-order traversal for trees

Post-Order: entirely process one subtree after the other (DFS)

f1 fn
r

P1 P2 . . . Pn

f2

I For each subtree Ti : peak memory Pi , residual memory fi
I For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

I Optimal order:

non-increasing Pi − fi
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Results on task graph scheduling

Minimize the memory with single processor:
I , Best post-order schedule on trees [Liu 1986]
I , Optimal schedule on trees [Liu 1987]
I , Optimal schedule for Series-Parallel Graphs [Kayaaslan et al., 2018]
I / General graphs: PSPACE complete [Gilbert et al., 1980]

Parallel processing: bi-criteria problem (makespan and shared memory)
I / NP-complete on trees [Marchal et al., 2013]
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What to do if you cannot control the schedule?

I Task graph scheduled at runtime (dynamic)
I How to make sure not to exceed available memory?

A

B

C

D

E

F

1

2

3

4

5

1

5

1. Compute worse achievable memory
(topological cut with maximum weight)

2. If needed, add new dependencies to prevent this worse situation



24 / 41

What to do if you cannot control the schedule?

I Task graph scheduled at runtime (dynamic)
I How to make sure not to exceed available memory?

A

B

C

D

E

F

1

2

3

4

5

1

5

1. Compute worse achievable memory
(topological cut with maximum weight)

2. If needed, add new dependencies to prevent this worse situation



25 / 41

Outline

Impact of Algorithm Design on Data Movements

Scheduling Task Graphs with Limited Memory

Reducing Data Movements for Independant Tasks on GPUs
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Platform model

main memory

PCI express bus

GPU
memory

CPU

GPU

GPUs provide large speed-ups for reduced energy, but:
I limited memory within GPU
I connected through bus with limited bandwidth
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Tasks available for scheduling in runtime systems

At any time step: consider only available tasks

I Independant tasks (no dependency
among tasks)

I Sharing some input data

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0
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Independant tasks sharing data

T1 T2 T3 T4 T5

D1 D2 D3 D4 D5 D6

D1

D2

D3

D4

D5

D6

D1

timeT1 T2 T3 T4 T5

data in memory

processed tasks

I Bipartite graph modeling data sharing among tasks
I Only 3 data allowed in memory (in this example)
I Some data may be evicted/reloaded (D1 here)
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Problem modeling

T1 T2 T3 T4 T5

D1 D2 D3 D4 D5 D6

I Bipartite graph (tasks sharing input
data)

I Homogeneous data (size=1)
I Homogeneous tasks (duration=1)
I Limited memory M

Objective: minimize data loads

Execution framework: repeat these 3 phases
1. Evict some data from the memory
2. Load some new data
3. Compute next task

A priori: complex description of the solution
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D1 D2 D3 D4 D5 D6

I Bipartite graph (tasks sharing input
data)

I Homogeneous data (size=1)
I Homogeneous tasks (duration=1)
I Limited memory M

Objective: minimize data loads

Execution framework: repeat these 3 phases
1. Evict some data from the memory → which data to evict?
2. Load some new data → which data to load?
3. Compute next task → which task order?

A priori: complex description of the solution



30 / 41

Simplifying the solution

Say we decided the task order.

Theorem (straightforward).
Thou shalt load data as late as possible.

⇒ Load (missing) data for a task right before its processing.

Theorem (adaptation of Belady’s rule).
Thou shalt evict data whose next usage is the furthest in the future.

Belady’s rule: optimal policy for cache management
I Difference: here each task requests several data

So we only need to compute the best task order!
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Back to our problem

T1 T2 T3 T4 T5

D1 D2 D3 D4 D5 D6

I Tasks sharing input data
I Limited memory M

I Objective: minimize data loads

Repeat:
1. If needed, evict data used furthest in the future
2. Load missing data for next task
3. Compute next task

Until all tasks are processed.

Single question: find task order
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Link to cutwidth minimization
Special case:
I Each data shared by at most 2 tasks
I Objective: Load each data exactly once (never evict useful data)

Another graph model: vertices=tasks, edges=data shared among tasks

T1

T2

T3

T4

T5

T6

T3 T1 T4 T5 T2 T6

I Ordering tasks ⇔ Linear arrangement of vertices
I Amount of data in memory ⇔ cutwidth

(maximum number of edges cut by a vertical line)

Our problem is NP-complete by reduction to Cutwidth Minimization.
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Building packages of tasks

When the problem is too hard
I Change the problem!

Build packages of tasks sharing a lot of common data
I All inputs within a package fit in memory
I Minimal number of packages

Then, schedule packages one after the others

Unfortunately, this is also an NP-complete problem /
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Heuristic to build packages

Hierarchical Fair Packing:
1. Start with each task being a package
2. Merge small packages sharing many input data
3. Stop when total input data exceed memory bound

Optimizations:
I Package flipping:

reverse some package to improve data reuse
Pstart
i Pend

iPi : Pstart
j Pend

jPj :

Pstart
i Pend

i
rev(Pstart

j )rev(Pend
j )Pi + rev(Pj):

I Continue merging packages when the memory bound is reached:
improve locality among packages
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Validation – data movements
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I Schedulers implemented in StarPU
I Main competitor: DMDAR

(actual scheduler of StarPU)
I (Allocate tasks to the resource

that will complete it the earliest)
I Reorder tasks at runtime to favor

tasks with fewest load requests

I EAGER: follow submission order

I 3D matrix multiplication
I Data-movements close to the lower bounds
I DMDAR leads to large data-movement as soon as memory is limited
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Validation – performance in simulations
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I Optimizing data movements allows to keep peak performance even
when memory is limited
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Validation – performance in real experiments
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I Performance very similar to simulation for small sizes
I Impact of the complexity for large sizes
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Shortcomings & final objective

I Large pre-computation time for large sizes
(comparing and merging the packages)

I Real objective: distributed setting
Several GPUs, with their own memory, sharing the bus

main memory

PCI express bus

CPU

GPU

GPU
memory

GPU
memory

Two problems:
I Partition tasks among GPUs
I Order tasks within a GPU
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Demand-driven heuristics

Whenever a GPU requires some more work:
I Find the new data that enables the greatest number of available tasks
I Transfer this new data
I Allocate all enabled tasks to the GPU

What about eviction:
I No complete vision of the future /
I Window of allocated tasks ,
I Perform Belady’s rule with this limited

prediction

T1 T2 T3 T4 T5

D1 D2 D3 D4 D5 D6

DARTS (Data-Aware Reactive Task Scheduling)
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Performance on 2 GPUs (real experiments)
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I DARTS is able to achieve peak performance
I Good eviction policy is critical !

(LUF:adapted Belady’s rule, otherwise:LRU)
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Conclusion

Take-away messages:
I Concentrate on data movements is the key for performance

I Algorithm design can help re-organizing computations for better data
reuse

I With help from: compilation, cache management, . . .

I Runtime scheduling of task graphs: avenue for scheduling research,
with specific constraints
(low complexity, limited knowledge, possible pre-computation, . . . )
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