Scheduling task graphs
to reduce data movement

Loris Marchal
(CNRS & ENS Lyon)

ILLS — ETS Montréal
June 2023

High Performance Computing

» Numerical simulations drive new discoveries

» Larger systems with better accuracy: more data and computation
2/30

Data access problem

Evolution of computing speed vs. data access speed (bandwidth)

100 —&— Node compute power (FLOP/s)
~*= Node bandwidth (Gbit/s)
Byte-per-flop ratio

10

B Node power: 2026 [GF/s]
B Node BW: 14.3 [GB/s]
@ Byte-per-FLOP: 0.001 [B/F]

in2010:

ode power: 31 [GF/s]

l Node BW: 2.7 [GB/s]

0.1 -| © Byte-per-FLOP: 0.09 [B/F]

Avo

Evolution relative to year 2010
(average top10 systems)

x0.08)

Year source: https://doi.org/10.1016/B978-0-12-816502-7.00020-8

Byte-per-flop ratio keeps decreasing = Data access critical for performance

3/30

https://doi.org/10.1016/B978-0-12-816502-7.00020-8

Beyond the memory wall

» Time to move the data > Time to compute on the data
» Similar problem in microprocessor design: “memory wall’

» Traditional workaround:
add a faster but smaller “cache” memory

» Now a hierarchy of caches !

CPU Core

Register:

L1 Cache (on
chip, banked)

L2 Cache Unified

L3 Cache (Unified)

Main Memory

4/30

Computing with bounded cache/memory

» Limited amount of fast cache
» Performance sensitive to data locality
» Optimize data reuse

» Avoid data movements (I/Os) between memory and cache(s)
(time-consuming and energy-consuming)

5/ 30

Computing with bounded cache/memory

» Limited amount of fast cache
» Performance sensitive to data locality
» Optimize data reuse

» Avoid data movements (I/Os) between memory and cache(s)
(time-consuming and energy-consuming)

In this talk: some algorithmic approaches to this problem

5/ 30

QOutline

Task Graph Scheduling and Limited Memory
Pebble game models
Reducing Memory Footprint of Task Graphs

Reducing 1/Os for Task Graphs

6 /30

QOutline

Task Graph Scheduling and Limited Memory

7/30

Taming HPC platforms with runtime systems

» Write you application as function calls (tasks),

» Specify data input/output (dependencies)

TRSM2.0

» Provide function codes for specific cores/GPUs e}

» Let the system do the scheduling at runtime!

SYRK 3.0 EN SYRK 2.0

Cholesky_decomposition(A):
for(k=0; k<N; k++)
A[k] [k]=POTRF (A [k] [k])
for (m=k+1; m<N; m++)
A[m] [k]=TRSM(A[k] [k], A[m][k])

for(n=k+1; n<N; n++) Va
Aln] [n]=SYRK(A[n] [k], Aln][nl) -
for (m=n+1; m<N; m++) ‘
A[m] [n] +=GEMM (A [m] [k],A[n] [k])

8 /30

Taming HPC platforms with runtime systems

» Write you application as function calls (tasks),
» Specify data input/output (dependencies)
» Provide function codes for specific cores/GPUs

» Let the system do the scheduling at runtime!

Cholesky_decomposition(A):
for(k=0; k<N; k++)
A[k] [k]=POTRF (A [k] [k])
for (m=k+1; m<N; m++)
A[m] [k]=TRSM(A[k] [k], A[m][k])
for(n=k+1; n<N; n++)
A[n] [n]=SYRK(A[n] [k], A[n][nl)
for (m=n+1; m<N; m++)
A[m] [n] +=GEMM (A [m] [k],A[n] [k])

Graph of tasks: Directed Acyclic Graph (DAG)
» Tasks linked with data dependency
» Wide literature on DAG scheduling

» What about memory and data movements (I/Os) ?

8 /30

Task graph scheduling and memory

» Consider a simple task graph

9/30

Task graph scheduling and memory

» Consider a simple task graph

» Tasks have durations and memory demands

memory

A

duratlon

l-»-

S
’

9/30

Task graph scheduling and memory

» Consider a simple task graph

» Tasks have durations and memory demands

. >

Processor 1: A —) —) -

time

9/30

Task graph scheduling and memory

» Consider a simple task graph

» Tasks have durations and memory demands

=-

Processor 2:

Processor 1: A

out of memory!

» Peak memory: maximum memory usage

time

9/30

Task graph scheduling and memory

» Consider a simple task graph

» Tasks have durations and memory demands

i-=-

q-

Processor 2:

Processor 1: A

time

» Peak memory: maximum memory usage

» Trade-off between peak memory and makespan

9/30

Going back to sequential processing

» Temporary data require memory

» Scheduling influences the peak memory

/.—-

i.-

10 / 30

Going back to sequential processing

» Temporary data require memory

» Scheduling influences the peak memory

P g
«—H i = =

\/

10 / 30

Going back to sequential processing

» Temporary data require memory

» Scheduling influences the peak memory

ﬁ
—l‘l = = I

7N
Fol H-= =

10 / 30

QOutline

Pebble game models

11/ 30

Pebble game for register allocation

>

» From the 70s: limit usage of scarce registers @/ ‘%
» Model expressions as Directed Acyclic Graphs é é@ é}@\@

—z)x(1+x+y)
Rules of the game:

12 / 30

Pebble game for register allocation

>

» From the 70s: limit usage of scarce registers @/ ‘%
» Model expressions as Directed Acyclic Graphs @é é@ é}@\@

—z)x(1+x+y)
Rules of the game:

» A pebble may be placed on a source node at any time (LOAD)

12 / 30

Pebble game for register allocation

>

» From the 70s: limit usage of scarce registers @/ ‘%
» Model expressions as Directed Acyclic Graphs @é g é}@\@

—z)x(1+x+y)
Rules of the game:

» A pebble may be placed on a source node at any time (LOAD)

12 / 30

Pebble game for register allocation

>

» From the 70s: limit usage of scarce registers G/ ‘%
» Model expressions as Directed Acyclic Graphs @é g é}@\@

—z)x(1+x+y)
Rules of the game:

» A pebble may be placed on a source node at any time (LOAD)

» If all predecessors of v are pebbled, a pebble may be placed on v.
(COMPUTE)

12 / 30

Pebble game for register allocation

>

» From the 70s: limit usage of scarce registers G{ ‘%
» Model expressions as Directed Acyclic Graphs é é@ é}@\@

—z)x(1+x+y)
Rules of the game:

» A pebble may be placed on a source node at any time (LOAD)

» If all predecessors of v are pebbled, a pebble may be placed on v.
(COMPUTE)

» A pebble may be removed from a vertex at any time. (EVICT)

12 / 30

Pebble game for register allocation

>

» From the 70s: limit usage of scarce registers G{ ‘%
» Model expressions as Directed Acyclic Graphs é é@ é%@\@

X (14+x+y)
Rules of the game:

» A pebble may be placed on a source node at any time (LOAD)

» If all predecessors of v are pebbled, a pebble may be placed on v.
(COMPUTE)

» A pebble may be removed from a vertex at any time. (EVICT)

» Goal: computation all vertices, use minimal number of pebbles

12 / 30

Pebble game for register allocation

>

» From the 70s: limit usage of scarce registers G{ ‘%
» Model expressions as Directed Acyclic Graphs é éa é%@\@

X (14+x+y)
Rules of the game:

» A pebble may be placed on a source node at any time (LOAD)

» If all predecessors of v are pebbled, a pebble may be placed on v.
(COMPUTE)

» A pebble may be removed from a vertex at any time. (EVICT)

» Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

12 / 30

When memory too limited: minimize 1/Os

Red/Blue pebble game [Hong & Kung, 1981]
New rules: ()

» Limited number of red pebbles (=memory slots) / ‘%

13/ 30

When memory too limited: minimize 1/Os

Red/Blue pebble game [Hong & Kung, 1981]

New rules:
» Limited number of red pebbles (=memory slots) /N
» Replace red pebble by blue pebble (WRITE)

b @ééa\@

13/ 30

When memory too limited: minimize 1/Os

Red/Blue pebble game [Hong & Kung, 1981]

New rules:
» Limited number of red pebbles (=memory slots) /N
» Replace red pebble by blue pebble (WRITE)

b @ééa\@

13/ 30

When memory too limited: minimize 1/Os

Red/Blue pebble game [Hong & Kung, 1981]

New rules:
» Limited number of red pebbles (=memory slots)
» Replace red pebble by blue pebble (WRITE)

\@

13/ 30

When memory too limited: minimize 1/Os

Red/Blue pebble game [Hong & Kung, 1981]

New rules:

()
» Limited number of red pebbles (=memory slots) /
» Replace red pebble by blue pebble (WRITE)
» Replace blue pebble by red pebble (READ) é g \@

13/ 30

When memory too limited: minimize 1/Os

Red/Blue pebble game [Hong & Kung, 1981]

New rules:
» Limited number of red pebbles (=memory slots) G/
» Replace red pebble by blue pebble (WRITE)

» Replace blue pebble by red pebble (READ) é g \@
Goal: minimize number of WRITE

13/ 30

When memory too limited: minimize 1/Os

Red/Blue pebble game [Hong & Kung, 1981]

New rules:
» Limited number of red pebbles (=memory slots) G/
» Replace red pebble by blue pebble (WRITE)

» Replace blue pebble by red pebble (READ) é g \@
Goal: minimize number of WRITE
Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

» Successful to design lower bounds on 1/Os and optimal algorithms

» Basis for other studies: communication-avoiding algorithms
(recomputations may be allowed or forbidden)

13/ 30

QOutline

Reducing Memory Footprint of Task Graphs

14 / 30

Generalized (Black) Pebble Game

» Sparse matrix factorization

» Task graph: tree (with dependencies
towards the root)

V«

» Large temporary data gl

Generalized pebble game [Liu 1986]: —

» Node have heterogeneous weights (memory
demand) &
» Compute task = replace inputs by outputs in
. é ég

» output memory # > input memory

Memory

15 / 30

Generalized (Black) Pebble Game

» Sparse matrix factorization

» Task graph: tree (with dependencies
towards the root)

V«

» Large temporary data gl

Generalized pebble game [Liu 1986]: —

» Node have heterogeneous weights (memory
demand) &

» Compute task = replace inputs by outputs in @é & ég\@
memory @

» output memory # > input memory

Memory

15 / 30

Generalized (Black) Pebble Game

» Sparse matrix factorization

» Task graph: tree (with dependencies
towards the root)

V«

» Large temporary data gl

Generalized pebble game [Liu 1986]: —

» Node have heterogeneous weights (memory
demand) &

» Compute task = replace inputs by outputs in 27
ot 00 o0 B

» output memory # > input memory

Memory

15 / 30

Generalized (Black) Pebble Game

» Sparse matrix factorization

» Task graph: tree (with dependencies
towards the root)

V«

» Large temporary data gl

Generalized pebble game [Liu 1986]: —
» Node have heterogeneous weights (memory
demand) 1.

» Compute task = replace inputs by outputs in
e é ég .

» output memory # > input memory

15 / 30

Generalized (Black) Pebble Game

» Sparse matrix factorization

» Task graph: tree (with dependencies
towards the root)

V«

» Large temporary data gl

Generalized pebble game [Liu 1986]: —
» Node have heterogeneous weights (memory i
demand) 1

» Compute task = replace inputs by outputs in
e é @ég .

» output memory # > input memory

15 / 30

Tree Traversals with Smallest Memory [Liu 1987]

1. Restrict on postorder traversals: simpler control

» Complete subtree one after the other
VQT Y& » P;: memory peak when processing subtree i

ﬁ ﬁ A » r;: residual memory after processing subtree i

» For a given traversal, memory peak of the subtree:
max {Pl, rn—+ Py, n+rn+ Ps, Mem(r)}

» Peak minimized when subtrees are sorted by decreasing P; — r;

2. Optimal tree traversal for memory (not necessarily postorder)

» Possibly switch from one subtree to another

» Same intuition, slightly more complex algorithm, complex proof

16 / 30

Minimizing memory for series-parallel graphs (1/3)

» Not all task graphs are trees
» But many exhibit regularities

» Important subclass: SP graphs

single vertex: —>@—>
series composition: —>@—>@—>

parallel composition:

NG

Minimizing memory for series-parallel graphs (2/3)

Base case: parallel chains:

Edge using the minimum amount of memory, on each chain: ey,...,e,.

Lemma

There exists an schedule with minimal memory stopping on edges
€1,...,€n.

1. Split the graph on minimal cut ey,..., e,

2. Apply Liu's algorithm on resulting trees)%

Minimizing memory for series-parallel graphs (2/3)

Base case: parallel chains:

Edge using the minimum amount of memory, on each chain: ey,...,e,.

Lemma

There exists an schedule with minimal memory stopping on edges
€1,...,€n.

1. Split the graph on minimal cut ey,..., e,

2. Apply Liu's algorithm on resulting trees)%

Minimizing memory for series-parallel graphs (2/3)

Base case: parallel chains:

Edge using the minimum amount of memory, on each chain: ey,...,e,.

Lemma

There exists an schedule with minimal memory stopping on edges
€1,...,6n.

1. Split the graph on minimal cut ey,..., e,

2. Apply Liu's algorithm on resulting trees)%

Minimizing memory for series-parallel graphs (3/3)

» Follow recursive definition of the graph

» Simultaneously compute minimal cut and optimal schedule

» Replace subgraph by linear chain corresponding to the schedule
parallel composition:

series composition: /@
T~
— @@ S
o—o—o—l—o—o—o—l—o—o—o—o /H—Q—I—O—Q—.\
\o—o—o—o—o—l—o—/
Heuristic method for general graphs

» Transform graph into SP-graph by adding synchronisation points
» Compute optimal schedule on obtained SP-graph

9/30

Other results on task graph scheduling for memory

Parallel processing on shared-memory platforms
» Tradeoff between time-to-solution and memory

» Dynamique scheduling under memory constraint

» Dynamic scheduling may go out of memory
» Transform the graph (add specific edges)
» Guarantee memory stays below specified threshold

Algorithms implemented in gitlab.inria.fr/lmarchal/memdag

20 / 30

https://gitlab.inria.fr/lmarchal/memdag

Application for DNN inference

Fused Depthwise Tiling for Memory Optimization in TinyML
~ Deep Neural Network Inference
Rafael Stahl, Daniel Mueller-Gritschneder, UIf Schlichtmann
=——— tinyML Research Symposium 2023

arXiv:2303.17878

» Inference of DNN on microcontrollers

» Model tiling to reduce memory

» Chain graph between NN layers — Series-Parallel graph
» Use of our optimal algorithm for SP-graphs

21 /30

https://arxiv.org/abs/2303.17878

Application for DNN training

Work by Lionel Eyraud-Dubois, Olivier Beaumont et. al.

al_> aL—1 ar loss
A =
l’s 31 N\IL-1 |3 aL

o BB
53 [yt L Sy =1

» DNN: specific graph (= double chain)
» Huge memory demand (store activations)
» Delete/recompute some activations (rematerialization)

» Offload some activations on slow storage

Design of efficient rematerialization/offloading strategies:
https://gitlab.inria.fr/hiepacs/rotor

22 /30

https://gitlab.inria.fr/hiepacs/rotor

QOutline

Reducing 1/Os for Task Graphs

23 /30

Platform model

» Memory too scarce to accomodate all (input) data

» Data initially on a large, slow storage

GPU
memory

BHEEE

a8E
aae
Erd
aas
aae

BHEeE

GPU
memory

PCl express bus

main memory

GPUs provide large speed-ups for reduced energy, but:
» limited memory within GPU
» connected through bus with limited bandwidth

24 /30

Dynamic view of a task graph

At any time step: consider only available tasks
» Independant tasks
» Sharing some input data

25 /30

Dynamic view of a task graph

At any time step: consider only available tasks
» Independant tasks
» Sharing some input data

TRSM_1.0

__ TRSM.3.0 SYRK_1.0 \\\ _ TRSM_2.0

— bipartite graph between data and tasks

25 /30

Dynamic scheduling of task graphs

» Tasks appear over time (task graph discovered at runtime)

» Two questions:

» Partition tasks among GPUs
» Order task on each GPUs

» When task input data not on GPU: load it from main memory
(possibly before the execution: prefetching)

» When memory is full: evict data Eviction policy

PlannedTasks

TaskBuffer

26 / 30

Dynamic scheduling of task graphs

» Tasks appear over time (task graph discovered at runtime)

» Two questions:

» Partition tasks among GPUs
» Order task on each GPUs

» When task input data not on GPU: load it from main memory
(possibly before the execution: prefetching)

» When memory is full: evict data Eviction policy

PlannedTasks

TaskBuffer

Two sorted sets of tasks per GPU (FIFO):
1. TaskBuffer: tasks definitively allocated on a GPU

(data possibly being prefetched)

2. PlannedTasks: good candidate tasks for a GPU

26 / 30

DARTS (Data-Aware Reactive Task Scheduling)

PlannedTasks

TaskBuffer

How to fill PlannedTasks, when needed:

1. Concentrate on data, choose “best” data to load
2. Look for tasks that GPU, can do with D + its current data

3. Choose data with largest ratio:

computation time of tasks enabled with D

time needed to transfer data D

~

. Break ties with task priorities (critical path)

5. Put all “enabled” tasks in PlannedTasksy

JSviy

27 /30

DARTS (Data-Aware Reactive Task Scheduling)

PlannedTasks > TaskBuffer

How to fill PlannedTasks, when needed:

1. Concentrate on data, choose “best” data to load
2. Look for tasks that GPU, can do with D + its current data
3. Choose data with largest ratio:

computation time of tasks enabled with D

time needed to transfer data D

~

. Break ties with task priorities (critical path)
5. Put all “enabled” tasks in PlannedTasksy

Y

27 /30

Custom eviction policy

Existing cache management policies:

» With no information about future tasks/requests:
simple policies based on past usage, eg. Last Recently Used (LRU)

» With perfect information on future accesses:
Belady's rule (1966): evict data with furthest access

In our system:
» No complete vision of the future &
» Window of allocated tasks and planned tasks ©

Eviction policy for DARTS:
1. Remove data used by fewest tasks in PlannedTasks

2. If needed, apply Belady's rule on TaskBuffer

28 /30

Performance on memory-limited GPUs

25000 4

20000 4

Performance (GFlop/s)

5000 1

15000 4

10000 4

starPU with DARTS

starPU

ParSec

natural task order

20000 40000 60000 80000 100000 120000
matrix size

» Cholesky factorization on 2 GPUs

» Green vertical line: matrix uses all available memory

29 /30

Conclusion

» Concentrate on data movements is the key for performance

» Algorithm design can help re-organizing computations
for better data reuse

» With help from: compiler theory, cache management, ...

» Scheduling of task graphs: powerful model
with applications for linear algebra, DNN training, workflows,. ..

30 /30

	Introduction and Motivation
	Task Graph Scheduling and Limited Memory
	Pebble game models
	Reducing Memory Footprint of Task Graphs
	Reducing I/Os for Task Graphs

