Scheduling task graphs
to reduce data movement

Loris Marchal
(CNRS & ENS Lyon)

ILLS – ÉTS Montréal
June 2023
High Performance Computing

- Numerical simulations drive new discoveries
- Larger systems with better accuracy: more data and computation
Data access problem

Evolution of computing speed vs. data access speed (bandwidth)

Byte-per-flop ratio keeps decreasing ⇒ Data access critical for performance

Figure 0.3: Evolution of the average top 5 supercomputers normalized to year 2010 (average top 10 systems)

Year source: https://doi.org/10.1016/B978-0-12-816502-7.00020-8
Beyond the memory wall

- Time to move the data > Time to compute on the data
- Similar problem in microprocessor design: “memory wall”
- Traditional workaround:
 add a faster but smaller “cache” memory
- Now a hierarchy of caches!
Computing with bounded cache/memory

- Limited amount of fast cache
- Performance sensitive to data locality
- Optimize data reuse
- Avoid data movements (I/Os) between memory and cache(s) (time-consuming and energy-consuming)

In this talk: some algorithmic approaches to this problem
Computing with bounded cache/memory

- Limited amount of fast cache
- Performance sensitive to data locality
- Optimize data reuse
- Avoid data movements (I/Os) between memory and cache(s) (time-consuming and energy-consuming)

In this talk: some algorithmic approaches to this problem
Outline

Task Graph Scheduling and Limited Memory

Pebble game models

Reducing Memory Footprint of Task Graphs

Reducing I/Os for Task Graphs
Outline

Task Graph Scheduling and Limited Memory

- Pebble game models
- Reducing Memory Footprint of Task Graphs
- Reducing I/Os for Task Graphs
Taming HPC platforms with runtime systems

- Write your application as function calls (tasks),
- Specify data input/output (dependencies)
- Provide function codes for specific cores/GPUs
- Let the system do the scheduling at runtime!

Cholesky_decomposition(A):
for(k=0; k<N; k++)
 A[k][k]=POTRF(A[k][k])
for(m=k+1; m<N; m++)
 A[m][k]=TRSM(A[k][k], A[m][k])
for(n=k+1; n<N; n++)
 A[n][n]=SYRK(A[n][k], A[n][n])
for(m=n+1; m<N; m++)
 A[m][n]+=GEMM(A[m][k], A[n][k])

Graph of tasks: Directed Acyclic Graph (DAG)
- Tasks linked with data dependency
- Wide literature on DAG scheduling
- What about memory and data movements (I/Os)?
Taming HPC platforms with runtime systems

- Write your application as function calls (tasks),
- Specify data input/output (dependencies)
- Provide function codes for specific cores/GPUs
- Let the system do the scheduling at runtime!

```plaintext
Cholesky_decomposition(A):
   for(k=0; k<N; k++)
      A[k][k]=POTRF(A[k][k])
   for(m=k+1; m<N; m++)
      A[m][k]=TRSM(A[k][k], A[m][k])
   for(n=k+1; n<N; n++)
      A[n][n]=SYRK(A[n][k], A[n][n])
   for(m=n+1; m<N; m++)
      A[m][n]+=GEMM(A[m][k], A[n][k])
```

Graph of tasks: Directed Acyclic Graph (DAG)

- Tasks linked with data dependency
- Wide literature on DAG scheduling
- What about memory and data movements (I/Os)?
Task graph scheduling and memory

- Consider a simple task graph
- Tasks have durations and memory demands

- Peak memory: maximum memory usage
- Trade-off between peak memory and makespan
Task graph scheduling and memory

- Consider a simple task graph
- Tasks have durations and memory demands

Peak memory: maximum memory usage
Trade-off between peak memory and makespan
Consider a simple task graph

Tasks have durations and memory demands

Peak memory: maximum memory usage

Trade-off between peak memory and makespan
Task graph scheduling and memory

- Consider a simple task graph
- Tasks have durations and memory demands

Peak memory: maximum memory usage
- Trade-off between peak memory and makespan
Task graph scheduling and memory

- Consider a simple task graph
- Tasks have durations and memory demands

Peak memory: maximum memory usage
Trade-off between peak memory and makespan
Going back to sequential processing

- Temporary data require memory
- Scheduling influences the peak memory
Going back to sequential processing

- Temporary data require memory
- Scheduling influences the peak memory
Going back to sequential processing

- Temporary data require memory
- Scheduling influences the peak memory
Outline

Task Graph Scheduling and Limited Memory

Pebble game models

Reducing Memory Footprint of Task Graphs

Reducing I/Os for Task Graphs
Pebble game for register allocation

From the 70s: limit usage of scarce registers
Model expressions as Directed Acyclic Graphs

Rules of the game:

- A pebble may be placed on a source node at any time (LOAD)
- If all predecessors of \(v \) are pebbled, a pebble may be placed on \(v \). (COMPUTE)
- A pebble may be removed from a vertex at any time. (EVICT)
- Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

\[(5 - z) \times (1 + x + y)\]
Pebble game for register allocation

- From the 70s: limit usage of scarce registers
- Model expressions as Directed Acyclic Graphs

Rules of the game:
- A pebble may be placed on a source node at any time (LOAD)
- If all predecessors of v are pebbled, a pebble may be placed on v. (COMPUTE)
- A pebble may be removed from a vertex at any time. (EVICT)
- Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

$$(5 - z) \times (1 + x + y)$$
Pebble game for register allocation

- From the 70s: limit usage of scarce registers
- Model expressions as Directed Acyclic Graphs

Rules of the game:
- A pebble may be placed on a source node at any time (LOAD)
- If all predecessors of \(v \) are pebbled, a pebble may be placed on \(v \). (COMPUTE)
- A pebble may be removed from a vertex at any time. (EVICT)
- Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs
Pebble game for register allocation

- From the 70s: limit usage of scarce registers
- Model expressions as Directed Acyclic Graphs

Rules of the game:
- A pebble may be placed on a source node at any time (LOAD)
- If all predecessors of \(v \) are pebbled, a pebble may be placed on \(v \). (COMPUTE)
- A pebble may be removed from a vertex at any time. (EVICT)

Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

\[(5 - z) \times (1 + x + y)\]
Pebble game for register allocation

▶ From the 70s: limit usage of scarce registers
▶ Model expressions as Directed Acyclic Graphs

Rules of the game:
▶ A pebble may be placed on a source node at any time (LOAD)
▶ If all predecessors of v are pebbled, a pebble may be placed on v. (COMPUTE)
▶ A pebble may be removed from a vertex at any time. (EVICT)
▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

$$(5 - z) \times (1 + x + y)$$
Pebble game for register allocation

- From the 70s: limit usage of scarce registers
- Model expressions as Directed Acyclic Graphs

Rules of the game:
- A pebble may be placed on a source node at any time (LOAD)
- If all predecessors of \(v \) are pebbled, a pebble may be placed on \(v \). (COMPUTE)
- A pebble may be removed from a vertex at any time. (EVICT)
- Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs
Pebble game for register allocation

- From the 70s: limit usage of scarce registers
- Model expressions as Directed Acyclic Graphs

Rules of the game:
- A pebble may be placed on a source node at any time (LOAD)
- If all predecessors of v are pebbled, a pebble may be placed on v. (COMPUTE)
- A pebble may be removed from a vertex at any time. (EVICT)
- Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs
When memory too limited: minimize I/Os

Red/Blue pebble game [Hong & Kung, 1981]

New rules:

- Limited number of red pebbles (=memory slots)
- Replace red pebble by blue pebble (WRITE)
- Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

- Successful to design lower bounds on I/Os and optimal algorithms
- Basis for other studies: communication-avoiding algorithms
 (recomputations may be allowed or forbidden)
When memory too limited: minimize I/Os

Red/Blue pebble game [Hong & Kung, 1981]

New rules:
- Limited number of red pebbles (=memory slots)
- Replace red pebble by blue pebble (WRITE)
- Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

- Successful to design lower bounds on I/Os and optimal algorithms
- Basis for other studies: communication-avoiding algorithms
 (recomputations may be allowed or forbidden)
When memory too limited: minimize I/Os

Red/Blue pebble game [Hong & Kung, 1981]

New rules:

- Limited number of red pebbles (=memory slots)
- Replace red pebble by blue pebble (WRITE)
- Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

- Successful to design lower bounds on I/Os and optimal algorithms
- Basis for other studies: communication-avoiding algorithms
 (recomputations may be allowed or forbidden)
When memory too limited: minimize I/Os

Red/Blue pebble game [Hong & Kung, 1981]

New rules:

- Limited number of red pebbles (memory slots)
- Replace red pebble by blue pebble (WRITE)
- Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

- Successful to design lower bounds on I/Os and optimal algorithms
- Basis for other studies: communication-avoiding algorithms
 (recomputations may be allowed or forbidden)
When memory too limited: minimize I/Os

Red/Blue pebble game [Hong & Kung, 1981]

New rules:
- Limited number of red pebbles (≈memory slots)
- Replace red pebble by blue pebble (WRITE)
- Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

- Successful to design lower bounds on I/Os and optimal algorithms
- Basis for other studies: communication-avoiding algorithms
 (recomputations may be allowed or forbidden)
When memory too limited: minimize I/Os

Red/Blue pebble game [Hong & Kung, 1981]

New rules:
- Limited number of red pebbles (=memory slots)
- Replace red pebble by blue pebble (WRITE)
- Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

- Successful to design lower bounds on I/Os and optimal algorithms
- Basis for other studies: communication-avoiding algorithms
 (recomputations may be allowed or forbidden)
When memory too limited: minimize I/Os

Red/Blue pebble game [Hong & Kung, 1981]

New rules:
- Limited number of red pebbles (=memory slots)
- Replace red pebble by blue pebble (WRITE)
- Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

- Successful to design lower bounds on I/Os and optimal algorithms
- Basis for other studies: communication-avoiding algorithms
 (recomputations may be allowed or forbidden)
Outline

Task Graph Scheduling and Limited Memory

Pebble game models

Reducing Memory Footprint of Task Graphs

Reducing I/Os for Task Graphs
Generalized (Black) Pebble Game

- Sparse matrix factorization
- Task graph: tree (with dependencies towards the root)
- Large temporary data

Generalized pebble game [Liu 1986]:
- Node have heterogeneous weights (memory demand)
- Compute task = replace inputs by outputs in memory
- output memory $\neq \sum$ input memory
Generalized (Black) Pebble Game

- Sparse matrix factorization
- Task graph: tree (with dependencies towards the root)
- Large temporary data

Generalized pebble game [Liu 1986]:
- Node have heterogeneous weights (memory demand)
- Compute task = replace inputs by outputs in memory
- output memory $\neq \sum$ input memory
Generalized (Black) Pebble Game

- Sparse matrix factorization
- Task graph: tree (with dependencies towards the root)
- Large temporary data

Generalized pebble game [Liu 1986]:
- Node have heterogeneous weights (memory demand)
- Compute task = replace inputs by outputs in memory
- output memory ≠ ∑ input memory
Generalized (Black) Pebble Game

- Sparse matrix factorization
- Task graph: tree (with dependencies towards the root)
- Large temporary data

Generalized pebble game [Liu 1986]:
- Node have heterogeneous weights (memory demand)
- Compute task = replace inputs by outputs in memory
- output memory $\neq \sum$ input memory
Generalized (Black) Pebble Game

- Sparse matrix factorization
- Task graph: tree (with dependencies towards the root)
- Large temporary data

Generalized pebble game [Liu 1986]:
- Node have heterogeneous weights (memory demand)
- Compute task = replace inputs by outputs in memory
- output memory $\neq \sum$ input memory
1. Restrict on postorder traversals: simpler control

- Complete subtree one after the other
- P_i: memory peak when processing subtree i
- r_i: residual memory after processing subtree i

For a given traversal, memory peak of the subtree:

$$\max \{ P_1, r_1 + P_2, r_1 + r_2 + P_3, Mem(r) \}$$

Peak minimized when subtrees are sorted by decreasing $P_i - r_i$

2. Optimal tree traversal for memory (not necessarily postorder)

- Possibly switch from one subtree to another
- Same intuition, slightly more complex algorithm, complex proof
Minimizing memory for series-parallel graphs (1/3)

- Not all task graphs are trees
- But many exhibit regularities
- Important subclass: SP graphs

single vertex:

series composition:

parallel composition:
Minimizing memory for series-parallel graphs (2/3)

Base case: parallel chains:

Edge using the minimum amount of memory, on each chain: e_1, \ldots, e_n.

Lemma

There exists an schedule with minimal memory stopping on edges e_1, \ldots, e_n.

1. Split the graph on minimal cut e_1, \ldots, e_n
2. Apply Liu’s algorithm on resulting trees
Base case: parallel chains:

Edge using the minimum amount of memory, on each chain: e_1, \ldots, e_n.

Lemma

There exists an schedule with minimal memory stopping on edges e_1, \ldots, e_n.

1. Split the graph on minimal cut e_1, \ldots, e_n
2. Apply Liu’s algorithm on resulting trees
Base case: parallel chains:

Edge using the minimum amount of memory, on each chain: e_1, \ldots, e_n.

Lemma

There exists an schedule with minimal memory stopping on edges e_1, \ldots, e_n.

1. Split the graph on minimal cut e_1, \ldots, e_n
2. Apply Liu’s algorithm on resulting trees
Minimizing memory for series-parallel graphs (3/3)

- Follow recursive definition of the graph
- Simultaneously compute minimal cut and optimal schedule
- Replace subgraph by linear chain corresponding to the schedule

Heuristic method for general graphs

- Transform graph into SP-graph by adding synchronisation points
- Compute optimal schedule on obtained SP-graph
Other results on task graph scheduling for memory

Parallel processing on shared-memory platforms

- Tradeoff between time-to-solution and memory
- Dynamique scheduling under memory constraint
 - Dynamic scheduling may go out of memory
 - Transform the graph (add specific edges)
 - Guarantee memory stays below specified threshold

Algorithms implemented in gitlab.inria.fr/lmarchal/memdag
Fused Depthwise Tiling for Memory Optimization in TinyML
Deep Neural Network Inference
Rafael Stahl, Daniel Mueller-Gritschneder, Ulf Schlichtmann
tinyML Research Symposium 2023

arXiv:2303.17878

► Inference of DNN on microcontrollers
► Model tiling to reduce memory
► Chain graph between NN layers → Series-Parallel graph
► Use of our optimal algorithm for SP-graphs
Application for DNN training

Work by Lionel Eyraud-Dubois, Olivier Beaumont et. al.

DNN: specific graph (∼ double chain)

Huge memory demand (store activations)

Delete/recompute some activations (rematerialization)

Offload some activations on slow storage

Design of efficient rematerialization/offloading strategies:
https://gitlab.inria.fr/hiepacs/rotor
Outline

Task Graph Scheduling and Limited Memory

Pebble game models

Reducing Memory Footprint of Task Graphs

Reducing I/Os for Task Graphs
Platform model

- Memory too scarce to accommodate all (input) data
- Data initially on a large, slow storage

GPUs provide large speed-ups for reduced energy, but:
- **limited memory** within GPU
- connected through bus with **limited bandwidth**
Dynamic view of a task graph

At any time step: consider only available tasks

- Independant tasks
- Sharing some input data

→ bipartite graph between data and tasks
Dynamic view of a task graph

At any time step: consider only available tasks

- Independant tasks
- Sharing some input data

→ bipartite graph between data and tasks
Dynamic scheduling of task graphs

- Tasks appear over time (task graph discovered at runtime)
- Two questions:
 - Partition tasks among GPUs
 - Order task on each GPUs
- When task input data not on GPU: load it from main memory (possibly before the execution: prefetching)
- When memory is full: evict data Eviction policy

Two sorted sets of tasks per GPU (FIFO):
1. TaskBuffer: tasks definitively allocated on a GPU (data possibly being prefetched)
2. PlannedTasks: good candidate tasks for a GPU

![Diagram showing the flow of tasks from PlannedTasks through TaskBuffer to GPU]
Dynamic scheduling of task graphs

- Tasks appear over time (task graph discovered at runtime)
- Two questions:
 - Partition tasks among GPUs
 - Order task on each GPUs
- When task input data not on GPU: load it from main memory (possibly before the execution: prefetching)
- When memory is full: evict data Eviction policy

Two sorted sets of tasks per GPU (FIFO):
1. TaskBuffer: tasks definitively allocated on a GPU (data possibly being prefetched)
2. PlannedTasks: good candidate tasks for a GPU
DARTS (Data-Aware Reactive Task Scheduling)

How to fill PlannedTasks\(_k\) when needed:

1. Concentrate on data, choose “best” data to load
2. Look for tasks that \(GPU_k\) can do with \(D\) + its current data
3. Choose data with largest ratio:
 \[
 \frac{\text{computation time of tasks enabled with } D}{\text{time needed to transfer data } D}
 \]
4. Break ties with task priorities (critical path)
5. Put all “enabled” tasks in PlannedTasks\(_k\)

![Diagram of tasks and data]
DARTS (Data-Aware Reactive Task Scheduling)

How to fill PlannedTasks$_k$ when needed:

1. Concentrate on data, choose “best” data to load
2. Look for tasks that GPU_k can do with D + its current data
3. Choose data with largest ratio:
 \[
 \frac{\text{computation time of tasks enabled with } D}{\text{time needed to transfer data } D}
 \]
4. Break ties with task priorities (critical path)
5. Put all “enabled” tasks in PlannedTasks$_k$

![Task Dependencies Diagram]
Custom eviction policy

Existing cache management policies:

▶ With no information about future tasks/requests:
 simple policies based on past usage, eg. Last Recently Used (LRU)

▶ With perfect information on future accesses:
 Belady’s rule (1966): evict data with furthest access

In our system:

▶ No complete vision of the future 😞
▶ Window of allocated tasks and planned tasks 😊

Eviction policy for DARTS:

1. Remove data used by fewest tasks in PlannedTasks
2. If needed, apply Belady’s rule on TaskBuffer
Performance on memory-limited GPUs

- Cholesky factorization on 2 GPUs
- Green vertical line: matrix uses all available memory
Conclusion

- Concentrate on **data movements** is the key for performance
- Algorithm design can help re-organizing computations for better data reuse
- With help from: compiler theory, cache management, ...
- Scheduling of task graphs: powerful model with applications for linear algebra, DNN training, workflows,...