Recent results and open questions on memory-aware DAG scheduling

Loris Marchal
(CNRS & Univ. Lyon)

Solharis kickoff meeting
Bordeaux, December 2019 January 2020
Processing DAGs with Limited Memory (Bertrand Simon’s PhD)
 Model and maximum parallel memory
 Coping with limited memory

Maximum memory with p processors (Gabriel Bathie’s internship)
 NP-completeness
 SP graphs
 p-MaxTopCut for SP graphs
 Refined algorithms on SP graphs

Available code for DAGs and memory
Outline

Processing DAGs with Limited Memory (Bertrand Simon’s PhD)
- Model and maximum parallel memory
- Coping with limited memory

Maximum memory with p processors (Gabriel Bathie’s internship)
- NP-completeness
- SP graphs
- p-MaxTopCut for SP graphs
- Refined algorithms on SP graphs

Available code for DAGs and memory
Processing DAGs with Limited Memory

▶ Schedule general graphs

▶ On a shared-memory platform

First option: design good static scheduler:
▶ NP-complete, non-approximable
▶ Cannot react to unpredicted changes in the platform or inaccuracies in task timings

Second option:
▶ Limit memory consumption of any dynamic scheduler
 Target: runtime systems
▶ Without impacting too much parallelism
Memory model

Task graphs with:
- **Vertex weights** w_i: task (estimated) durations
- **Edge weights** $m_{i,j}$: data sizes

Simple memory model: at the beginning of a task
- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory
Memory model

Task graphs with:
- Vertex weights w_i: task (estimated) durations
- Edge weights $m_{i,j}$: data sizes

Simple memory model: at the beginning of a task
- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory
Memory model

Task graphs with:
- **Vertex weights** w_i: task (estimated) durations
- **Edge weights** $m_{i,j}$: data sizes

Simple memory model: at the beginning of a task
- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory
Memory model

Task graphs with:

- **Vertex weights** w_i: task (estimated) durations
- **Edge weights** $m_{i,j}$: data sizes

Simple memory model: at the beginning of a task

- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory
Memory model

Task graphs with:
- **Vertex weights** w_i: task (estimated) durations
- **Edge weights** $m_{i,j}$: data sizes

Simple memory model: at the beginning of a task
- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory
Memory model

Task graphs with:
- Vertex weights w_i: task (estimated) durations
- Edge weights $m_{i,j}$: data sizes

Simple memory model: at the beginning of a task
- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory

![Diagram of task graphs with vertex and edge weights]
Memory model

Task graphs with:
▶ Vertex weights w_i: task (estimated) durations
▶ Edge weights $m_{i,j}$: data sizes

Simple memory model: at the beginning of a task
▶ Inputs are freed (instantaneously)
▶ Outputs are allocated
At the end of a task: outputs stay in memory

Emulation of other memory behaviours:
▶ Inputs + outputs allocated during task: duplicate nodes
red edges represent memory during computations
Computing the maximum memory peak

Topological cut: \((S, T)\) with:

- \(S\) include the source node, \(T\) include the target node
- No edge from \(T\) to \(S\)
- Weight of the cut = weight of all edges from \(S\) to \(T\)

Any topological cut corresponds to a possible state when all node in \(S\) are completed or being processed.

Two equivalent questions (in our model):

- What is the maximum memory of any parallel execution?
- What is the topological cut with maximum weight?
Computing the maximum topological cut

Predict the maximal memory of any dynamic scheduling

⇔

Compute the maximal topological cut

Two algorithms:

▶ Linear program + rounding
▶ Direct algorithm based on MaxFlow/MinCut

Downsides:

▶ Large running time: $O(|V|^2|E|)$ or solving a LP
▶ May include edges corresponding to the computing of more than p tasks
Coping with limiting memory

Problem:

- Limited available memory M
- Allow use of dynamic schedulers
- Avoid running out of memory
- Keep high level of parallelism (as much as possible)

Our solution:

- Add edges to guarantee that any parallel execution stays below M
- *fictitious dependencies to reduce maximum memory*
- Minimize the obtained critical path
Coping with limiting memory

Problem:
- Limited available memory M
- Allow use of dynamic schedulers
- Avoid running out of memory
- Keep high level of parallelism (as much as possible)

Our solution:
- Add edges to guarantee that any parallel execution stays below M
 fictitious dependencies to reduce maximum memory
- Minimize the obtained critical path

```
M = 10
```
Coping with limiting memory

Problem:
▶ Limited available memory M
▶ Allow use of dynamic schedulers
▶ Avoid running out of memory
▶ Keep high level of parallelism (as much as possible)

Our solution:
▶ Add edges to guarantee that any parallel execution stays below M
 fictitious dependencies to reduce maximum memory
▶ Minimize the obtained critical path

\[
\begin{align*}
A & \rightarrow B \quad 1 \\
A & \rightarrow C \quad 2 \\
B & \rightarrow D \quad 3 \\
C & \rightarrow E \quad 4 \\
C & \rightarrow F \quad 5 \\
D & \rightarrow F \quad 1 \\
E & \rightarrow F \quad 5
\end{align*}
\]

$M = 10$
Definition (PartialSerialization).

Given a DAG $G = (V, E)$ and a bound M, find a set of new edges E' such that $G' = (V, E \cup E')$ is a DAG, $\text{MaxMem}(G') \leq M$ and $\text{CritPath}(G')$ is minimized.

Theorem.

PartialSerialization is NP-hard in the stronge sense.

NB: stays NP-hard if we are given a sequential schedule σ of G which uses at most a memory M.
Heuristic solutions for PartialSerialization

Framework:

(inspired by [Sbirlea et al. 2014])

1. Compute a max. top. cut \((S, T)\)
2. If weight \(\leq M\): succeeds
3. Add edge \((u, v)\) with \(u \in T\), \(v \in S\) without creating cycles; or fail
4. Goto Step 1

Several heuristic choices for Step 3:

- **MinLevels** does not create a large critical path
- **RespectOrder** follows a precomputed memory-efficient schedule, always succeeds
- **MaxSize** targets nodes dealing with large data
- **MaxMinSize** variant of MaxSize
Simulations – Pegasus workflows (LIGO 100 nodes)

- **Median ratio** MaxTopCut / DFS ≈ 20
- **MinLevels** performs best, **RespectOrder** always succeeds
- Memory divided by 5 for CP multiplied by 3
Simulations – Pegasus workflows (LIGO 100 nodes)

- **Median ratio** $\text{MaxTopCut} / \text{DFS} \approx 20$
- **MinLevels** performs best, **RespectOrder** always succeeds
- Memory divided by 5 for CP multiplied by 3
Outline

Processing DAGs with Limited Memory (Bertrand Simon’s PhD)
 Model and maximum parallel memory
 Coping with limited memory

Maximum memory with p processors (Gabriel Bathie’s internship)
 NP-completeness
 SP graphs
 p-MaxTopCut for SP graphs
 Refined algorithms on SP graphs

Available code for DAGs and memory
Maximum memory with p processors

Change in the model:
- Black (regular) edges
- Red edges corresponding to computations

Definition (p-MaxTopCut).
Given a graph with black/red edges and a number p of processor, what is the maximal weight of a topological cut including at most p red edges?

Theorem.
Computing the p-MaxTopCut is NP-complete
NP-completeness of p-MaxTopCut

Definition (Max-K-SubsetIntersection).

Given a set \(X \), subsets \(S_i \) of \(X \), find a collection \(I \) of subsets such that \(|I| = k \) and the intersection of \(S_i \) for \(i \in I \) covers at least \(q \) elements of \(X \).

(NP by reduction from Max-Edge-Biclique)

- edge \(S_i \rightarrow x_j \) exists iff \(x_j \notin S_i \)
- look for a cut of weight \((n + 1)k + q\)
- \(s \rightarrow S_i \) and \(x_j \rightarrow t \) can be both in the cut only if \(x_j \in S_i \)
- other way to see it: \(\bigcap S_i = \bigcup \overline{S_i} \)
ILP for p-MaxTopCut

\[
\begin{align*}
\text{max} & \sum_{(i,j) \in E} m_{i,j} d_{i,j} \\
\forall (i,j) \in E, & \quad d_{i,j} = p_i - p_j \\
\sum_{(i,j) \in E} c_{i,j} d_{i,j} & \leq p \\
\forall (i,j) \in E, & \quad d_{i,j} \geq 0 \\
\forall i, & \quad p_i \in \{0, 1\}, \quad p_s = 1, \quad p_t = 0
\end{align*}
\]

- Without constraints on \(p \) red edges:
 LP Relaxation + rounding gives solution for MaxTopCut
- On Pegasus graphs, p-MaxTopCut only 1% smaller than MaxTopCut (small temporary data)
- On random graphs, p-MaxTopCut up to 3 times smaller (temporary data \(\sim \) I/O data)
Special case: Series-Parallel graphs

G_1

G_2

$Serie(G_1, G_2) :$

$Par(G_1, G_2) :$
Computing Maximal Memory for SP graphs

Recursive algorithm to compute MaxTopCut on SP-graphs:

- For a single edge $i \rightarrow j$: $M(G) = m_{i,j}$
- Series combination: $M(G) = \max(M(G_1), M(G_2))$
- Parallel combination: $M(G) = M(G_1) + M(G_2)$

Complexity: $O(|E|)$
Proof:

- consider tree of compositions: (full) binary tree
- $|E|$ leaves
- $|E| - 1$ internal nodes (compositions)
Computing p-MaxTopCut for SP graphs

Goal: compute maximum memory with p red edges $M(G, p)$

- Adapt previous algorithm:
 Compute $M(G, k)$ for each $k = 1, \ldots, p$

- For a single edge $i \to j$:
 $$M(G, k) = \begin{cases} m_{i,j} & \text{if edge is black or } k \geq 0 \\ -\infty & \text{otherwise} \end{cases}$$

- Series combination:
 $$M(G, k) = \max(M(G_1, k), M(G_2, k))$$

- Parallel combination:
 $$M(G, k) = \max_{j=0,\ldots,k} M(G_1, j) + M(G_2, k - j)$$

Complexity:

- Dynamic programming: $O(|E|p^2)$.
Computing p-MaxTopCut for SP graphs

Goal: compute maximum memory with p red edges $M(G, p)$

► Adapt previous algorithm:
 Compute $M(G, k)$ for each $k = 1, \ldots, p$

► For a single edge $i \rightarrow j$:

 $\begin{align*}
 M(G, k) &= \begin{cases}
 m_{i,j} & \text{if edge is black or } k \geq 0 \\
 -\infty & \text{otherwise}
 \end{cases}
 \end{align*}$

► Series combination:

 $M(G, k) = \max(M(G_1, k), M(G_2, k))$

► Parallel combination:

 $M(G, k) = \max_{j=0,\ldots,k} M(G_1, j) + M(G_2, k - j)$

Complexity:

► Dynamic programming: $O(|E|p^2)$.
Computing p-MaxTopCut for SP graphs

Goal: compute maximum memory with p red edges $M(G, p)$

- Adapt previous algorithm:
 Compute $M(G, k)$ for each $k = 1, \ldots, p$

- For a single edge $i \rightarrow j$:
 $M(G, k) = \begin{cases} m_{i,j} & \text{if edge is black or } k \geq 0 \\ -\infty & \text{otherwise} \end{cases}$

- Series combination:
 $M(G, k) = \max(M(G_1, k), M(G_2, k))$

- Parallel combination:
 $M(G, k) = \max_{j=0,\ldots,k} M(G_1, j) + M(G_2, k - j)$

Complexity:

- Dynamic programming: $O(|E|p^2)$.
Computing \(p\text{-MaxTopCut} \) for SP graphs

Goal: compute maximum memory with \(p \) red edges \(M(G, p) \)

- Adapt previous algorithm:

 Compute \(M(G, k) \) for each \(k = 1, \ldots, p \)

- For a single edge \(i \rightarrow j \):

 \[
 M(G, k) = \begin{cases}
 m_{i,j} & \text{if edge is black or } k \geq 0 \\
 -\infty & \text{otherwise}
 \end{cases}
 \]

- Series combination:

 \(M(G, k) = \max(M(G_1, k), M(G_2, k)) \)

- Parallel combination:

 \[
 M(G, k) = \max_{j=0,\ldots,k} M(G_1, j) + M(G_2, k - j)
 \]

Complexity:

- Dynamic programming: \(O(|E|p^2) \).
Refined algorithms on SP graphs

Recent paper:

▶ Better complexity for previous algorithm: \(O(|E|p) \)
(by restricting the search on each subgraph to \(w(G) \), the maximum width of \(G \), and with tighter analysis using potentials)

▶ 2-approximation with complexity \(O(|E|) \)
Definition (Dual Approximation).

For a given guess λ, algorithm that answers YES if $M(G, p) \leq \lambda$ and NO if $M(G, p) > \lambda/2$.

Idea:

- Consider only edges whose weight is $> \lambda/2p$
- Apply SP algorithms without bound on p
- Return NO if $M(G, \infty) \geq \lambda/2$, YES otherwise

Using binary search: 2-approximation algorithm
Summary

Results on maximum memory:

- Maximum parallel memory = MaxTopCut
- Two algorithms to compute MaxTopCut:
 - Linear program + rounding
 - Direct algorithm based on MaxFlow/MinCut
- Downsides of MaxTopCut:
 - Large running time ($O(|V|^2|E|)$)
 - Taking into account the bound on task being processed makes the problem NP complete: p-MaxTopCut

Special case of SP graphs:

- Max. Top. cut computed in $O(|E|)$
- Max. Top. cut with p procs computed in $O(|E|p)$
- Max. Top. cut with p procs: 2-approximation in $O(|E|)$
Open questions

- What to do if the graph is not Series-Parallel?
- And if the whole graph is not known in advance but dynamically uncovered?
- For now, we add (a tons of) edges to keep the (supposed stupid) runtime scheduler safe, but we could trust the scheduler more...
- Which information to give to the scheduler to avoid bad memory decision?
- What to do in distributed context?
Outline

Processing DAGs with Limited Memory (Bertrand Simon’s PhD)
 Model and maximum parallel memory
 Coping with limited memory

Maximum memory with p processors (Gabriel Bathie’s internship)
 NP-completeness
 SP graphs
 p-MaxTopCut for SP graphs
 Refined algorithms on SP graphs

Available code for DAGs and memory
Available code for DAGs and memory

https://gitlab.inria.fr/lmarchal/memdag

Gathers most of the algorithms/codes produced on memory-aware scheduling of DAGs:

- Computing minimum memory (for sequential processing):
 - Liu’s optimal algorithms (postorder and general)
 - Optimal algo. for SP graphs (with Enver, Thomas and Bora)

- Maximum parallel memory (MaxTopCut) and its limitation by adding new edges (with Bertrand)
Available code for DAGs and memory

https://gitlab.inria.fr/lmarchal/memdag

Other useful algorithms:
- SP graph recognition: algo. by Valdes, Tarjan and Lawler
- SP-ization: custom algo. based on González-Escribano et al. (transformation into SP graph by adding synchronization vertices)

Graph formats:
- dot files
- list of nodes (trees)
- ask for more!

Feedback welcome!