
Recent results and open questions on
memory-aware DAG scheduling

Loris Marchal
(CNRS & Univ. Lyon)

Solharis kickoff meeting
Bordeaux, December 2019 January 2020

Outline

Processing DAGs with Limited Memory (Bertrand Simon’s PhD)
Model and maximum parallel memory
Coping with limited memory

Maximum memory with p processors (Gabriel Bathie’s internship)
NP-completeness
SP graphs
p-MaxTopCut for SP graphs
Refined algorithms on SP graphs

Available code for DAGs and memory

3 / 24

Outline

Processing DAGs with Limited Memory (Bertrand Simon’s PhD)
Model and maximum parallel memory
Coping with limited memory

Maximum memory with p processors (Gabriel Bathie’s internship)
NP-completeness
SP graphs
p-MaxTopCut for SP graphs
Refined algorithms on SP graphs

Available code for DAGs and memory

4 / 24

Processing DAGs with Limited Memory

I Schedule general graphs

I On a shared-memory platform

memory

First option: design good static scheduler:

I NP-complete, non-approximable

I Cannot react to unpredicted changes in the platform
or inaccuracies in task timings

Second option:

I Limit memory consumption of any dynamic scheduler
Target: runtime systems

I Without impacting too much parallelism

5 / 24

Memory model

Task graphs with:
I Vertex weights wi : task (estimated) durations
I Edge weights mi ,j : data sizes

Simple memory model: at the beginning of a task
I Inputs are freed (instantaneously)
I Outputs are allocated

At the end of a task: outputs stay in memory

5 / 24

Memory model

Task graphs with:
I Vertex weights wi : task (estimated) durations
I Edge weights mi ,j : data sizes

Simple memory model: at the beginning of a task
I Inputs are freed (instantaneously)
I Outputs are allocated

At the end of a task: outputs stay in memory

A

B

C

D

E

F

1

2

3

4

5

1

5

5 / 24

Memory model

Task graphs with:
I Vertex weights wi : task (estimated) durations
I Edge weights mi ,j : data sizes

Simple memory model: at the beginning of a task
I Inputs are freed (instantaneously)
I Outputs are allocated

At the end of a task: outputs stay in memory

A

B

C

D

E

F

1

2

3

4

5

1

5

5 / 24

Memory model

Task graphs with:
I Vertex weights wi : task (estimated) durations
I Edge weights mi ,j : data sizes

Simple memory model: at the beginning of a task
I Inputs are freed (instantaneously)
I Outputs are allocated

At the end of a task: outputs stay in memory

A

B

C

D

E

F

1

2

3

4

5

1

5

5 / 24

Memory model

Task graphs with:
I Vertex weights wi : task (estimated) durations
I Edge weights mi ,j : data sizes

Simple memory model: at the beginning of a task
I Inputs are freed (instantaneously)
I Outputs are allocated

At the end of a task: outputs stay in memory

A

B

C

D

E

F

1

2

3

4

5

1

5

5 / 24

Memory model

Task graphs with:
I Vertex weights wi : task (estimated) durations
I Edge weights mi ,j : data sizes

Simple memory model: at the beginning of a task
I Inputs are freed (instantaneously)
I Outputs are allocated

At the end of a task: outputs stay in memory

A

B

C

D

E

F

1

2

3

4

5

1

5

5 / 24

Memory model

Task graphs with:
I Vertex weights wi : task (estimated) durations
I Edge weights mi ,j : data sizes

Simple memory model: at the beginning of a task
I Inputs are freed (instantaneously)
I Outputs are allocated

At the end of a task: outputs stay in memory

Emulation of other memory behaviours:

I Inputs + outputs allocated during task: duplicate nodes
red edges represent memory during computations

A

10
2 3

A1

10

A2

0
2 5 3

6 / 24

Computing the maximum memory peak

Topological cut: (S ,T) with:

I S include the source node, T include the target node

I No edge from T to S

I Weight of the cut = weight of all edges from S to T

A

B

C

D

E

F

1

2

3

4

5

1

5

Any topological cut corresponds to a possible state when all node
in S are completed or being processed.

Two equivalent questions (in our model):

I What is the maximum memory of any parallel execution?

I What is the topological cut with maximum weight?

7 / 24

Computing the maximum topological cut

Predict the maximal memory of any dynamic scheduling
⇔

Compute the maximal topological cut

Two algorithms:

I Linear program + rounding

I Direct algorithm based on MaxFlow/MinCut

Downsides:

I Large running time: O(|V |2|E |) or solving a LP

I May include edges corresponding to the computing of more
than p tasks

8 / 24

Coping with limiting memory

Problem:

I Limited available memory M

I Allow use of dynamic schedulers

I Avoid running out of memory

I Keep high level of parallelism (as much as possible)

Our solution:

I Add edges to guarantee that any parallel execution stays
below M
fictitious dependencies to reduce maximum memory

I Minimize the obtained critical path

A

B

C

D

E

F

1

2

3

4

5

1

5

M = 10

8 / 24

Coping with limiting memory

Problem:

I Limited available memory M

I Allow use of dynamic schedulers

I Avoid running out of memory

I Keep high level of parallelism (as much as possible)

Our solution:

I Add edges to guarantee that any parallel execution stays
below M
fictitious dependencies to reduce maximum memory

I Minimize the obtained critical path

A

B

C

D

E

F

1

2

3

4

5

1

5

M = 10

8 / 24

Coping with limiting memory

Problem:

I Limited available memory M

I Allow use of dynamic schedulers

I Avoid running out of memory

I Keep high level of parallelism (as much as possible)

Our solution:

I Add edges to guarantee that any parallel execution stays
below M
fictitious dependencies to reduce maximum memory

I Minimize the obtained critical path

A

B

C

D

E

F

1

2

3

4

5

1

5

M = 10

9 / 24

Adding edges: problem definition and complexity

Definition (PartialSerialization).

Given a DAG G = (V ,E) and a bound M, find a set of new edges
E ′ such that G ′ = (V ,E ∪ E ′) is a DAG, MaxMem(G ′) ≤ M and
CritPath(G ′) is minimized.

Theorem.

PartialSerialization is NP-hard in the stronge sense.

NB: stays NP-hard if we are given a sequential schedule σ of G
which uses at most a memory M.

10 / 24

Heuristic solutions for PartialSerialization

Framework:
(inspired by [Sb̂ırlea et al. 2014])

1. Compute a max. top. cut (S ,T)

2. If weight ≤ M : succeeds

3. Add edge (u, v) with u ∈ T , v ∈ S
without creating cycles;
or fail

4. Goto Step 1

S

s t

T

v

u

Several heuristic choices for Step 3:

MinLevels does not create a large critical path

RespectOrder follows a precomputed memory-efficient schedule,
always succeeds

MaxSize targets nodes dealing with large data

MaxMinSize variant of MaxSize

11 / 24

Simulations – Pegasus workflows (LIGO 100 nodes)

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
a
li
ze
d
cr
it
ic
al

p
at
h

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

DFS memory ≡ 0 1 ≡ MaxTopCut

lower is
better

I Median ratio MaxTopCut / DFS ≈ 20

I MinLevels performs best, RespectOrder always succeeds

I Memory divided by 5 for CP multiplied by 3

11 / 24

Simulations – Pegasus workflows (LIGO 100 nodes)

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
a
li
ze
d
cr
it
ic
al

p
at
h

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

DFS memory ≡ 0 1 ≡ MaxTopCut

lower is
better

I Median ratio MaxTopCut / DFS ≈ 20

I MinLevels performs best, RespectOrder always succeeds

I Memory divided by 5 for CP multiplied by 3

12 / 24

Outline

Processing DAGs with Limited Memory (Bertrand Simon’s PhD)
Model and maximum parallel memory
Coping with limited memory

Maximum memory with p processors (Gabriel Bathie’s internship)
NP-completeness
SP graphs
p-MaxTopCut for SP graphs
Refined algorithms on SP graphs

Available code for DAGs and memory

13 / 24

Maximum memory with p processors

Change in the model:

I Black (regular) edges

I Red edges corresponding to computations

Definition (p-MaxTopCut).

Given a graph with black/red edges and a number p of processor,
what is the maximal weight of a topological cut including at most
p red edges ?

Theorem.

Computing the p-MaxTopCut is NP-complete

14 / 24

NP-completeness of p-MaxTopCut

Definition (Max-K-SubsetIntersection).

Given a set X , subsets Si of X , find a collection I of subsets such
that |I | = k and the intersection of Si for i ∈ I covers at least q
elements of X .

(NP by reduction from Max-Edge-Biclique)

s t

S1

Si

Sm

x1

xj

xn

n + 1

n + 1

n + 1

00

0

0

1

1

1

...

...

...

...

I edge Si → xj exists iff x /∈ Si
I look for a cut of weight (n + 1)k + q
I s → Si and xj → t can be both in the cut only if xj ∈ Si
I other way to see it:

⋂
Si =

⋃
Si

15 / 24

ILP for p-MaxTopCut

max
∑

(i ,j)∈E

mi ,jdi ,j

∀(i , j) ∈ E , di ,j = pi − pj∑
(i ,j)∈E

ci ,jdi ,j ≤ p

∀(i , j) ∈ E , di ,j ≥ 0

∀i , pi ∈ {0, 1}, ps = 1, pt = 0

I Without constraints on p red edges:
LP Relaxation + rounding gives solution for MaxTopCut

I On Pegasus graphs, p-MaxTopCut only 1% smaller than
MaxTopCut (small temporary data)

I On random graphs, p-MaxTopCut up to 3 times smaller
(temporary data ∼ I/O data)

16 / 24

Special case: Series-Parallel graphs

s t

a1

b1

c1

G1

s t

a2

b2

c2

G2

s

a1

b1

c1 s t

a2

b2

c2Serie(G1,G2) :

s

a1

b1

c1

a2

b2
c2

tPar(G1,G2) :

17 / 24

Computing Maximal Memory for SP graphs

Recursive algorithm to compute MaxTopCut on SP-graphs:

I For a single edge i → j : M(G) = mi ,j

I Series combination: M(G) = max(M(G1),M(G2))

I Parallel combination: M(G) = M(G1) + M(G2)

Complexity: O(|E |)
Proof:

I consider tree of compositions: (full) binary tree

I |E | leaves

I |E | − 1 internal nodes (compositions)

18 / 24

Computing p-MaxTopCut for SP graphs

Goal: compute maximum memory with p red edges M(G , p)

I Adapt previous algorithm:
Compute M(G , k) for each k = 1, . . . , p

I For a single edge i → j :

M(G , k) =

{
mi ,j if edge is black or k ≥ 0
−∞ otherwise

I Series combination:
M(G , k) = max(M(G1, k),M(G2, k))

I Parallel combination:
M(G , k) = maxj=0,...kM(G1, j) + M(G2, k − j)

Complexity:

I Dynamic programming: O(|E |p2).

18 / 24

Computing p-MaxTopCut for SP graphs

Goal: compute maximum memory with p red edges M(G , p)

I Adapt previous algorithm:
Compute M(G , k) for each k = 1, . . . , p

I For a single edge i → j :

M(G , k) =

{
mi ,j if edge is black or k ≥ 0
−∞ otherwise

I Series combination:
M(G , k) = max(M(G1, k),M(G2, k))

I Parallel combination:
M(G , k) = maxj=0,...kM(G1, j) + M(G2, k − j)

Complexity:

I Dynamic programming: O(|E |p2).

18 / 24

Computing p-MaxTopCut for SP graphs

Goal: compute maximum memory with p red edges M(G , p)

I Adapt previous algorithm:
Compute M(G , k) for each k = 1, . . . , p

I For a single edge i → j :

M(G , k) =

{
mi ,j if edge is black or k ≥ 0
−∞ otherwise

I Series combination:
M(G , k) = max(M(G1, k),M(G2, k))

I Parallel combination:
M(G , k) = maxj=0,...kM(G1, j) + M(G2, k − j)

Complexity:

I Dynamic programming: O(|E |p2).

18 / 24

Computing p-MaxTopCut for SP graphs

Goal: compute maximum memory with p red edges M(G , p)

I Adapt previous algorithm:
Compute M(G , k) for each k = 1, . . . , p

I For a single edge i → j :

M(G , k) =

{
mi ,j if edge is black or k ≥ 0
−∞ otherwise

I Series combination:
M(G , k) = max(M(G1, k),M(G2, k))

I Parallel combination:
M(G , k) = maxj=0,...kM(G1, j) + M(G2, k − j)

Complexity:

I Dynamic programming: O(|E |p2).

19 / 24

Refined algorithms on SP graphs

Recent paper:
Tim Kaler, William Kuszmaul, Tao B. Schardl, Daniele Vettorel:
Cilkmem: Algorithms for Analyzing the Memory High-Water Mark
of Fork-Join Parallel Programs. CoRR abs/1910.12340 (2019)

I Better complexity for previous algorithm: O(|E |p)
(by restricting the search on each subgraph to w(G), the
maximum width of G , and with tighter analysis using
potentials)

I 2-approximation with complexity O(|E |)

20 / 24

Fast 2-approximation for p-MaxTopCut on SP graphs

Definition (Dual Approximation).

For a given guess λ, algorithm that answers YES if M(G , p) ≤ λ
and NO if M(G , p) > λ/2.

Idea:

I Consider only edges whose weight is > λ/2p

I Apply SP algorithms without bound on p

I Return NO if M(G ,∞) ≥ λ/2, YES otherwise

Using binary search: 2-approximation algorithm

21 / 24

Summary

Results on maximum memory:

I Maximum parallel memory = MaxTopCut
I Two algorithms to compute MaxTopCut:

I Linear program + rounding
I Direct algorithm based on MaxFlow/MinCut

I Downsides of MaxTopCut:
I Large running time (O(|V |2|E |))
I Taking into account the bound on task being processed makes

the problem NP complete: p-MaxTopCut

Special case of SP graphs:

I Max. Top. cut computed in O(|E |)
I Max. Top. cut with p procs computed in O(|E |p)

I Max. Top. cut with p procs: 2-approximation in O(|E |)

22 / 24

Open questions

I What to do if the graph is not Series-Parallel?

I And if the whole graph is not known in advance but
dynamically uncovered?

I For now, we add (a tons of) edges to keep the (suposed
stupid) runtime scheduler safe, but we could trust the
scheduler more. . .

I Which information to give to the scheduler to avoid bad
memory decision?

I What to do in distributed context?

23 / 24

Outline

Processing DAGs with Limited Memory (Bertrand Simon’s PhD)
Model and maximum parallel memory
Coping with limited memory

Maximum memory with p processors (Gabriel Bathie’s internship)
NP-completeness
SP graphs
p-MaxTopCut for SP graphs
Refined algorithms on SP graphs

Available code for DAGs and memory

24 / 24

Available code for DAGs and memory

https://gitlab.inria.fr/lmarchal/memdag

Gathers most of the algorithms/codes produced on memory-aware
scheduling of DAGs:

I Computing minimum memory (for sequential processing):
I Liu’s optimal algorithms (postorder and general)
I Optimal algo. for SP graphs (with Enver, Thomas and Bora)

I Maximum parallel memory (MaxTopCut)
and its limitation by adding new edges (with Bertrand)

https://gitlab.inria.fr/lmarchal/memdag

24 / 24

Available code for DAGs and memory

https://gitlab.inria.fr/lmarchal/memdag

Other useful algorithms:

I SP graph recognition: algo. by Valdes, Tarjan and Lawler

I SP-ization: custom algo. based on González-Escribano et al.
(transformation into SP graph by adding synchronization vertices)

Graph formats:

I dot files

I list of nodes (trees)

I ask for more!

Feedback welcome !

https://gitlab.inria.fr/lmarchal/memdag

	Processing DAGs with Limited Memory (Bertrand Simon's PhD)
	Model and maximum parallel memory
	Coping with limited memory

	Maximum memory with p processors (Gabriel Bathie's internship)
	NP-completeness
	SP graphs
	p-MaxTopCut for SP graphs
	Refined algorithms on SP graphs

	Available code for DAGs and memory

