
Scheduling task graphs
to reduce data movement

Loris Marchal
(CNRS & ENS Lyon)

ILLS – ÉTS Montréal
June 2023

2 / 30

High Performance Computing

▶ Numerical simulations drive new discoveries
▶ Larger systems with better accuracy: more data and computation

3 / 30

Data access problem

Evolution of computing speed vs. data access speed (bandwidth)

CHAPTER 20. OPTICAL INTERCONNECTION NETWORKS FOR
HIGH PERFORMANCE SYSTEMS 6

20.2.2 HPC - Towards Exascale

The next grand challenge for HPC is to reach EFLOPs (1018 operations per
second), the exascale computer [21, 22]. To achieve this in a relatively
economical and manufacturably viable manner the main goal is to design a
machine that consumes approximately 20 MW or 50 GFLOPs/watt. This goal
has been recently made more achievable with major shifts in design which
place the memory closer to the GPU [23, 24]. Power efficiency has improved in
the most recent machines by 2.5x through the introduction of the new
architectures of the Nvidia Tesla P100/ Volta V100 and the Zettascaler 2.0 and
2.2. These new architectures including innovative data movement solutions
have vastly improved the GFlops/Watt metric [23].

Figure 20.4: Evolution of the average top 10 supercomputers normalized to year
2010

source: https://doi.org/10.1016/B978-0-12-816502-7.00020-8

Byte-per-flop ratio keeps decreasing ⇒ Data access critical for performance

https://doi.org/10.1016/B978-0-12-816502-7.00020-8

4 / 30

Beyond the memory wall

▶ Time to move the data > Time to compute on the data
▶ Similar problem in microprocessor design: “memory wall”
▶ Traditional workaround:

add a faster but smaller “cache” memory
▶ Now a hierarchy of caches !

5 / 30

Computing with bounded cache/memory

▶ Limited amount of fast cache
▶ Performance sensitive to data locality
▶ Optimize data reuse
▶ Avoid data movements (I/Os) between memory and cache(s)

(time-consuming and energy-consuming)

In this talk: some algorithmic approaches to this problem

5 / 30

Computing with bounded cache/memory

▶ Limited amount of fast cache
▶ Performance sensitive to data locality
▶ Optimize data reuse
▶ Avoid data movements (I/Os) between memory and cache(s)

(time-consuming and energy-consuming)

In this talk: some algorithmic approaches to this problem

6 / 30

Outline

Task Graph Scheduling and Limited Memory

Pebble game models

Reducing Memory Footprint of Task Graphs

Reducing I/Os for Task Graphs

7 / 30

Outline

Task Graph Scheduling and Limited Memory

Pebble game models

Reducing Memory Footprint of Task Graphs

Reducing I/Os for Task Graphs

8 / 30

Taming HPC platforms with runtime systems
▶ Write you application as function calls (tasks),
▶ Specify data input/output (dependencies)
▶ Provide function codes for specific cores/GPUs
▶ Let the system do the scheduling at runtime!

11 / 11

Taming HPC platforms with runtime systems

I Write you application as function calls (tasks),
I Specify data input/output (dependencies)
I Provide function codes for specific cores/GPUs
I Let the system do the scheduling at runtime!

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

Cholesky_decomposition(A):
for(k=0; k<N; k++)

A[k][k]=POTRF(A[k][k])
for(m=k+1; m<N; m++)

A[m][k]=TRSM(A[k][k], A[m][k])
for(n=k+1; n<N; n++)

A[n][n]=SYRK(A[n][k], A[n][n])
for(m=n+1; m<N; m++)

A[m][n]+=GEMM(A[m][k],A[n][k])

Graph of tasks: Directed Acyclic Graph (DAG)
I Tasks linked with data dependency
I Wide literature on DAG scheduling
I What about memory and data movements (I/Os) ?

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

Graph of tasks: Directed Acyclic Graph (DAG)
▶ Tasks linked with data dependency
▶ Wide literature on DAG scheduling
▶ What about memory and data movements (I/Os) ?

8 / 30

Taming HPC platforms with runtime systems
▶ Write you application as function calls (tasks),
▶ Specify data input/output (dependencies)
▶ Provide function codes for specific cores/GPUs
▶ Let the system do the scheduling at runtime!

11 / 11

Taming HPC platforms with runtime systems

I Write you application as function calls (tasks),
I Specify data input/output (dependencies)
I Provide function codes for specific cores/GPUs
I Let the system do the scheduling at runtime!

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

Cholesky_decomposition(A):
for(k=0; k<N; k++)

A[k][k]=POTRF(A[k][k])
for(m=k+1; m<N; m++)

A[m][k]=TRSM(A[k][k], A[m][k])
for(n=k+1; n<N; n++)

A[n][n]=SYRK(A[n][k], A[n][n])
for(m=n+1; m<N; m++)

A[m][n]+=GEMM(A[m][k],A[n][k])

Graph of tasks: Directed Acyclic Graph (DAG)
I Tasks linked with data dependency
I Wide literature on DAG scheduling
I What about memory and data movements (I/Os) ?

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

Graph of tasks: Directed Acyclic Graph (DAG)
▶ Tasks linked with data dependency
▶ Wide literature on DAG scheduling
▶ What about memory and data movements (I/Os) ?

9 / 30

Task graph scheduling and memory

▶ Consider a simple task graph
▶ Tasks have durations and memory demands

A

B

C

D

E

F

▶ Peak memory: maximum memory usage
▶ Trade-off between peak memory and makespan

9 / 30

Task graph scheduling and memory

▶ Consider a simple task graph
▶ Tasks have durations and memory demands

A

B

C

D

E

F

duration

m
em

or
y

▶ Peak memory: maximum memory usage
▶ Trade-off between peak memory and makespan

9 / 30

Task graph scheduling and memory

▶ Consider a simple task graph
▶ Tasks have durations and memory demands

A B

C

D

E F

time

Processor 1:

Processor 2:

▶ Peak memory: maximum memory usage
▶ Trade-off between peak memory and makespan

9 / 30

Task graph scheduling and memory

▶ Consider a simple task graph
▶ Tasks have durations and memory demands

out of memory!

A B

C

D

E F

time

Processor 1:

Processor 2:

▶ Peak memory: maximum memory usage
▶ Trade-off between peak memory and makespan

9 / 30

Task graph scheduling and memory

▶ Consider a simple task graph
▶ Tasks have durations and memory demands

A B

C

D

E F

time

Processor 1:

Processor 2:

▶ Peak memory: maximum memory usage
▶ Trade-off between peak memory and makespan

10 / 30

Going back to sequential processing

▶ Temporary data require memory
▶ Scheduling influences the peak memory

A

B

C

D

E

F

10 / 30

Going back to sequential processing

▶ Temporary data require memory
▶ Scheduling influences the peak memory

A B C D E F

10 / 30

Going back to sequential processing

▶ Temporary data require memory
▶ Scheduling influences the peak memory

A B C D E F

A BC D E F

11 / 30

Outline

Task Graph Scheduling and Limited Memory

Pebble game models

Reducing Memory Footprint of Task Graphs

Reducing I/Os for Task Graphs

12 / 30

Pebble game for register allocation

▶ From the 70s: limit usage of scarce registers
▶ Model expressions as Directed Acyclic Graphs

y

−

5 1z x

×

+

(5 − z)× (1 + x + y)
Rules of the game:
▶ A pebble may be placed on a source node at any time (LOAD)
▶ If all predecessors of v are pebbled, a pebble may be placed on v .

(COMPUTE)
▶ A pebble may be removed from a vertex at any time. (EVICT)
▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

12 / 30

Pebble game for register allocation

▶ From the 70s: limit usage of scarce registers
▶ Model expressions as Directed Acyclic Graphs

+−

5 1z x

×

y

(5 − z)× (1 + x + y)
Rules of the game:
▶ A pebble may be placed on a source node at any time (LOAD)
▶ If all predecessors of v are pebbled, a pebble may be placed on v .

(COMPUTE)
▶ A pebble may be removed from a vertex at any time. (EVICT)
▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

12 / 30

Pebble game for register allocation

▶ From the 70s: limit usage of scarce registers
▶ Model expressions as Directed Acyclic Graphs

−

5 1z x

×

y

+

(5 − z)× (1 + x + y)
Rules of the game:
▶ A pebble may be placed on a source node at any time (LOAD)
▶ If all predecessors of v are pebbled, a pebble may be placed on v .

(COMPUTE)
▶ A pebble may be removed from a vertex at any time. (EVICT)
▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

12 / 30

Pebble game for register allocation

▶ From the 70s: limit usage of scarce registers
▶ Model expressions as Directed Acyclic Graphs

5 1z x

×

y

+−

(5 − z)× (1 + x + y)
Rules of the game:
▶ A pebble may be placed on a source node at any time (LOAD)
▶ If all predecessors of v are pebbled, a pebble may be placed on v .

(COMPUTE)
▶ A pebble may be removed from a vertex at any time. (EVICT)
▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

12 / 30

Pebble game for register allocation

▶ From the 70s: limit usage of scarce registers
▶ Model expressions as Directed Acyclic Graphs

+−

5 1z x

×

y

(5 − z)× (1 + x + y)
Rules of the game:
▶ A pebble may be placed on a source node at any time (LOAD)
▶ If all predecessors of v are pebbled, a pebble may be placed on v .

(COMPUTE)
▶ A pebble may be removed from a vertex at any time. (EVICT)
▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

12 / 30

Pebble game for register allocation

▶ From the 70s: limit usage of scarce registers
▶ Model expressions as Directed Acyclic Graphs

+−

5 1z x

×

y

(5 − z)× (1 + x + y)
Rules of the game:
▶ A pebble may be placed on a source node at any time (LOAD)
▶ If all predecessors of v are pebbled, a pebble may be placed on v .

(COMPUTE)
▶ A pebble may be removed from a vertex at any time. (EVICT)
▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

12 / 30

Pebble game for register allocation

▶ From the 70s: limit usage of scarce registers
▶ Model expressions as Directed Acyclic Graphs

+−

5 1z x

×

y

(5 − z)× (1 + x + y)
Rules of the game:
▶ A pebble may be placed on a source node at any time (LOAD)
▶ If all predecessors of v are pebbled, a pebble may be placed on v .

(COMPUTE)
▶ A pebble may be removed from a vertex at any time. (EVICT)
▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

13 / 30

When memory too limited: minimize I/Os

Red/Blue pebble game [Hong & Kung, 1981]
New rules:
▶ Limited number of red pebbles (=memory slots)
▶ Replace red pebble by blue pebble (WRITE)
▶ Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE

+−

5 1z x

×

y

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

▶ Successful to design lower bounds on I/Os and optimal algorithms
▶ Basis for other studies: communication-avoiding algorithms

(recomputations may be allowed or forbidden)

13 / 30

When memory too limited: minimize I/Os

Red/Blue pebble game [Hong & Kung, 1981]
New rules:
▶ Limited number of red pebbles (=memory slots)
▶ Replace red pebble by blue pebble (WRITE)
▶ Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE 1z x

×

y

+−

5

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

▶ Successful to design lower bounds on I/Os and optimal algorithms
▶ Basis for other studies: communication-avoiding algorithms

(recomputations may be allowed or forbidden)

13 / 30

When memory too limited: minimize I/Os

Red/Blue pebble game [Hong & Kung, 1981]
New rules:
▶ Limited number of red pebbles (=memory slots)
▶ Replace red pebble by blue pebble (WRITE)
▶ Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE 1z x

×

y

+−

5

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

▶ Successful to design lower bounds on I/Os and optimal algorithms
▶ Basis for other studies: communication-avoiding algorithms

(recomputations may be allowed or forbidden)

13 / 30

When memory too limited: minimize I/Os

Red/Blue pebble game [Hong & Kung, 1981]
New rules:
▶ Limited number of red pebbles (=memory slots)
▶ Replace red pebble by blue pebble (WRITE)
▶ Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE z x

×

y

+−

5 1

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

▶ Successful to design lower bounds on I/Os and optimal algorithms
▶ Basis for other studies: communication-avoiding algorithms

(recomputations may be allowed or forbidden)

13 / 30

When memory too limited: minimize I/Os

Red/Blue pebble game [Hong & Kung, 1981]
New rules:
▶ Limited number of red pebbles (=memory slots)
▶ Replace red pebble by blue pebble (WRITE)
▶ Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE

−

5 1z x

×

y

+

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

▶ Successful to design lower bounds on I/Os and optimal algorithms
▶ Basis for other studies: communication-avoiding algorithms

(recomputations may be allowed or forbidden)

13 / 30

When memory too limited: minimize I/Os

Red/Blue pebble game [Hong & Kung, 1981]
New rules:
▶ Limited number of red pebbles (=memory slots)
▶ Replace red pebble by blue pebble (WRITE)
▶ Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE

−

5 1z x

×

y

+

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

▶ Successful to design lower bounds on I/Os and optimal algorithms
▶ Basis for other studies: communication-avoiding algorithms

(recomputations may be allowed or forbidden)

13 / 30

When memory too limited: minimize I/Os

Red/Blue pebble game [Hong & Kung, 1981]
New rules:
▶ Limited number of red pebbles (=memory slots)
▶ Replace red pebble by blue pebble (WRITE)
▶ Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE

−

5 1z x

×

y

+

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

▶ Successful to design lower bounds on I/Os and optimal algorithms
▶ Basis for other studies: communication-avoiding algorithms

(recomputations may be allowed or forbidden)

14 / 30

Outline

Task Graph Scheduling and Limited Memory

Pebble game models

Reducing Memory Footprint of Task Graphs

Reducing I/Os for Task Graphs

15 / 30

Generalized (Black) Pebble Game

▶ Sparse matrix factorization
▶ Task graph: tree (with dependencies

towards the root)
▶ Large temporary data

Generalized pebble game [Liu 1986]:
▶ Node have heterogeneous weights (memory

demand)
▶ Compute task = replace inputs by outputs in

memory
▶ output memory ̸=

∑
input memory

M
em

or
y

32

12 1527 3

45

8

13

15 / 30

Generalized (Black) Pebble Game

▶ Sparse matrix factorization
▶ Task graph: tree (with dependencies

towards the root)
▶ Large temporary data

Generalized pebble game [Liu 1986]:
▶ Node have heterogeneous weights (memory

demand)
▶ Compute task = replace inputs by outputs in

memory
▶ output memory ̸=

∑
input memory

12

32

12 1527 3

45

8

13

M
em

or
y

15 / 30

Generalized (Black) Pebble Game

▶ Sparse matrix factorization
▶ Task graph: tree (with dependencies

towards the root)
▶ Large temporary data

Generalized pebble game [Liu 1986]:
▶ Node have heterogeneous weights (memory

demand)
▶ Compute task = replace inputs by outputs in

memory
▶ output memory ̸=

∑
input memory

27

123 8

M
em

or
y

1332

12 1527

45

15 / 30

Generalized (Black) Pebble Game

▶ Sparse matrix factorization
▶ Task graph: tree (with dependencies

towards the root)
▶ Large temporary data

Generalized pebble game [Liu 1986]:
▶ Node have heterogeneous weights (memory

demand)
▶ Compute task = replace inputs by outputs in

memory
▶ output memory ̸=

∑
input memory

32

32

12 1527 3

45

8

13

M
em

or
y

15 / 30

Generalized (Black) Pebble Game

▶ Sparse matrix factorization
▶ Task graph: tree (with dependencies

towards the root)
▶ Large temporary data

Generalized pebble game [Liu 1986]:
▶ Node have heterogeneous weights (memory

demand)
▶ Compute task = replace inputs by outputs in

memory
▶ output memory ̸=

∑
input memory

15

32

3 8

M
em

or
y

1332

12 1527

45

16 / 30

Tree Traversals with Smallest Memory [Liu 1987]

1. Restrict on postorder traversals: simpler control

r

P1

r1

P2

r2

P3

r3

▶ Complete subtree one after the other
▶ Pi : memory peak when processing subtree i

▶ ri : residual memory after processing subtree i

▶ For a given traversal, memory peak of the subtree:
max

{
P1, r1 + P2, r1 + r2 + P3, Mem(r)

}
▶ Peak minimized when subtrees are sorted by decreasing Pi − ri

2. Optimal tree traversal for memory (not necessarily postorder)
▶ Possibly switch from one subtree to another
▶ Same intuition, slightly more complex algorithm, complex proof

17 / 30

Minimizing memory for series-parallel graphs (1/3)

▶ Not all task graphs are trees
▶ But many exhibit regularities
▶ Important subclass: SP graphs

Tsingle vertex:

G1 G2series composition:

G1

G2

parallel composition:

18 / 30

Minimizing memory for series-parallel graphs (2/3)

Base case: parallel chains:

emin
i

umin
i vmin

i

s t

Edge using the minimum amount of memory, on each chain: e1, . . . , en.

Lemma
There exists an schedule with minimal memory stopping on edges
e1, . . . , en.

1. Split the graph on minimal cut e1, . . . , en
2. Apply Liu’s algorithm on resulting trees

18 / 30

Minimizing memory for series-parallel graphs (2/3)

Base case: parallel chains:

emin
i

vmin
iumin

i

ts

Edge using the minimum amount of memory, on each chain: e1, . . . , en.

Lemma
There exists an schedule with minimal memory stopping on edges
e1, . . . , en.

1. Split the graph on minimal cut e1, . . . , en
2. Apply Liu’s algorithm on resulting trees

18 / 30

Minimizing memory for series-parallel graphs (2/3)

Base case: parallel chains:
S T

umin
i vmin

i

ts

Edge using the minimum amount of memory, on each chain: e1, . . . , en.

Lemma
There exists an schedule with minimal memory stopping on edges
e1, . . . , en.

1. Split the graph on minimal cut e1, . . . , en
2. Apply Liu’s algorithm on resulting trees

19 / 30

Minimizing memory for series-parallel graphs (3/3)
▶ Follow recursive definition of the graph
▶ Simultaneously compute minimal cut and optimal schedule
▶ Replace subgraph by linear chain corresponding to the schedule

G1 G2

series composition: G1

G2

parallel composition:

Heuristic method for general graphs
▶ Transform graph into SP-graph by adding synchronisation points
▶ Compute optimal schedule on obtained SP-graph

20 / 30

Other results on task graph scheduling for memory

Parallel processing on shared-memory platforms
▶ Tradeoff between time-to-solution and memory
▶ Dynamique scheduling under memory constraint

▶ Dynamic scheduling may go out of memory
▶ Transform the graph (add specific edges)
▶ Guarantee memory stays below specified threshold

Algorithms implemented in gitlab.inria.fr/lmarchal/memdag

https://gitlab.inria.fr/lmarchal/memdag

21 / 30

Application for DNN inference

Fused Depthwise Tiling for Memory Optimization in TinyML
Deep Neural Network Inference

Rafael Stahl, Daniel Mueller-Gritschneder, Ulf Schlichtmann
{r.stahl,daniel.mueller,ulf.schlichtmann}@tum.de

Technical University of Munich
Munich, Germany

ABSTRACT
Memory optimization for deep neural network (DNN) inference
gains high relevance with the emergence of TinyML, which refers
to the deployment of DNN inference tasks on tiny, low-power mi-
crocontrollers. Applications such as audio keyword detection or
radar-based gesture recognition are heavily constrained by the lim-
ited memory on such tiny devices because DNN inference requires
large intermediate run-time bu�ers to store activations and other
intermediate data, which leads to high memory usage. In this paper,
we propose a new Fused Depthwise Tiling (FDT) method for the
memory optimization of DNNs, which, compared to existing tiling
methods, reduces memory usage without inducing any run time
overhead. FDT applies to a larger variety of network layers than
existing tiling methods that focus on convolutions. It improves
TinyML memory optimization signi�cantly by reducing memory
of models where this was not possible before and additionally pro-
viding alternative design points for models that show high run
time overhead with existing methods. In order to identify the best
tiling con�guration, an end-to-end �ow with a new path discovery
method is proposed, which applies FDT and existing tiling methods
in a fully automated way, including the scheduling of the operations
and planning of the layout of bu�ers in memory. Out of seven eval-
uated models, FDT achieved signi�cant memory reduction for two
models by 76.2% and 18.1% where existing tiling methods could not
be applied. Two other models showed a signi�cant run time over-
head with existing methods and FDT provided alternative design
points with no overhead but reduced memory savings.

KEYWORDS
neural networks, embedded software

ACM Reference Format:
Rafael Stahl, Daniel Mueller-Gritschneder, Ulf Schlichtmann. 2023. Fused
Depthwise Tiling for Memory Optimization in TinyML Deep Neural Net-
work Inference. In Proceedings of tinyML Research Symposium (tinyML Re-
search Symposium’23). ACM, New York, NY, USA, 6 pages.

1 INTRODUCTION
Edge machine learning applications o�er superior possibilities over
cloud computing approaches in terms of communication demand,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
tinyML Research Symposium’23, March 2023, Burlingame, CA
© 2023 Copyright held by the owner/author(s).

latency and data privacy. Edge devices have a wide range of com-
putation classes. It was shown that for certain machine learning
workloads, the inference of Deep Neural Networks (DNNs) can be
performed even on tiny, low-power microcontroller-type devices.
The solutions that enable DNN inference on microcontrollers are
known as TinyML or Extreme Edge AI and were successfully applied
to applications such as keyword spotting, visual wake-up, anomaly
detection or radar-based gesture recognition. A central challenge
that TinyML deployment faces is the narrowly constrained em-
bedded memory that may only o�er several hundred kB of SRAM.
Therefore, TinyML solutions include methods to reduce the mem-
ory usage of any given DNN inference task, such as quantization,
pruning and Network Architecture Search (NAS). All these methods
have in common that they change DNN parameters and, therefore,
the DNN’s behavior and inference results. One method to reduce
memory usage without changing any DNN behavior is fused tiling.
If the lifetimes of two intermediate tensor bu�ers do not overlap,
their storage bu�ers may overlap, allowing to reduce the overall
memory demand. The size of intermediate bu�ers can be reduced
by mutating the DNN graph with tiling and their lifetimes can be
decoupled by fusing multiple consecutive operations.

The main contribution of this paper is the introduction of Fused
Depthwise Tiling (FDT) for the memory optimization of DNNs.
By tiling depthwise (i.e., by channels for convolutions), new tiling
opportunities are enabled that reduce peak memory usage with-
out any run time overheads that would be induced by existing
tiling methods. Even though convolutions and dense operations
require all inputs for each output, two of them can be fused to tile
an intermediate bu�er. Additionally, FDT can be applied to more
layer types than existing methods that focus solely on convolu-
tions, such that a wider range of models can be tiled. The new FDT
tiling method overall improves TinyML memory optimization sig-
ni�cantly, not by replacing existing tiling methods, but expanding
the tiling design space in combination with existing methods. To
explore this expanded tiling design space, we provide an end-to-end
deployment �ow that automatically determines where and how
to apply fused tiling optimally on any given DNN. Exploitation of
the tiled graphs for memory reduction additionally requires a suit-
able memory-aware scheduling of operations and memory bu�er
layout planning. Hence, these two steps are also automated and
e�ciently implemented to conduct a fast exploration. To quickly
�nd optimized tiling opportunities, we also run a process called
path discovery that analyzes the DNN graph and explores possible
tiling con�gurations. In summary, our contributions are as follows.

(1) The tiling method FDT applied for the memory optimization
of DNNs to expand the design space by reducing memory
further or eliminating run time overheads.

ar
X

iv
:2

30
3.

17
87

8v
1

 [c
s.L

G
]

31
 M

ar
 2

02
3

arXiv:2303.17878

Fused Depthwise Tiling for Memory Optimization in TinyML
Deep Neural Network Inference
Rafael Stahl, Daniel Mueller-Gritschneder, Ulf Schlichtmann
tinyML Research Symposium 2023

▶ Inference of DNN on microcontrollers
▶ Model tiling to reduce memory
▶ Chain graph between NN layers → Series-Parallel graph
▶ Use of our optimal algorithm for SP-graphs

https://arxiv.org/abs/2303.17878

22 / 30

Application for DNN training

Work by Lionel Eyraud-Dubois, Olivier Beaumont et. al.

F1 F2 · · · FL−1 FL Loss

B1 B2 B3 · · · BL BLoss

a0 a1 a2 aL−2 aL−1 aL loss

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aLā1 ā2 ā3 āL−1 āL

▶ DNN: specific graph (≈ double chain)
▶ Huge memory demand (store activations)
▶ Delete/recompute some activations (rematerialization)
▶ Offload some activations on slow storage

Design of efficient rematerialization/offloading strategies:
https://gitlab.inria.fr/hiepacs/rotor

https://gitlab.inria.fr/hiepacs/rotor

23 / 30

Outline

Task Graph Scheduling and Limited Memory

Pebble game models

Reducing Memory Footprint of Task Graphs

Reducing I/Os for Task Graphs

24 / 30

Platform model

▶ Memory too scarce to accomodate all (input) data
▶ Data initially on a large, slow storage

main memory

PCI express bus

CPU

GPU

GPU
memory

GPU
memory

GPUs provide large speed-ups for reduced energy, but:
▶ limited memory within GPU
▶ connected through bus with limited bandwidth

25 / 30

Dynamic view of a task graph

At any time step: consider only available tasks
▶ Independant tasks
▶ Sharing some input data

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

→ bipartite graph between data and tasks

25 / 30

Dynamic view of a task graph

At any time step: consider only available tasks
▶ Independant tasks
▶ Sharing some input data

→ bipartite graph between data and tasks

26 / 30

Dynamic scheduling of task graphs

▶ Tasks appear over time (task graph discovered at runtime)
▶ Two questions:

▶ Partition tasks among GPUs
▶ Order task on each GPUs

▶ When task input data not on GPU: load it from main memory
(possibly before the execution: prefetching)

▶ When memory is full: evict data Eviction policy

PlannedTasks TaskBu↵er GPU

M
em

or
y

32

12 1527 3

45

8

13

Two sorted sets of tasks per GPU (FIFO):
1. TaskBuffer: tasks definitively allocated on a GPU

(data possibly being prefetched)
2. PlannedTasks: good candidate tasks for a GPU

26 / 30

Dynamic scheduling of task graphs

▶ Tasks appear over time (task graph discovered at runtime)
▶ Two questions:

▶ Partition tasks among GPUs
▶ Order task on each GPUs

▶ When task input data not on GPU: load it from main memory
(possibly before the execution: prefetching)

▶ When memory is full: evict data Eviction policy

PlannedTasks TaskBu↵er GPU

M
em

or
y

32

12 1527 3

45

8

13

Two sorted sets of tasks per GPU (FIFO):
1. TaskBuffer: tasks definitively allocated on a GPU

(data possibly being prefetched)
2. PlannedTasks: good candidate tasks for a GPU

27 / 30

DARTS (Data-Aware Reactive Task Scheduling)

PlannedTasks TaskBu↵er GPU

M
em

or
y

32

12 1527 3

45

8

13

How to fill PlannedTasksk when needed:
1. Concentrate on data, choose “best” data to load
2. Look for tasks that GPUk can do with D + its current data
3. Choose data with largest ratio:

computation time of tasks enabled with D

time needed to transfer data D

4. Break ties with task priorities (critical path)
5. Put all “enabled” tasks in PlannedTasksk

T1 T2 T3 T4 T5

D1 D2 D3 D4 D5 D6

27 / 30

DARTS (Data-Aware Reactive Task Scheduling)

PlannedTasks TaskBu↵er GPU

M
em

or
y

32

12 1527 3

45

8

13

How to fill PlannedTasksk when needed:
1. Concentrate on data, choose “best” data to load
2. Look for tasks that GPUk can do with D + its current data
3. Choose data with largest ratio:

computation time of tasks enabled with D

time needed to transfer data D

4. Break ties with task priorities (critical path)
5. Put all “enabled” tasks in PlannedTasksk

T1 T2 T3 T4 T5

D1 D2 D3 D4 D5 D6

28 / 30

Custom eviction policy

Existing cache management policies:
▶ With no information about future tasks/requests:

simple policies based on past usage, eg. Last Recently Used (LRU)
▶ With perfect information on future accesses:

Belady’s rule (1966): evict data with furthest access

In our system:
▶ No complete vision of the future /
▶ Window of allocated tasks and planned tasks ,

Eviction policy for DARTS:
1. Remove data used by fewest tasks in PlannedTasks
2. If needed, apply Belady’s rule on TaskBuffer

29 / 30

Performance on memory-limited GPUs

▶ Cholesky factorization on 2 GPUs
▶ Green vertical line: matrix uses all available memory

30 / 30

Conclusion

▶ Concentrate on data movements is the key for performance

▶ Algorithm design can help re-organizing computations
for better data reuse

▶ With help from: compiler theory, cache management, . . .

▶ Scheduling of task graphs: powerful model
with applications for linear algebra, DNN training, workflows,. . .

	Introduction and Motivation
	Task Graph Scheduling and Limited Memory
	Pebble game models
	Reducing Memory Footprint of Task Graphs
	Reducing I/Os for Task Graphs

