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FLAT BAND PREDICTION AT “MAGIC ANGLES”
• prediction that twisted bilayer graphene ought to have flat bands for 

some specific (“magic”) very small twist angles, where   vanishesvDirac

Bistritzer and MacDonald

important note for later : Tarnopolsky et al 
find a simple limit where bands exactly flat

2

derived, if it is known at one point in the Brillouin
Zone. An interesting mathematical aspect here is that
the wave function ratios are constructed from meromor-
phic doubly-periodic functions that are ratios of theta
functions, similar to those appearing in the Quantum
Hall Effect on the torus [44]. The CS-CM has a single
coupling constant α = w1/(2v0kD sin(θ/2)) where v0
and kD are the bare velocity and crystal momentum
of graphene’s Dirac fermions. We show that pertur-
bation theory to high orders (up to α8) matches with
numerical results very accurately near the first magic
angle. The sequence of magic angles that we find α =
0.586, 2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345,...
reveals a remarkable asymptotic quasi-periodicity of
∆α ≃ 3/2. Comparing with the reported magic angles
for the BM-CM, we see significant differences except for
the first magic angle, see Table I. We finally turn on the
AA-coupling and study numerically how the bandwidth
and gap evolves and discuss the possibility of studying
the second magic angle in experiments.

Continuum model for Twisted Bilayer Graphene. The
continuum model describing a single valley of TBG con-
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FIG. 1. Absolutely flat bands in continuumTBG Hamiltonian
(1) with w0 = 0 : in this model, the absolutely flat band ap-
pears at exact values of magic angles α = 0.586, 2.221, 3.751,
etc, where α = w1/(v0kθ). Energy is given in dimensionless
units ε = α(E/w1). On subfigures (a-c), the band is numer-
ically flat up to accuracy 10−16. (d) Moiré Brillouin Zone.
(e-f): The bandwidth for the lowest two bands vs α. The
band width drops to exact zero at the set of magic angles. At
the same points, we observe the maxima of the band gap.

TABLE I. Comparison of magic angles in continuum model
with w0 = 0 (first row) and with w0 = w1 (second row). Only
the first magic angles correspond.

α1 α2 α3 α4 α5

CS-CM (here) 0.586 2.221 3.75 5.28 6.80

BM-CM (Ref. [35]) 0.606 1.27 1.82 2.65 3.18

siders two layers of graphene described by an effective
Dirac fields near K,K ′ points of the moire (mini) Bril-
louin Zone, each rotated by an angle ±θ/2, and coupled
through a Moiré potential T (r) [3, 14, 35, 39]:

H =

(

−iv0σθ/2∇ T (r)

T †(r) −iv0σ−θ/2∇

)

, (1)

where σθ/2 = e−
iθ
4
σz (σx,σy)e

iθ
4
σz , ∇ = (∂x, ∂y) and

T (r) =
3
∑

j=1

Tje
−iqjr (2)

with q1 = kθ(0,−1), q2,3 = kθ(±
√
3/2, 1/2) and

Tj+1 = w0σ0 + w1

(

cos(φj)σx + sin(φj)σy
)

, (3)

where φ = 2π/3, kθ = 2kD sin(θ/2) is the Moiré mod-
ulation vector and kD = 4π/(3a0) is the magnitude of
the Dirac wave vector, where a0 is the lattice constant
of monolayer graphene. The Hamiltonian (1) acts on the
spinor Φ(r) = (ψ1,χ1,ψ2,χ2)T and the indices 1, 2 rep-
resent the graphene layer. Here w0 is responsible for the
AA coupling and w1 is for AB and AB couplings.

Chirally symmetric continuum model. In this Letter,
we study a model obtained from Hamiltonian (1) by set-
ting w0 = 0 [45]. Note, one can rotate the spinors to
eliminate the rotation in the kinetic terms σ±θ/2 → σ in
the absence of the w0 term. The dimensionless Hamilto-
nian now acts on a spinor Φ(r) = (ψ1,ψ2,χ1,χ2)T, and
can be compactly written in the form

H =

(

0 D∗(−r)

D(r) 0

)

, D(r) =

(

−2i∂̄ αU(r)

αU(−r) −2i∂̄

)

,

(4)

where ∂̄ = 1
2 (∂x + i∂y) and U(r) = e−iq1r + eiφe−iq2r +

e−iφe−iq3r. The Hamiltonian H has only one dimension-
less parameter α = w1/(v0kθ) which fully controls the
physics of the system. A similar idea of switching off
the parameter w0 was investigated in Ref.[43]. It was ar-
gued there that the Hamiltonian (4) can be represented
as H = σ(−i∇ + αA) and viewed as the Hamiltonian
for Dirac fermions propagating in a background SU(2)
non-Abelian field A.

Tarnopolsky et al

notonic dependence on θ, vanishing repeatedly at the series of
magic angles illustrated in Fig. 4.

Partial insight into the origin of these behaviors can be achieved
by examining the simplest limit in which the momentum-space
lattice is truncated at the first honeycomb shell. Including the
sublattice degree of freedom, this truncation gives rise to the
Hamiltonian

Hk ¼

hkðθ∕2Þ Tb Ttr Ttl
T†
b hkbð− θ∕2Þ 0 0

T†
tr 0 hktrð− θ∕2Þ 0

T†
tl 0 0 hktlð− θ∕2Þ
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775; [8]

where k is in the moiré Brillouin-zone and kj ¼ k þ qj. This
Hamiltonian acts on four two-component spinors Ψ ¼ ðψ0;ψ1;
ψ2;ψ3Þ. The first (ψ0) is at a momentum near the Dirac point of
one layer and the other three ψ j are at momenta near qj and in the

other layer. The dependence of hðθÞ on angle is parametrically
small and can be neglected. We have numerically verified that this
approximation reproduces the velocity with reasonable accuracy
down to the first magic angle (Fig. 4, Inset).

The renormalized velocity v⋆ ¼ ∂kϵ⋆k jk¼0 follows from the
spectrum ϵ⋆k of the twisted bilayer. The Hamiltonian is expressed
as a sum of the k ¼ 0 term Hð0Þ and the k -dependent term Hð1Þ

k
and solved to leading order in k.

Consider the k ¼ 0 term in the Hamiltonian. We assume that
Hð0Þ has zero energy eigenstates and prove our assumption by
explicitly finding these states. The zero energy eigenstates must
satisfy

ψ j ¼ −h− 1j T†
j ψ0: [9]

Because

Tjh− 1j T†
j ¼ 0 [10]

the equation for the ψ0 spinor is h0ψ0 ¼ 0, i.e., ψ0 is one of
the two zero energy states ψ ð1Þ

0 and ψ ð2Þ
0 of the isolated layer.

The two zero energy eigenstates of Hð0Þ then follow from Eq. 9.
Given that jψ ðjÞ

0 j ¼ 1, the wave functions should be normalized
by jΨj2 ¼ 1þ 6α2. The effective Hamiltonian matrix to leading
order in k is therefore

hΨðiÞjHð1Þ
k jΨðjÞi ¼ − v

1þ 6α2
ψ ðiÞ†
0

!
σ · k þ w2

∑

j

Tjh
− 1†
j σ

· kh− 1j T†
j

"
ψ ðjÞ
0 ¼ − v⋆ψ ðiÞ†

0 σ · kψ ðjÞ
0 :

Aside from a renormalized velocity

v⋆

v
¼ 1 − 3α2

1þ 6α2
; [11]

the Hamiltonian is identical to the continuum model Hamilto-
nian of single-layer graphene. The denominator in Eq. 11 cap-
tures the contribution of the Ψj’s to the normalization of the
wave function whereas the numerator captures their contribution
to the velocity matrix elements. For small α, Eq. 11 reduces to
the expression v⋆∕v ¼ 1 − 9α2, first obtained by Lopes dos Santos
et al. (15). The velocity vanishes at the first magic angle because it
is in the process of changing sign. The eigenstates at the Dirac
point are a coherent combination of components in the two layers
that have velocities of opposite sign.

Counterflow Conductivity. The distribution of the quasiparticle
velocity between the two layers implies exotic transport charac-
teristics for separately contacted layers. Consider a counterflow
geometry in which currents in the two layers flow antiparallel to
one another. We focus on twist angles θ ≳ 2° for which the eight-
band model is valid and to the semiclassical regime in which
ϵFτ > 1 and find the counterflow conductivity σCF. We assume
that the Fermi momentum is much smaller than k θ and that
1∕τ0 < ℏvk θ, where τ0 is single particle lifetime. Using the Kubo
formula we find that

σCF ¼ 4e2

π ∑

kμ

jhψ k jvxCFjψ k ij2½ImfGr
k μðϵFÞg&2; [12]

where

vxCF ¼ − v

σx 0 0 0
0 − σx 0 0
0 0 − σx 0
0 0 0 − σx

0
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Fig. 3. Moiré bands. (A) Energy dispersion for the 14 bands closest to the
Dirac point plotted along the k-space trajectory A → B → C → D → A (see
Fig. 1) for w ¼ 110 meV, and θ ¼ 5° (Left,), 1.05° (Middle), and 0.5° (Right).
(B) DOS. (C) Energy as a function of twist angle for the k ¼ 0 states. Band
separation decreases with θ as also evident from A. (D) Full dispersion of
the flat band at θ ¼ 1.05°.

Fig. 4. Renormalized Dirac-point band velocity. The band velocity of the
twisted bilayer at the Dirac point v⋆ is plotted vs. α2, where α ¼ w∕vkθ

for 0.18° < θ < 1.2°. The velocity vanishes for θ ≈ 1.05°, 0.5°, 0.35°, 0.24°,
and 0.2°. (Inset) The renormalized velocity at larger twist angles. The solid
line corresponds to numerical results and dashed line corresponds to analytic
results based on the eight-band model.
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notonic dependence on θ, vanishing repeatedly at the series of
magic angles illustrated in Fig. 4.
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Hamiltonian
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Fig. 3. Moiré bands. (A) Energy dispersion for the 14 bands closest to the
Dirac point plotted along the k-space trajectory A → B → C → D → A (see
Fig. 1) for w ¼ 110 meV, and θ ¼ 5° (Left,), 1.05° (Middle), and 0.5° (Right).
(B) DOS. (C) Energy as a function of twist angle for the k ¼ 0 states. Band
separation decreases with θ as also evident from A. (D) Full dispersion of
the flat band at θ ¼ 1.05°.

Fig. 4. Renormalized Dirac-point band velocity. The band velocity of the
twisted bilayer at the Dirac point v⋆ is plotted vs. α2, where α ¼ w∕vkθ

for 0.18° < θ < 1.2°. The velocity vanishes for θ ≈ 1.05°, 0.5°, 0.35°, 0.24°,
and 0.2°. (Inset) The renormalized velocity at larger twist angles. The solid
line corresponds to numerical results and dashed line corresponds to analytic
results based on the eight-band model.
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Fig. 3. Moiré bands. (A) Energy dispersion for the 14 bands closest to the
Dirac point plotted along the k-space trajectory A → B → C → D → A (see
Fig. 1) for w ¼ 110 meV, and θ ¼ 5° (Left,), 1.05° (Middle), and 0.5° (Right).
(B) DOS. (C) Energy as a function of twist angle for the k ¼ 0 states. Band
separation decreases with θ as also evident from A. (D) Full dispersion of
the flat band at θ ¼ 1.05°.

Fig. 4. Renormalized Dirac-point band velocity. The band velocity of the
twisted bilayer at the Dirac point v⋆ is plotted vs. α2, where α ¼ w∕vkθ

for 0.18° < θ < 1.2°. The velocity vanishes for θ ≈ 1.05°, 0.5°, 0.35°, 0.24°,
and 0.2°. (Inset) The renormalized velocity at larger twist angles. The solid
line corresponds to numerical results and dashed line corresponds to analytic
results based on the eight-band model.
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FIG. 1. In a continuum model, the relative twist of the
top (green) and bottom (red) layers by an angle ✓ leads to
one mini-Brillouin zone (mBZ) for each valley of monolayer
graphene. The two Dirac cones of the same valley, Kt andKb,
set the sides the mBZ of size 2K sin(✓/2), where K = |Kt,b| is
the Dirac momentum of monolayer graphene. Electron hop-
pings between the two layers involve a small momentum trans-
fer qj , j = 1, 2, 3 between Kt and each of the three nearest
Kb nodes of the mBZ.

the twist angle approaches the first magic value, a state
with both a gap opening and a periodic modulation of
interlayer correlations is favored. We call this phase a
nematic insulator.

II. FREE ELECTRON MODEL

Following the seminal work of Ref. [25], we treat TBG
as a periodic moiré superlattice characterized by a twist
angle ✓. The top and bottom Dirac cones of the same
valley, denoted Kt and Kb, delineate the mini-Brillouin
zone (mBZ) of the superlattice (Fig. 1). Focusing on
the low energy and long wavelength description of TGB,
we restrict ourselves to small momentum transfers that
are diagonal in valley, and thus occur within a single
mBZ [26]. The characteristic kinetic energy scale of the
model, set by the typical di↵erence of kinetic energy of
electrons in di↵erent layers, is Ec = 2v0K sin(✓/2), where
v0 and K are respectively the Fermi velocity and the
Dirac momentum of monolayer graphene. In addition to
the kinetic energy in each layer, the single-particle Hamil-
tonian involves two di↵erent interlayer hopping ampli-
tudes. First, the amplitude w1 of interlayer hopping that
is o↵-diagonal in graphene sublattice is typically of order
w1 ⇡ 110 meV [25, 27]. Its strength relative to the ki-
netic energy is measured by the dimensionless parameter
↵ = w1/Ec. Second, the amplitude w2 = �w1 of in-
terlayer hopping that is diagonal in graphene sublattice
is measured by the relative strength � 2 [0, 1] in com-
parison to o↵-diagonal hopping. This relative strength
is di�cult to determine precisely in experiments, being
a↵ected by corrugation e↵ects, with typical values eval-
uated as � ⇡ 0.82 [28, 29]. Here we keep � as a free pa-
rameter. Note that our model thus interpolates between
the Bistritzer-MacDonald continuum (BMC) model for

(a) (b) (c) (d) (e)

FIG. 2. Diagrammatic expansion of the electron self-energy
to order 6 in the interlayer hopping amplitude ↵ = w1/Ec

relative to the kinetic energy Ec. The wavy line represents a
pair of opposite hopping processes, summed over all channels
with a transfer of momentum ±qj , j = 1, 2, 3. Diagram (a)
is of order ↵2, diagram (b) of order ↵4, and diagrams (c)-(e)
are of order ↵6. The expansion is non perturbative in the rel-
ative strength � between hoppings o↵-diagonal and diagonal
in sublattices.

� = 1 [3] and a chirally symmetric continuum (CSC)
model for � = 0 [6].
Following Ref. [3], we use a rotated basis where the

Dirac cones Kt,b of the two layers have the same (kx, ky)
coordinates in the mBZ, and measure all energies in units
of Ec (see Appendix A for details). The e↵ective Hamil-
tonian then reads H 0

0
= H0 +H↵ with

H0 = i (� · @) ⌧0, H↵ = ↵

3X

j=1

e
�iqj ·rT+

j + h.c., (1)

where @ = (@x, @y) and the hopping matrices T+

j are

T
+

j =
⇣
� �0 + e

i(j�1)2⇡/3
�+ + e

�i(j�1)2⇡/3
��

⌘
⌧+. (2)

Here we introduced two sets of Pauli matrices, � and ⌧ ,
which describe respectively the sublattice and layer sec-
tors, with �z = ±1 = A/B and ⌧z = ±1 = top/bottom.
The low-energy physics of this model is nontrivial even

without interactions. Indeed, the interlayer couplings
prohibit diagonalizing H

0
0
. This forbids the use of a

simple e↵ective theory valid for all twisting angles ✓ in

FIG. 3. Fermi velocity v(↵,�) renormalized by interlayer hop-
pings at order ↵6, as a function of the relative strength ↵ of
the hopping amplitude with respect to the kinetic energy. As
the twist angle increases, so does ↵, and the renormalized ve-
locity vanishes at the first magic angle encoded in the first
magic value ↵0(�) where � sets the asymmetry between di-
agonal and o↵-diagonal in sublattice hoppings. Inset: ↵0(�)
depends weakly on corrugation e↵ects, i.e. on the value of �.



2018-NOW: EXPERIMENTAL CONFIRMATION

• appearance of insulating and superconducting behaviors at different 
fillings

Strong correlations
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The emergence of half-filling states is not expected in the absence of 
interactions between electrons and appears to be correlated with the 
narrow bandwidth near the first magic angle. In our experiment, sev-
eral separate pieces of evidence support the presence of flat bands. First, 
we measured the temperature dependence of the amplitude of 
Shubnikov–de Haas oscillations in device D1, from which we extracted 
the effective mass of the electron, m* (Fig. 3b; see Methods and 
Extended Data Fig. 3 for analysis). For a Dirac spectrum with eight-fold 
degeneracy (spin, valley and layer), we expect that ⁎= / πm h n v(8 )2

F
2 , 

which scales as 1/vF . The large measured m* near charge neutrality in 
device D1 indicates a reduction in vF by a factor of 25 compared to 
monolayer graphene (4 ×   104 m s− 1 compared to 106 m s− 1). This large 
reduction in the Fermi velocity is a characteristic that is expected for flat 
bands. Second, we analysed the capacitance data of device D2 near the 
Dirac point (Fig. 3a) and found that vF needs to be reduced to about 
0.15v0 for a good fit to the data (Methods, Extended Data Fig. 1b). Third, 
another direct manifestation of flat bands is the flattening of the con-
ductance minimum at charge neutrality above a temperature of 40 K 
(thermal energy kT =  3.5 meV), as seen in Fig. 3c. Although the con-
ductance minimum in monolayer graphene can be observed clearly even 
near room temperature, it is smeared out in magic-angle TBG when the 
thermal energy kT becomes comparable to vFkθ/2 ≈   4 meV—the energy 
scale that spans the Dirac-like portion of the band (Fig. 1c)24–26.

Owing to the localized nature of the electrons, a plausible explanation 
for the gapped behaviour at half-filling is the formation of a Mott-like 
insulator driven by Coulomb interactions between electrons27,28. To 
this end, we consider a Hubbard model on a triangular lattice, with 
each site corresponding to a localized region with AA stacking in the 
moiré pattern (Fig. 1i). In Fig. 3d we show the bandwidth of the E >   0 
branch of the low-energy bands for 0.04° <   θ <   2° that we calculated 
numerically using a continuum model of TBG6. The bandwidth W is 
strongly suppressed near the magic angles. The on-site Coulomb energy 
U of each site is estimated to be e2/(4π εd), where d is the effective linear 

dimension of each site (with the same length scale as the moiré period), 
ε is the effective dielectric constant including screening and e is the 
electron charge. Combining ε and the dependence of d on twist angle 
into a single constant κ, we write U =  e2θ/(4π ε0κa), where a =  0.246 nm 
is the lattice constant of monolayer graphene. In Fig. 3d we plot the 
on-site energy U versus θ for κ =  4–20. As a reference, κ =  4 if we 
assume ε =  10ε0 and d is 40% of the moiré wavelength. For a range of 
possible values of κ it is therefore reasonable that U/W >   1 occurs near 
the magic angles and results in half-filling Mott-like gaps27. However, 
the realistic scenario is much more complicated than these simplistic 
estimates; a complete understanding requires detailed theoretical anal-
yses of the interactions responsible for the correlated gaps.

The Shubnikov–de Haas oscillation frequency fSdH (Fig. 3b) also 
supports the existence of Mott-like correlated gaps at half-filling. Near 
the charge neutrality point, the oscillation frequency closely follows 
fSdH =  φ0| n| /M where φ0 =  h/e is the flux quantum and M =  4 indicates 
the spin and valley degeneracies. However, at | n|  >   ns/2, we observe 
oscillation frequencies that corresponds to straight lines, fSdH =  φ0(| n|   
−   ns/2)/M, in which M has a reduced value of 2. Moreover, these lines 
extrapolate to zero exactly at the densities of the half-filling states, n =   
±  ns/2. These oscillations point to small Fermi pockets that result from 
doping the half-filling states, which might originate from charged 
quasi particles near a Mott-like insulator phase29. The halved degener-
acy of the Fermi pockets might be related to the spin–charge separation 
that is predicted in a Mott insulator29. These results are also supported 
by Hall measurements at 0.3 K (Extended Data Fig. 4; see Methods for 
discussion), which show a ‘resetting’ of the Hall densities when the 
system is electrostatically doped beyond the Mott-like states.

The half-filling states at ±  ns/2 are suppressed by the application 
of a magnetic field. In Fig. 4a, b we show that both insulating phases 
start to conduct at a perpendicular field of B =  4 T and recover normal 
conductance by B =  8 T. A similar effect is observed for an in-plane 
magnetic field (Extended Data Fig. 5d). The insensitivity to field  
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Figure 2 | Half-filling insulating states in magic-angle TBG. a, Measured 
conductance G of magic-angle TBG device D1 with θ =  1.08° and 
T =  0.3 K. The Dirac point is located at n =  0. The lighter-shaded regions 
are superlattice gaps at carrier density n =  ±  ns =  ±  2.7 ×   1012 cm− 2. The 
darker-shaded regions denote half-filling states at ±  ns/2. The inset shows 
the density locations of half-filling states in the four different devices. 

See Methods for a definition of the error bars. b, Minimum conductance 
values in the p-side (red) and n-side (blue) half-filling states in device 
D1. The dashed lines are fits of exp[−  ∆ /(2kT)] to the data, where 
∆  ≈   0.31 meV is the thermal activation gap. c, d, Temperature-dependent 
conductance of D1 for temperatures from about 0.3 K (black) to 1.7 K 
(orange) near the p-side (c) and n-side (d) half-filling states.
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Figure 1a is a schematic of a typical graphite-gated, hexagonal boron 
nitride (hBN)-encapsulated MAG heterostructure device. The atomic 
force microscopy image in Fig. 1b shows the high structural homoge-
neity of the device. Figure 1c shows four-terminal resistance Rxx as a 
function of n at different out-of-plane magnetic fields B", measured 
at a temperature T of 16 mK. We find strong resistance peaks at n = 4n0 
≈ ±3 × 1012 cm−2 that mark the edges of the flat bands, consistent with 
previous studies3,6,18. The full-band density corresponds to an average 
twist angle across the device of about 1.10°. By comparing 2n0 values 
extracted from two-terminal measurements between different contact 
pairs (Extended Data Fig. 4), we estimate that the variation in twist angle 
(∆θ) is only around 0.02° over a span of about 10 µm. Such homogeneity 
in the twist angle is, to our knowledge, unprecedented in a MAG device.

In addition to the resistance peaks at the CNP and at ν = ±4, we also 
observe interaction-induced resistance peaks at all non-zero integer 
fillings of the moiré bands (ν = ±1, ±2, ±3), corresponding to 1, 2 and 

3 electrons (+) or holes (−) per moiré unit cell (Fig. 1c). Signatures of 
some of these resistive states have been observed previously3,6,18,24, 
but they are much more strongly developed here. From temperature-
dependent transport behaviour over a range of 10 K (Fig. 1f), it is possible 
to extract the activated gap size of the correlated insulator states. We 
obtain values of 0.34 meV (ν = −2), 0.37 meV (ν = 2) and 0.25 meV (ν = 3).  
Evidence for thermally activated transport is much weaker for the  
ν = 1 state (0.14 meV) and is entirely absent for the ν = −3 and ν = −1 states, 
which might indicate that these are correlated semi-metallic states 
rather than insulating states25.

Our device also shows clear temperature-activated transport behav-
iour below 33 K at the CNP, with an extracted gap size of 0.86 meV. Gaps 
at the CNP do not require broken flavour symmetries, but they do require 
that at least one of the emergent C3 and C2T symmetries—which pre-
vent CNP bands from touching—be broken. These symmetries can be 
explicitly broken by crystallographic alignment of the MAG and hBN 
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Fig. 1 | Integer-filling correlated states and new superconducting domes.  
a, Schematic of a typical MAG device. b, Atomic force microscopy image and 
schematic of how various measurements are obtained. Scale bar, 2 µm.  
c, Four-terminal longitudinal resistance plotted against carrier density at 
different perpendicular magnetic fields from 0 T (black trace) to 480 mT (red 
trace). d, Colour plot of longitudinal resistance against carrier density and 
temperature, showing different phases including metal, band insulator (BI), 
correlated state (CS) and superconducting state (SC). The boundaries of the 
superconducting domes—indicated by yellow lines—are defined by 50% 
resistance values relative to the normal state. Note that the transition from the 
metal to the superconducting state is not sharp at some carrier densities, which 
adds uncertainty to the value of Tc extracted. e, Longitudinal resistance at 
optimal doping of the superconducting domes as a function of temperature. 
The resistance is normalized to its value at 8 K. Note that data points for  

n = −7.5 × 1011 cm−2 are overlaid by the data points for n = 5 × 1011 cm−2, as both 
curves follow a very similar line. f, Conductance Gxx plotted against inverse 
temperature at carrier densities corresponding to ν = 0, 1, ±2 and 3. The straight 
lines are fits to Gxx ∝ exp(−∆/2kT) (where ∆ is the size of the correlation-induced 
gap and k is the Boltzmann constant), for temperature-activated behaviour, and 
give gap values of 0.35 meV (ν = −2), 0.14 meV (ν = 1), 0.37 meV (ν = 2), 0.27 meV  
(ν = 3) and 0.86 meV (ν = 0; CNP). g, Mean-field phase diagram for neutral ν = 0 
(CNP) twisted bilayer graphene, as a function of twist angle and interaction 
strength, showing different configurations of C2T symmetry and Chern number 
(C). Red and blue regions with solid outlines indicate states that do not break 
symmetry, and therefore have bands with no Berry curvature and vanishing 
Chern number. Blue indicates a gapped state and red indicates a gapless state. 
Zones filled with other colours indicate gapped states that break C2T symmetry 
and have bands with different Chern numbers, as shown.
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OUR APPROACH AND 
RESULTS

• two decoupled twisted sheets of graphene

• coupled in perturbation theory

• obtain velocity as a function of parameters

• classify contact interactions (find 12)

• weak-coupling RG approach

• define how flow works

• obtain flows
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Similarly, we can define the pole of the integral appearing in Eq. (E16) as
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such that V
1,iso
il + V

1,cro
il = N (2i

p
gi)(8↵2

glKil(�)/v✏).
The integrals Jil are numerical constants, dependent of
neither the number of fermion flavors n nor the corru-
gation parameter �, while Kil(�) depends on the corru-
gation parameter. Using commutation relations between
interaction and hopping matrices, we can express all ver-
tices (E16) – (E20) in terms of Jil and Kil only. We then
find the vertex renormalization constant to be

Zgi = 1�
4
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X

l

gl[(1 + 6↵2
hi(�)�i)Jil + 2↵2

Kil(�)].

(E23)

6. RG flow equations

We express Zi = Z
2

giZ
�1

�i
to first order in the coupling

constants as

Zi = 1 +
12X

l=1

fil(↵,�)gl
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, (E24)

where
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Kil(�))

⇤
. (E25)

and v is the Fermi velocity (B12). We compute the RG
flow equations by deriving Eq. (E3) with respect to µ at
constant bare couplings. This yields

�
@ log gi
@ logµ

= �✏+ v
�1

12X

l=1

fil(↵,�)gl. (E26)

Hα

collapse of fixed points towards origin

nematic phase appears



DECOUPLED TWISTED LAYERS

reciprocal space H0 = i(σ ⋅ ∂)τ0

sublattice index   
( )

σ
σz = ± 1 = A/B

two noninteracting sheets of graphene

layer valleys - layer index   
( top/bottom)

τ
τz = ± 1 =

single-layer 
graphene

identical for both 
layers (for 

appropriate bases)

spin degeneracy (weak SOC) - spin index   : discardμ four bands

in units of 
 Ec = 2v0K sin(θ/2)
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FIG. 1. In a continuum model, the relative twist of the
top (green) and bottom (red) layers by an angle ✓ leads to
one mini-Brillouin zone (mBZ) for each valley of monolayer
graphene. The two Dirac cones of the same valley, Kt andKb,
set the sides the mBZ of size 2K sin(✓/2), where K = |Kt,b| is
the Dirac momentum of monolayer graphene. Electron hop-
pings between the two layers involve a small momentum trans-
fer qj , j = 1, 2, 3 between Kt and each of the three nearest
Kb nodes of the mBZ.

the twist angle approaches the first magic value, a state
with both a gap opening and a periodic modulation of
interlayer correlations is favored. We call this phase a
nematic insulator.

II. FREE ELECTRON MODEL

Following the seminal work of Ref. [25], we treat TBG
as a periodic moiré superlattice characterized by a twist
angle ✓. The top and bottom Dirac cones of the same
valley, denoted Kt and Kb, delineate the mini-Brillouin
zone (mBZ) of the superlattice (Fig. 1). Focusing on
the low energy and long wavelength description of TGB,
we restrict ourselves to small momentum transfers that
are diagonal in valley, and thus occur within a single
mBZ [26]. The characteristic kinetic energy scale of the
model, set by the typical di↵erence of kinetic energy of
electrons in di↵erent layers, is Ec = 2v0K sin(✓/2), where
v0 and K are respectively the Fermi velocity and the
Dirac momentum of monolayer graphene. In addition to
the kinetic energy in each layer, the single-particle Hamil-
tonian involves two di↵erent interlayer hopping ampli-
tudes. First, the amplitude w1 of interlayer hopping that
is o↵-diagonal in graphene sublattice is typically of order
w1 ⇡ 110 meV [25, 27]. Its strength relative to the ki-
netic energy is measured by the dimensionless parameter
↵ = w1/Ec. Second, the amplitude w2 = �w1 of in-
terlayer hopping that is diagonal in graphene sublattice
is measured by the relative strength � 2 [0, 1] in com-
parison to o↵-diagonal hopping. This relative strength
is di�cult to determine precisely in experiments, being
a↵ected by corrugation e↵ects, with typical values eval-
uated as � ⇡ 0.82 [28, 29]. Here we keep � as a free pa-
rameter. Note that our model thus interpolates between
the Bistritzer-MacDonald continuum (BMC) model for

(a) (b) (c) (d) (e)

FIG. 2. Diagrammatic expansion of the electron self-energy
to order 6 in the interlayer hopping amplitude ↵ = w1/Ec

relative to the kinetic energy Ec. The wavy line represents a
pair of opposite hopping processes, summed over all channels
with a transfer of momentum ±qj , j = 1, 2, 3. Diagram (a)
is of order ↵2, diagram (b) of order ↵4, and diagrams (c)-(e)
are of order ↵6. The expansion is non perturbative in the rel-
ative strength � between hoppings o↵-diagonal and diagonal
in sublattices.

� = 1 [3] and a chirally symmetric continuum (CSC)
model for � = 0 [6].
Following Ref. [3], we use a rotated basis where the

Dirac cones Kt,b of the two layers have the same (kx, ky)
coordinates in the mBZ, and measure all energies in units
of Ec (see Appendix A for details). The e↵ective Hamil-
tonian then reads H 0

0
= H0 +H↵ with

H0 = i (� · @) ⌧0, H↵ = ↵

3X

j=1

e
�iqj ·rT+

j + h.c., (1)

where @ = (@x, @y) and the hopping matrices T+

j are

T
+

j =
⇣
� �0 + e

i(j�1)2⇡/3
�+ + e

�i(j�1)2⇡/3
��

⌘
⌧+. (2)

Here we introduced two sets of Pauli matrices, � and ⌧ ,
which describe respectively the sublattice and layer sec-
tors, with �z = ±1 = A/B and ⌧z = ±1 = top/bottom.
The low-energy physics of this model is nontrivial even

without interactions. Indeed, the interlayer couplings
prohibit diagonalizing H

0
0
. This forbids the use of a

simple e↵ective theory valid for all twisting angles ✓ in

FIG. 3. Fermi velocity v(↵,�) renormalized by interlayer hop-
pings at order ↵6, as a function of the relative strength ↵ of
the hopping amplitude with respect to the kinetic energy. As
the twist angle increases, so does ↵, and the renormalized ve-
locity vanishes at the first magic angle encoded in the first
magic value ↵0(�) where � sets the asymmetry between di-
agonal and o↵-diagonal in sublattice hoppings. Inset: ↵0(�)
depends weakly on corrugation e↵ects, i.e. on the value of �.
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Dirac cones, GK = 4π/(3α) is the magnitude of the wavevector Γ–K  
of graphene, α = 0.246 nm is the lattice constant of graphene and  
ħ =  h/(2π ) is the reduced Planck constant, the lower of the hybri-
dized states is pushed to and crosses zero energy. A mathe matical  
derivation of the magic-angle condition6 gives the first magic angle, 
θ = / ≈ . °w ħv G3 ( ) 1 1magic

(1)
0 K . In Fig. 1c we show an ab initio tight- 

binding calculation16 of the band structure for θ =  1.08°. The flat bands 
(coloured blue) have a bandwidth of 12 meV for the E >   0 branch and 
2 meV for the E <   0 branch (where E is the band energy). From a 
band-theory point of view, the flat bands should have localized wave-
function profiles in real space. In Fig. 1h we show the local density of 
states calculated for the flat bands. The wavefunctions are indeed highly 
concentrated in the regions with AA stacking, whereas small but non-
zero amplitudes on the AB and BA regions connect the AA regions and 
endow the bands with weak dispersion6,15,18. A brief discussion about 
the topological structure of the bands near the first magic angle is given 
in Methods and Extended Data Fig. 1.

For the experiment, we fabricated high-quality encapsulated TBG 
devices with the twist angle controlled to an accuracy of about 0.1°–0.2° 
using a previously developed ‘tear and stack’ technique13,17,22. We meas-
ured four devices with twist angles near the first magic angle 
θ ≈ . °.1 1magic

(1)  In Fig. 2a we show the low-temperature two-probe  
conductance of device D1 as a function of carrier density n. For  
n ≈   ±  ns =  ±  2.7 ×   1012 cm− 2 (four electrons per moiré unit cell for 
θ =  1.08°), the conductance is zero over a wide range of densities. Here, 
ns refers to the density that is required to fill the mini Brillouin zone, 
accounting for spin and valley degeneracies (see Methods). These 
insulating states have been explained previously as hybridization- 
induced bandgaps above and below the lowest-energy superlattice 
bands, and are hereafter referred to as ‘superlattice gaps’13. The thermal 
activation gaps are measured to be about 40 meV (see Methods)13,17. 
The twist angle can be estimated from the density that is required to 
reach the superlattice gaps, which we find to be θ =  1.1° ±   0.1° for all 
of the devices reported here.

Another pair of insulating states occurs for a narrower density range, 
near half the superlattice density: n ≈   ±  ns/2 =  ±  1.4 ×   1012 cm− 2 (two 
electrons per moiré unit cell). These insulating states have a much 
smaller energy scale. This behaviour is markedly different from all 
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occur at integer multiples of ±  ns (refs 13, 17). We refer to the states that 
occur near ±  ns/2 as ‘half-filling insulating states’. They are observed 
at roughly the same density for all four devices (Fig. 2a, inset). In  
Fig. 2b–d we show the conductance of the half-filling states in device 
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vation gap of about 0.3 meV for the half-filling states, two orders of 
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puddles, resulting in deviation from the Arrhenius fit.
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capacitance bridge (Extended Data Fig. 2)23. The real and imaginary 
components of the a.c. measurement provide information about the 
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The latter signal is tied to the dissipation in the device due to its 
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enhancement of dissipation at ±  ns/2 (Fig. 3a), in agreement with an 
insulating phase that results from the suppression of the density of 
states. The insulating state at −  ns/2 is weaker and visible only in the 
dissipation data. The observation of capacitance reduction (that is, 
suppression of density of states) for only the n-side half-filling state in 
this device may be due to an asymmetric band structure or the quality 
of the device. The reduction (enhancement) in capacitance (dissipa-
tion) vanishes when the device is warmed up from 0.3 K to about 2 K, 
consistent with the behaviour observed in transport measurements.
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Figure 1 | Electronic band structure of twisted bilayer graphene (TBG). 
a, Schematic of the TBG devices. The TBG is encapsulated in hexagonal 
boron nitride flakes with thicknesses of about 10–30 nm. The devices are 
fabricated on SiO2/Si substrates. The conductance is measured with a 
voltage bias of 100 µ V while varying the local bottom gate voltage Vg.  
‘S’ and ‘D’ are the source and drain contacts, respectively. b, The moiré 
pattern as seen in TBG. The moiré wavelength is λ =  a/[2sin(θ/2)], where 
a =  0.246 nm is the lattice constant of graphene and θ is the twist angle.  
c, The band energy E of magic-angle (θ =  1.08°) TBG calculated using an 
ab initio tight-binding method. The bands shown in blue are the flat bands 
that we study. d, The mini Brillouin zone is constructed from the 
difference between the two K (or K′ ) wavevectors for the two layers. 

Hybridization occurs between Dirac cones within each valley, whereas 
intervalley processes are strongly suppressed. Ks, ′K s, Ms and Γ s denote 
points in the mini Brillouin zone. e–g, Illustration of the effect of interlayer 
hybridization for w =  0 (e), θ≪w ħv k2 0  (f) and 2w ≈   ħv0kθ (g); 
v0 =  106 m s− 1 is the Fermi velocity of graphene. h, Normalized local 
density of states (LDOS) calculated for the flat bands with E >   0 at 
θ =  1.08°. The electron density is strongly concentrated at the regions with 
AA stacking order, whereas it is mostly depleted at AB- and BA-stacked 
regions. See Extended Data Fig. 6 for the density of states versus energy at 
the same twist angle. i, Top view of a simplified model of the stacking 
order.
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FIG. 1. In a continuum model, the relative twist of the
top (green) and bottom (red) layers by an angle ✓ leads to
one mini-Brillouin zone (mBZ) for each valley of monolayer
graphene. The two Dirac cones of the same valley, Kt andKb,
set the sides the mBZ of size 2K sin(✓/2), where K = |Kt,b| is
the Dirac momentum of monolayer graphene. Electron hop-
pings between the two layers involve a small momentum trans-
fer qj , j = 1, 2, 3 between Kt and each of the three nearest
Kb nodes of the mBZ.

the twist angle approaches the first magic value, a state
with both a gap opening and a periodic modulation of
interlayer correlations is favored. We call this phase a
nematic insulator.

II. FREE ELECTRON MODEL

Following the seminal work of Ref. [25], we treat TBG
as a periodic moiré superlattice characterized by a twist
angle ✓. The top and bottom Dirac cones of the same
valley, denoted Kt and Kb, delineate the mini-Brillouin
zone (mBZ) of the superlattice (Fig. 1). Focusing on
the low energy and long wavelength description of TGB,
we restrict ourselves to small momentum transfers that
are diagonal in valley, and thus occur within a single
mBZ [26]. The characteristic kinetic energy scale of the
model, set by the typical di↵erence of kinetic energy of
electrons in di↵erent layers, is Ec = 2v0K sin(✓/2), where
v0 and K are respectively the Fermi velocity and the
Dirac momentum of monolayer graphene. In addition to
the kinetic energy in each layer, the single-particle Hamil-
tonian involves two di↵erent interlayer hopping ampli-
tudes. First, the amplitude w1 of interlayer hopping that
is o↵-diagonal in graphene sublattice is typically of order
w1 ⇡ 110 meV [25, 27]. Its strength relative to the ki-
netic energy is measured by the dimensionless parameter
↵ = w1/Ec. Second, the amplitude w2 = �w1 of in-
terlayer hopping that is diagonal in graphene sublattice
is measured by the relative strength � 2 [0, 1] in com-
parison to o↵-diagonal hopping. This relative strength
is di�cult to determine precisely in experiments, being
a↵ected by corrugation e↵ects, with typical values eval-
uated as � ⇡ 0.82 [28, 29]. Here we keep � as a free pa-
rameter. Note that our model thus interpolates between
the Bistritzer-MacDonald continuum (BMC) model for

(a) (b) (c) (d) (e)

FIG. 2. Diagrammatic expansion of the electron self-energy
to order 6 in the interlayer hopping amplitude ↵ = w1/Ec

relative to the kinetic energy Ec. The wavy line represents a
pair of opposite hopping processes, summed over all channels
with a transfer of momentum ±qj , j = 1, 2, 3. Diagram (a)
is of order ↵2, diagram (b) of order ↵4, and diagrams (c)-(e)
are of order ↵6. The expansion is non perturbative in the rel-
ative strength � between hoppings o↵-diagonal and diagonal
in sublattices.

� = 1 [3] and a chirally symmetric continuum (CSC)
model for � = 0 [6].
Following Ref. [3], we use a rotated basis where the

Dirac cones Kt,b of the two layers have the same (kx, ky)
coordinates in the mBZ, and measure all energies in units
of Ec (see Appendix A for details). The e↵ective Hamil-
tonian then reads H 0

0
= H0 +H↵ with

H0 = i (� · @) ⌧0, H↵ = ↵

3X

j=1

e
�iqj ·rT+

j + h.c., (1)

where @ = (@x, @y) and the hopping matrices T+

j are

T
+

j =
⇣
� �0 + e

i(j�1)2⇡/3
�+ + e

�i(j�1)2⇡/3
��

⌘
⌧+. (2)

Here we introduced two sets of Pauli matrices, � and ⌧ ,
which describe respectively the sublattice and layer sec-
tors, with �z = ±1 = A/B and ⌧z = ±1 = top/bottom.
The low-energy physics of this model is nontrivial even

without interactions. Indeed, the interlayer couplings
prohibit diagonalizing H

0
0
. This forbids the use of a

simple e↵ective theory valid for all twisting angles ✓ in

FIG. 3. Fermi velocity v(↵,�) renormalized by interlayer hop-
pings at order ↵6, as a function of the relative strength ↵ of
the hopping amplitude with respect to the kinetic energy. As
the twist angle increases, so does ↵, and the renormalized ve-
locity vanishes at the first magic angle encoded in the first
magic value ↵0(�) where � sets the asymmetry between di-
agonal and o↵-diagonal in sublattice hoppings. Inset: ↵0(�)
depends weakly on corrugation e↵ects, i.e. on the value of �.
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FIG. S1. Translational invariant part of the self-energy, ⌃↵(k,⌦), at order (a) ↵
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G0(k,⌦), given by Eq. (C1). (f) Translational invariant part of the fermionic propagator corrected by interlayer hopping,
G0

0(k,⌦), given by Eq. (C12).

order parameters are defined such that the mean-field Hamiltonian corrected by interlayer hoppings in momentum
space takes the form

H
0
MF

= v� ·[(k +K0)⌧0 +K⌧z] + �z(�0⌧0 +�⌧z). (C14)

The order parameters must satisfy self-consistent equations, which we treat as mutually independent, that is we put
to zero all parameters other than �0 in the self-consistent equation satisfied by �0, for example. Upon introducing
an ultraviolet cut-o↵ ⇤, these equations read
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>>>>>>>>>>>>><

>>>>>>>>>>>>>:
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†
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†
q�z⌧z qi,
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†
q�⌧0 qi,
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h 

†
q�⌧z qi,

(C15a)

(C15b)

(C15c)

(C15d)

where to facilitate computation, the regularized integral
R
⇤
runs over a circle of radius ⇤ in Eq. (C15a) and (C15b),

and over a square of side ⇤ in Eq. (C15c) and (C15d). The coe�cients u0, u, w0 and w arise from interlayer hoppings,
and are the analogs of v for the terms �z⌧0, etc. As such we can compute them in a similar way. The results are

8
>>>><

>>>>:

N u0 = 1 + 3↵2(1� �
2) + 2↵4(1� �

2)(1 + 2�2),

N u = 1� 3↵2(1� �
2) + 2↵4(1� �

2)(1� 4�2),

vN w0 = 1,

vN w = 1 + 3↵2 + ↵
4(1 + 10�2 + �

4),

(C16a)

(C16b)

(C16c)

(C16d)

where the wavefunction normalization N is given in Sec. C 1. The integrands can be computed analytically but the
self-consistent equations can also be solved numerically.

D. DIAGRAMS FOR THE INTERACTING THEORY

1. Hubbard-Stratonovitch decoupling

We aim at finding the most relevant insulating state near charge neutrality. It is therefore practical to decouple the
interactions in the direct, particle-hole channel, to evince order parameters of the form h 

†M i, where the bracket h...i
denotes the ensemble average over the complete action S = S

0
0
+Sint. Using Hubbard-Stratonovitch transformations,

we introduce one auxiliary bosonic field for each interaction, whose ground state value in the correlated phase is a
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FIG. 8. Translational invariant part of the self-energy, ⌃↵(k,⌦), at order (a) ↵2, (b) ↵4, and (c-e) ↵6. At order six, the
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0(k,⌦), given by Eq. (B11).

The sixth order contribution splits into three terms. The first diagram hosts three nested hopping lines (Fig. 8(c)),
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The second diagram hosts two hopping lines in a row, embedded in a third one (Fig. 8(d)),
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The third diagram consists in three crossing hopping lines (Fig. 8(e)),
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Within a low-energy theory where k,⌦ ⌧ 1, we can further expand to order two in momentum k, and one in
Matsubara frequency ⌦, which results in

⌃↵(k,⌦) =


3↵2

� ↵
4(1� �

2)2 +
3↵6

49

�
37� 112�2 + 119�4

� 70�6
��

� ·k ⌧0

+ [3↵2
�
2
� 9↵4

�
2(1� �

2)]

✓
0 ik

2

�ik
⇤2 0

◆
⌧z

+


3↵2(1 + �

2) + 2↵4(1 + 7�2 + 4�4) +
3↵6

28

�
8 + 16�2 + 376�4 + 187�6

��
i⌦�0⌧0, (B10)

where k = kx + iky. If one keeps only the correction to the linear dispersion, the translational part of the fermionic
propagator corrected by interlayer hoppings can be massaged into

G
0
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�1

 (v� ·k � i⌦)�1 (B11)

with the normalisation of the wave function N = 1+3↵2(1+�
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, (B12)

as given in Eq. (3). We remind that v is expressed in units of the Fermi velocity v0 of monolayer graphene.

Appendix C: Symmetries of the model

1. Complete symmetries

The symmetries of the single-particle Hamiltonian
H

0
0

= H0 + H↵ of Eq. (1) are highly constrained

by the interlayer hopping term. Indeed, the Hamilto-

8

(i) If R̂ is diagonal in layer, i.e. proportionnal to ⌧0/z,

it commutes with Aj(r) so that R(r) = R̂.

(ii) If R̂ is not diagonal in layer, i.e. proportionnal to
⌧x/y, it does not commute with Aj(r) so that R(r) di↵ers

from R̂. In that case, R(r) is modulated periodically
over a distance of the order of the moire lattice constant.
Indeed, we have
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with f1(r) =
1

3

P
3

j=1
cos(qj·r), f2(r) =

1

3

P
3

j=1
sin(qj·r).

These results also apply to current-current quartic inter-
actions, where R̂ is replaced by a vector of matrices M̂ .

Appendix B: Diagrammatic technique for the
non-interacting theory

To expand any observable in interlayer hoppings in the
absence of interactions, it is not mandatory to resort to a
field theoretical approach. We do so however, because it
is useful for applying RG when interactions are included.
To that end we need to introduce the Feynman rules spe-
cific to this unusual field theory. The free fermionic prop-
agator associated to the action of the decoupled bilayer
S0 =

R
d2r d⌧  †(H0 � @⌧ ) reads

G0(k,⌦) = (� ·k � i⌦)�1 (B1)

in Fourier space, where k is the momentum, ⌦ the Mas-
tubara frequency, and we omitted the identity matrices
�0 and ⌧0 for simplicity. When drawing Feynman dia-
grams, we represent the free propagator (B1) with a solid
line. We reserve q and ! for the internal momentum and
Matsubara frequency and use k and ⌦ for external ones.
Any correlation function can be written as an ensemble
average h...i0 over S0. In particular for the time-ordered
two-point function we have

hT   
†
i
0
0
=

hT   
†
e
�S↵i0

he�S↵i0
, (B2)

where h...i
0
0

denotes the ensemble average over the
quadratic action S

0
0
= S0 + S↵, which includes the hop-

ping action S↵ =
R
d2r d⌧  †

H↵ , from which an expan-
sion order by order in ↵ can be carried out. The two-
point function (B2) is non-diagonal in momentum space,
since S↵ reduces the continuous translational symmetry
to the discrete translational symmetry over the reciprocal
lattice R, which is the Z-module generated by the (lin-
early dependent) family of vectors {qj , j = 1, 2, 3}. For
every vector b in R, we define the component G0

0
(b,k,⌦)

of the two-point function such that

hT  k,⌦ 
†
k+q,⌦i

0
0
=

X

b2R
G

0
0
(b,k,⌦)�(b� q), (B3)

for all momenta k, q and frequency ⌦. We focus on
how interlayer hoppings renormalize the dispersion re-
lation, so that we are mainly interested in the trans-
lational invariant part G

0
0
(k,⌦) = G

0
0
(0,k,⌦) of the

fermionic propagator, represented in Fig. 8(f) as a dou-
ble line. Successive interlayer hoppings that transfer the
momenta (⌘1qj1 , ..., ⌘mqjm) in this precise order – where
⌘1, ..., ⌘m = ±, with the plus sign for a hopping to the top
layer, and a minus sign to the bottom layer – give a non-
zero contribution to G

0
0
(k,⌦) if the following conditions

are met.
(i) Total momentum is conserved, i.e.

Pm
r=1

⌘rqjr = 0.
(ii) Consecutive hopping processes a↵ect di↵erent lay-

ers, i.e. ⌘2r = �⌘2r�1 for all r = 1, ..., n/2.
In particular, condition (ii) forbids odd numbers of in-

sertions, so that all correlation functions can be expanded
in ↵2, and entails that a hopping sequence is determined
by the momenta and the sign of only the first hopping
process ⌘ = ⌘1. Joined with condition (i), it also yields
that the transfer of a momentum at one point of the dia-
gram must be followed by the transfer of the opposite mo-
mentum at another point. Thus we can join insertions of
opposite momenta by a wavy line like in Figs. 8(a)-8(d).

We now introduce the translational part ⌃↵(k,⌦) of
the self-energy as

G
0
0
(k,⌦)�1 = G0(k,⌦)

�1
� ⌃↵(k,⌦). (B4)

The contributions to ⌃↵(k,⌦) come from the connected
two-point diagrams that conserve total momentum and
that cannot be cut by one stroke into two subdiagrams
that conserve themselves total momentum. Expand-
ing Eq. (B2) to sixth order in ↵, we can decompose
it as ⌃↵(k,⌦) = ⌃2

↵(k,⌦) + ⌃4

↵(k,⌦) + ⌃6,nes
↵ (k,⌦) +

⌃6,row
↵ (k,⌦) + ⌃6,cro

↵ (k,⌦). In the following we use the
shortcut ⌘̄ = �⌘ with ⌘ = ±, and j, l, k = 1, 2, 3. The
second order contribution (Fig. 8(a)) reads
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↵(k,⌦) = ↵
2
X

⌘,j

T
⌘̄
j G0(k + ⌘qj ,⌦)T

⌘
j . (B5)

The fourth order contribution (Fig. 8(b)) reads
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denotes the ensemble average over the
quadratic action S

0
0
= S0 + S↵, which includes the hop-

ping action S↵ =
R
d2r d⌧  †

H↵ , from which an expan-
sion order by order in ↵ can be carried out. The two-
point function (B2) is non-diagonal in momentum space,
since S↵ reduces the continuous translational symmetry
to the discrete translational symmetry over the reciprocal
lattice R, which is the Z-module generated by the (lin-
early dependent) family of vectors {qj , j = 1, 2, 3}. For
every vector b in R, we define the component G0

0
(b,k,⌦)

of the two-point function such that

hT  k,⌦ 
†
k+q,⌦i

0
0
=

X

b2R
G

0
0
(b,k,⌦)�(b� q), (B3)

for all momenta k, q and frequency ⌦. We focus on
how interlayer hoppings renormalize the dispersion re-
lation, so that we are mainly interested in the trans-
lational invariant part G

0
0
(k,⌦) = G

0
0
(0,k,⌦) of the

fermionic propagator, represented in Fig. 8(f) as a dou-
ble line. Successive interlayer hoppings that transfer the
momenta (⌘1qj1 , ..., ⌘mqjm) in this precise order – where
⌘1, ..., ⌘m = ±, with the plus sign for a hopping to the top
layer, and a minus sign to the bottom layer – give a non-
zero contribution to G

0
0
(k,⌦) if the following conditions

are met.
(i) Total momentum is conserved, i.e.

Pm
r=1

⌘rqjr = 0.
(ii) Consecutive hopping processes a↵ect di↵erent lay-

ers, i.e. ⌘2r = �⌘2r�1 for all r = 1, ..., n/2.
In particular, condition (ii) forbids odd numbers of in-

sertions, so that all correlation functions can be expanded
in ↵2, and entails that a hopping sequence is determined
by the momenta and the sign of only the first hopping
process ⌘ = ⌘1. Joined with condition (i), it also yields
that the transfer of a momentum at one point of the dia-
gram must be followed by the transfer of the opposite mo-
mentum at another point. Thus we can join insertions of
opposite momenta by a wavy line like in Figs. 8(a)-8(d).

We now introduce the translational part ⌃↵(k,⌦) of
the self-energy as

G
0
0
(k,⌦)�1 = G0(k,⌦)

�1
� ⌃↵(k,⌦). (B4)

The contributions to ⌃↵(k,⌦) come from the connected
two-point diagrams that conserve total momentum and
that cannot be cut by one stroke into two subdiagrams
that conserve themselves total momentum. Expand-
ing Eq. (B2) to sixth order in ↵, we can decompose
it as ⌃↵(k,⌦) = ⌃2

↵(k,⌦) + ⌃4

↵(k,⌦) + ⌃6,nes
↵ (k,⌦) +

⌃6,row
↵ (k,⌦) + ⌃6,cro

↵ (k,⌦). In the following we use the
shortcut ⌘̄ = �⌘ with ⌘ = ±, and j, l, k = 1, 2, 3. The
second order contribution (Fig. 8(a)) reads

⌃2

↵(k,⌦) = ↵
2
X

⌘,j

T
⌘̄
j G0(k + ⌘qj ,⌦)T

⌘
j . (B5)

The fourth order contribution (Fig. 8(b)) reads

⌃4

↵(k,⌦) = ↵
4
X

⌘,j 6=l

T
⌘̄
j G0(k + ⌘qj ,⌦)T

⌘
l G0(k + ⌘qj � ⌘ql,⌦)T

⌘̄
l G0(k + ⌘qj ,⌦)T

⌘
j . (B6)
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(i) If R̂ is diagonal in layer, i.e. proportionnal to ⌧0/z,

it commutes with Aj(r) so that R(r) = R̂.

(ii) If R̂ is not diagonal in layer, i.e. proportionnal to
⌧x/y, it does not commute with Aj(r) so that R(r) di↵ers

from R̂. In that case, R(r) is modulated periodically
over a distance of the order of the moire lattice constant.
Indeed, we have

8
>>>><

>>>>:

1

3

3X

j=1

A
†
j(r)⌧xAj(r) = f1(r)⌧x + f2(r)⌧y

1

3

3X

j=1

A
†
j(r)⌧yAj(r) = f2(r)⌧x + f1(r)⌧y

, (A8)

with f1(r) =
1

3

P
3

j=1
cos(qj·r), f2(r) =

1

3

P
3

j=1
sin(qj·r).

These results also apply to current-current quartic inter-
actions, where R̂ is replaced by a vector of matrices M̂ .

Appendix B: Diagrammatic technique for the
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The fourth order contribution (Fig. 8(b)) reads
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sixth order in  , exact in  :α β

“momentum 
insertion” TT

G0

technical details:

define

factor 1/2 disappears because of the permutation (1 ¡ 2). The self-energy is the 1PI part of the connected
correlation function, without the propagators of the external legs. Hence at order –2, the contribution from ÷qj
reads

�(2)(k, Ê, ÷, j) = T ÷̄
j G0(k + ÷qj , Ê)T ÷

j = (3.34)

We can compute the Fermi velocity to order –2,

v = 1 ≠ ‡xˆkx�–(0, 0) = 1 ≠

ÿ

÷,j

‡xT ÷̄
j ‡xT ÷

j = 1 ≠

ÿ

÷,j

T ÷
j

ú
T ÷

j , (3.35)

and using Eq. (3.9),

v = 1 ≠ 3–2. (3.36)

The order four contribution to the self-energy is easily found using diagrammatics. The contribution from
momenta ÷qj and µql (with (µ, j) ”= (÷̄, j) to keep only 1PI diagrams) is

�(4)(k, Ê, ÷, j, µ, l) = T ÷̄
j G0(k+÷qj , Ê)T µ̄

l G0(k+÷qj+µql, Ê)[T µ
l G0(k+÷qj , Ê)T ÷

j +T ÷
j G0(k+µql, Ê)T µ

l ]. (3.37)

Notice that the factor 1/4! is compensated by the Wick permutations of the momentum insertions. The first
term of Eq. (3.37) comes from diagram

÷qqqjjj µqqqlll ≠µqqqlll ≠÷qqqjjj

kkk +÷qqqjjj kkk +÷qqqjjj +µqqqlll kkk +÷qqqjjj
A

Up to order four I get v = 1 ≠ 3–2 + –4 in agreement with the numerator of Ref. [16]. However I do not recover
the denominator, due to the normalisation of the eigenstate at zero energy for finite –.

3.1.4 Renormalisation of the interacting theory

To renormalise the bosonic propagators, fermionic propagator, and vertex function, one has to add a counterterm
for the bosonic fields, the fermionic field and the interaction term:

SCT[Â†, Â,�i] =
ˆ

Â†[(Zv ≠1)” k≠i(ZÊ ≠1)µ≠1Ê]Â+–(Z–≠1)
ÿ

÷,j

ˆ
Â†(≠k)T ÷

j Â(k≠÷qj)+
ÿ

i

(Z„i ≠1)
ˆ

Ï2
i

+ 2iµ≠‘/2
ÿ

i

(Zi ≠ 1)Ôgi

ˆ
ÏiÂ

†MiÂ. (3.38)

In Eq. (3.38), all parameters (Ê, –, gi) and fields (Â†, Â, Ïi) are the renormalised ones, and the Z constants
must be chosen so that Sf + Sint + SCT is finite. We use the Minimal Subtraction (MS) scheme so that the
Z constants absorb only the divergent parts of the diagrams. As an example the free, uncoupled bosonic
propagators are �0

i (k, Ê) = Id while the renormalised interacting and coupled propagators are related to the
boson self-energies �i as �≠1

i (k, Ê) = Id≠�i(k, Ê). Here �i gets contributions from both the interlayer coupling
and the interaction vertex. Renormalised and bare self-energies are linked through the relation

�i(k, Ê) =

= �̊i(k, Ê) ≠ (Z„i ≠ 1).

Beta functions
The relation to express the bare couplings g̊i in terms of the renormalised couplings gi is

g̊i = µ≠‘Z2
i Z≠1

Ïi
gi. (3.40)
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More conveniently we can introduce the fermion self-energy �–(k, Ê) defined as

G–(k, Ê)≠1 = G0(k, Ê)≠1
≠ �–(k, Ê) (3.23)

and expand order by order in –,

�–(k, Ê) = –2
ÿ

÷,j

�(2)(k, Ê, ÷, j) + ... (3.24)

The Fermi velocity v is renormalised by the interlayer coupling according to (assuming that isotropy is preserved
near the K point at all orders, and forgetting the identity matrix in front)

v(–) = ‡xˆkxG–(0, 0)≠1 = 1 ≠ ‡xˆkx�–(0, 0). (3.25)

kkk qqq222

qqq111

qqq333
•

•

•

•

•

• •

••

•

•

•

•

•

•

•

•

• •

(m = 1,n = 0, l = ≠1)

• –0

• –1

• –2

.

.

.

The non-local terms of the propagator with
q = mq1 + nq2 + lq3 are of higher order
–|m|+|n|+|l|. For instance for q being one of the
blue points the non-local propagator is of order –2.

The local propagator (black point at the origin k)
is corrected at order –2 by following the trajectory
k ‘æ k + ÷qj ‘æ k + ÷qj ≠ ÷qj for ÷ = ±1 and
j = 1, 2, 3: there are six terms. Apparently it
is not corrected at odd orders of –, though for
instance the trajectory k ‘æ k + q1 ‘æ k + q1 +
q2 ‘æ k+q1 +q2 +q3 contributes at order –3, but
happens to vanish. Maybe there is an underlying
symmetry argument to prove that all odd orders
vanish.

The propagator is also the connected 2-point correlation function, and is expanded in the following way

G–(k, Ê)”(d)(0) = ÈÂ†(≠k, ≠Ê)Â(k, Ê)Í (3.26)

= ÈÂ†(≠k, ≠Ê)Â(k, Ê)e≠S–Í0
Èe≠S–Í0

(3.27)

=
ÈÂ†(≠k, ≠Ê)Â(k, Ê)Í0 ≠ ÈÂ†(≠k, ≠Ê)Â(k, Ê)S–Í0 + 1

2 ÈÂ†(≠k, ≠Ê)Â(k, Ê)S2
–Í0 + ...

1 ≠ ÈS–Í0 + 1
2 ÈS2

–Í0 + ...
(3.28)

= G0(k, Ê)”(d)(0) ≠ ÈÂ†(≠k, ≠Ê)Â(k, Ê)S–Í
c
0 + 1

2 ÈÂ†(≠k, ≠Ê)Â(k, Ê)S2
–Í

c
0 + ... (3.29)

where È...Í indicates an ensemble average over the action S0 + S–, È...Í0 an ensemble average over the action S0,
and ...c indicates a connected correlation function. Using Wick theorem, we expand each correlation function
into a sum of a product of propagators. The order one correlation function vanishes by momentum conservation.
Removing the unambiguous dependences in k and Ê, the order two reads

1
2 ÈÂ†

—Â›S2
–Í

c
0 = –2

2

ˆ
ki,Êi

ÿ

÷,µ,j,l

ÈÂ†
—Â›Â†(≠k1)T ÷

j Â(k1 ≠ ÷qj)Â†(≠k2)T µ
l Â(k2 ≠ µql)Íc

0 (3.30)

= –2

2

ˆ
ki,Êi

ÿ

÷,µ,j,l

ÈÂ†
—Â“(k1 ≠ ÷qj)Í0ÈÂ†

”(≠k1)Â‹(k2 ≠ µql)Í0ÈÂ†
‘ (≠k2)Â›Í0T ÷

j,“”T µ
l,‘‹ + perm.

(3.31)

= –2

2

ˆ
ki

ÿ

÷,µ,j,l

G0,“—G0,‹”(k + ÷qj)G0,›‘T
÷
j,“”T µ

l,‘‹”(k1 ≠ k ≠ ÷qj)”(÷qj + µql)”(k2 ≠ k) + perm.

(3.32)

= –2”(0)

S

UG0
ÿ

÷,j

T ÷̄
j G0(k + ÷qj)T ÷

j G0

T

V

›—

. (3.33)

The field contractions impose the conservation between incoming and outgoing momenta through the Dirac
delta ”(÷qj + µql), so that if qj goes in at the first vertex, qj must go out at the second vertex. Moreover the
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3

the vicinity of the magic values. As a result, we resort
to a free electron model in which interlayer hopping ef-
fects are accounted for by a self-energy which is calcu-
lated in a perturbative expansion in ↵. Denoting G

0
0

and ⌃ the translationally-invariant components of the
propagator corrected by interlayer hoppings and the self-
energy respectively, we have (G0

0
)�1 = H0 � @⌧ � ⌃ ⇡

N [v(↵,�)i(� · @)⌧0 � @⌧ ], where @⌧ represents the par-
tial derivative with respect to imaginary time, N is a
wavefunction normalization and v(↵,�) the Fermi ve-
locity renormalized by the hopping processes (see Ap-
pendix B). An expansion to order 6 in ↵ but exact in �,
diagrammatically represented in Fig. 2, leads to

N v(↵,�) = 1� 3↵2 + ↵
4
�
1� �

2
�2

�
3

49
↵
6
�
37� 112�2 + 119�4

� 70�6
�
. (3)

We call ↵0(�) the lowest value of ↵ for which this Fermi
velocity vanishes, which sets the first magic angle value
to be approximately 1.1�. As shown in Fig. 3, this first
magic value depends weakly on the parameter �, and
thus on corrugation, and ranges from ↵0(1) = 0.598 for
the BMC model to ↵0(0) = 0.585 for the CSC model.
These constitute our first results.

III. SYMMETRY-ALLOWED INTERACTIONS

We now identify all short-ranged interaction potentials
allowed by the symmetries of the model. In order to do
so we turn to a field theoretic formalism and consider the
Euclidean action, S = S

0
0
+ Sint, written as a sum of the

free electron term

S
0
0
=

Z
d2r d⌧  †(H 0

0
� @⌧ ) , (4)

and an interaction term Sint which includes generic local
quartic couplings between the fermionic fields  † and  .
Using group theoretic methods, detailed in Appendix C,
we identify all couplings allowed by the symmetries of the
low energy model (1) [30]. This amounts to identiyfing
scalar invariants built as direct products of irreducible
representations of the corresponding symmetry group.
We find that the allowed couplings are (i) 8 channels
originating from one-dimensional (1d) corepresentations;
(ii) 4 channels originating from 2d corepresentations:

Sint = �

8X

i=1

gi

Z
d2r d⌧ ⇢(i)(r)⇢(i)(r)

�

4X

j=1

�j

Z
d2r d⌧ J (j)(r) · J (j)(r), (5)

where the densities ⇢(i)(r) =  
†
R

(i)(r) and currents
J (j)(r) =  

†M (j)(r) involve coupling matrices R(i)(r)
and M (j)(r). Following our choice of coordinates for

Corep. A+
1 a+

1 A+
2 a+

2 A�
1 a�

1 A�
2 a�

2

R̂(i) �0⌧0 �0⌧x �0⌧z �0⌧y �z⌧y �z⌧z �z⌧x �z⌧0

IT X X X X
C2 X X X X
P X X X X

Corep. E+
2 E+

4 E�
2 E�

4
p
2M̂ (j) �⌧0 �⌧x �⌧y �⌧z

TABLE I. One-dimensional (top) and two-dimensional (bot-
tom) corepresentations (corep.) of the magnetic symmetry
group of the continuum model, with their associated coupling
matrices R̂(i) and M̂ (j) expressed in terms of the Pauli ma-
trices in sublattice (�) and layer (⌧) subspaces. These cou-
pling matrices are normalized such that Tr[M̂ (j) · (M̂ (j))†] =
Tr[R̂(i) · (R̂(i))†] = 4. Each one-dimensional corep. can either
preserve (X) or break the combination of inversion and time
reversal symmetries IT , the mirror symmetry C2, and the
particle-hole antisymmetry P , while preserving the three-fold
rotational symmetry C3. The ± exponents label the eigen-
value of the IT symmetry.

the fields in Eq. (1), the coupling matrices in the ro-
tated basis, which enter Eq. (5), are obtained through
R

(i) = A(r)R̂(i)
A

†(r) and M (i) = A(r)M̂ (i)
A

†(r),
where A(r) is the transformation matrix of the field (see
Appendix A). The coupling matrices R̂

(i) and M̂ (i) are
provided in Tab. I. The couplings gi and �j are the am-
plitudes associated with the corresponding coupling po-
tentials.

The moiré pattern is invariant under four discrete
“symmetries”: (i) the 2⇡/3 rotation C3 = e

2i⇡/3�z⌧0

around the z axis orthogonal to the bilayer together
with (ii) the ⇡ rotation C2 = �x⌧x around the x axis
of Fig. 1 generate the point group D3, (iii) the composi-
tion IT = �x⌧0K of inversion and time reversal is an an-
tiunitary symmetry, where K denotes complex conjuga-
tion, and (iv) the unitary particle-hole antisymmetry [31]
P = �x⌧z, which satisfies {P,H

0
0
} = 0 [32]. The group

generated by D3 and P comprises all unitary operations
that leave the Hamiltonian invariant up to a sign. We
refer to this ensemble as the unitary group D̃3 of the
model. It can be decomposed into the semi-direct prod-
uct D̃3 = {e, P, ē, P̄}oD3, where e = �0⌧0 is the identity
operation, ē = (PC2)2 = �e and P̄ = ēP . The dichro-
matic magnetic group M generated by D̃3 and IT can
be written as the direct product M = D̃3 ⇥ {e, IT}. Us-
ing the Schur-Frobenius criterion [33–38], we determine
the corepresentations (corep.) of M from the irreducible
representations of D̃3, which can be constructed from
that of D3 by induction and basic properties of linear
representation theory (see Appendix C).

We combine the resulting coupling matrices of Tab. I
into three sets. The eight interactions originating from
1d coreps. correspond to the density-density couplings
diagonal in sublattice while preserving C3. Out of these

3

the vicinity of the magic values. As a result, we resort
to a free electron model in which interlayer hopping ef-
fects are accounted for by a self-energy which is calcu-
lated in a perturbative expansion in ↵. Denoting G

0
0

and ⌃ the translationally-invariant components of the
propagator corrected by interlayer hoppings and the self-
energy respectively, we have (G0

0
)�1 = H0 � @⌧ � ⌃ ⇡

N [v(↵,�)i(� · @)⌧0 � @⌧ ], where @⌧ represents the par-
tial derivative with respect to imaginary time, N is a
wavefunction normalization and v(↵,�) the Fermi ve-
locity renormalized by the hopping processes (see Ap-
pendix B). An expansion to order 6 in ↵ but exact in �,
diagrammatically represented in Fig. 2, leads to

N v(↵,�) = 1� 3↵2 + ↵
4
�
1� �

2
�2

�
3
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�
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� 70�6
�
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We call ↵0(�) the lowest value of ↵ for which this Fermi
velocity vanishes, which sets the first magic angle value
to be approximately 1.1�. As shown in Fig. 3, this first
magic value depends weakly on the parameter �, and
thus on corrugation, and ranges from ↵0(1) = 0.598 for
the BMC model to ↵0(0) = 0.585 for the CSC model.
These constitute our first results.

III. SYMMETRY-ALLOWED INTERACTIONS
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0
0
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S
0
0
=

Z
d2r d⌧  †(H 0

0
� @⌧ ) , (4)

and an interaction term Sint which includes generic local
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Sint = �

8X

i=1

gi

Z
d2r d⌧ ⇢(i)(r)⇢(i)(r)

�

4X

j=1

�j

Z
d2r d⌧ J (j)(r) · J (j)(r), (5)

where the densities ⇢(i)(r) =  
†
R

(i)(r) and currents
J (j)(r) =  

†M (j)(r) involve coupling matrices R(i)(r)
and M (j)(r). Following our choice of coordinates for

Corep. A+
1 a+

1 A+
2 a+

2 A�
1 a�

1 A�
2 a�

2

R̂(i) �0⌧0 �0⌧x �0⌧z �0⌧y �z⌧y �z⌧z �z⌧x �z⌧0

IT X X X X
C2 X X X X
P X X X X

Corep. E+
2 E+

4 E�
2 E�

4
p
2M̂ (j) �⌧0 �⌧x �⌧y �⌧z
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Tr[R̂(i) · (R̂(i))†] = 4. Each one-dimensional corep. can either
preserve (X) or break the combination of inversion and time
reversal symmetries IT , the mirror symmetry C2, and the
particle-hole antisymmetry P , while preserving the three-fold
rotational symmetry C3. The ± exponents label the eigen-
value of the IT symmetry.
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plitudes associated with the corresponding coupling po-
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the corepresentations (corep.) of M from the irreducible
representations of D̃3, which can be constructed from
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into three sets. The eight interactions originating from
1d coreps. correspond to the density-density couplings
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(i) If R̂ is diagonal in layer, i.e. proportionnal to ⌧0/z,

it commutes with Aj(r) so that R(r) = R̂.

(ii) If R̂ is not diagonal in layer, i.e. proportionnal to
⌧x/y, it does not commute with Aj(r) so that R(r) di↵ers

from R̂. In that case, R(r) is modulated periodically
over a distance of the order of the moire lattice constant.
Indeed, we have

8
>>>><

>>>>:

1

3

3X

j=1

A
†
j(r)⌧xAj(r) = f1(r)⌧x + f2(r)⌧y

1

3

3X

j=1

A
†
j(r)⌧yAj(r) = f2(r)⌧x + f1(r)⌧y

, (A8)

with f1(r) =
1

3

P
3

j=1
cos(qj·r), f2(r) =

1

3

P
3

j=1
sin(qj·r).

These results also apply to current-current quartic inter-
actions, where R̂ is replaced by a vector of matrices M̂ .

Appendix B: Diagrammatic technique for the
non-interacting theory

To expand any observable in interlayer hoppings in the
absence of interactions, it is not mandatory to resort to a
field theoretical approach. We do so however, because it
is useful for applying RG when interactions are included.
To that end we need to introduce the Feynman rules spe-
cific to this unusual field theory. The free fermionic prop-
agator associated to the action of the decoupled bilayer
S0 =

R
d2r d⌧  †(H0 � @⌧ ) reads

G0(k,⌦) = (� ·k � i⌦)�1 (B1)

in Fourier space, where k is the momentum, ⌦ the Mas-
tubara frequency, and we omitted the identity matrices
�0 and ⌧0 for simplicity. When drawing Feynman dia-
grams, we represent the free propagator (B1) with a solid
line. We reserve q and ! for the internal momentum and
Matsubara frequency and use k and ⌦ for external ones.
Any correlation function can be written as an ensemble
average h...i0 over S0. In particular for the time-ordered
two-point function we have

hT   
†
i
0
0
=

hT   
†
e
�S↵i0

he�S↵i0
, (B2)

where h...i
0
0

denotes the ensemble average over the
quadratic action S

0
0
= S0 + S↵, which includes the hop-

ping action S↵ =
R
d2r d⌧  †

H↵ , from which an expan-
sion order by order in ↵ can be carried out. The two-
point function (B2) is non-diagonal in momentum space,
since S↵ reduces the continuous translational symmetry
to the discrete translational symmetry over the reciprocal
lattice R, which is the Z-module generated by the (lin-
early dependent) family of vectors {qj , j = 1, 2, 3}. For
every vector b in R, we define the component G0

0
(b,k,⌦)

of the two-point function such that

hT  k,⌦ 
†
k+q,⌦i

0
0
=

X

b2R
G

0
0
(b,k,⌦)�(b� q), (B3)

for all momenta k, q and frequency ⌦. We focus on
how interlayer hoppings renormalize the dispersion re-
lation, so that we are mainly interested in the trans-
lational invariant part G

0
0
(k,⌦) = G

0
0
(0,k,⌦) of the

fermionic propagator, represented in Fig. 8(f) as a dou-
ble line. Successive interlayer hoppings that transfer the
momenta (⌘1qj1 , ..., ⌘mqjm) in this precise order – where
⌘1, ..., ⌘m = ±, with the plus sign for a hopping to the top
layer, and a minus sign to the bottom layer – give a non-
zero contribution to G

0
0
(k,⌦) if the following conditions

are met.
(i) Total momentum is conserved, i.e.

Pm
r=1

⌘rqjr = 0.
(ii) Consecutive hopping processes a↵ect di↵erent lay-

ers, i.e. ⌘2r = �⌘2r�1 for all r = 1, ..., n/2.
In particular, condition (ii) forbids odd numbers of in-

sertions, so that all correlation functions can be expanded
in ↵2, and entails that a hopping sequence is determined
by the momenta and the sign of only the first hopping
process ⌘ = ⌘1. Joined with condition (i), it also yields
that the transfer of a momentum at one point of the dia-
gram must be followed by the transfer of the opposite mo-
mentum at another point. Thus we can join insertions of
opposite momenta by a wavy line like in Figs. 8(a)-8(d).

We now introduce the translational part ⌃↵(k,⌦) of
the self-energy as

G
0
0
(k,⌦)�1 = G0(k,⌦)

�1
� ⌃↵(k,⌦). (B4)

The contributions to ⌃↵(k,⌦) come from the connected
two-point diagrams that conserve total momentum and
that cannot be cut by one stroke into two subdiagrams
that conserve themselves total momentum. Expand-
ing Eq. (B2) to sixth order in ↵, we can decompose
it as ⌃↵(k,⌦) = ⌃2

↵(k,⌦) + ⌃4

↵(k,⌦) + ⌃6,nes
↵ (k,⌦) +

⌃6,row
↵ (k,⌦) + ⌃6,cro

↵ (k,⌦). In the following we use the
shortcut ⌘̄ = �⌘ with ⌘ = ±, and j, l, k = 1, 2, 3. The
second order contribution (Fig. 8(a)) reads

⌃2

↵(k,⌦) = ↵
2
X

⌘,j

T
⌘̄
j G0(k + ⌘qj ,⌦)T

⌘
j . (B5)

The fourth order contribution (Fig. 8(b)) reads

⌃4

↵(k,⌦) = ↵
4
X

⌘,j 6=l

T
⌘̄
j G0(k + ⌘qj ,⌦)T

⌘
l G0(k + ⌘qj � ⌘ql,⌦)T

⌘̄
l G0(k + ⌘qj ,⌦)T

⌘
j . (B6)
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FIG. 1. In a continuum model, the relative twist of the
top (green) and bottom (red) layers by an angle ✓ leads to
one mini-Brillouin zone (mBZ) for each valley of monolayer
graphene. The two Dirac cones of the same valley, Kt andKb,
set the sides the mBZ of size 2K sin(✓/2), where K = |Kt,b| is
the Dirac momentum of monolayer graphene. Electron hop-
pings between the two layers involve a small momentum trans-
fer qj , j = 1, 2, 3 between Kt and each of the three nearest
Kb nodes of the mBZ.

the twist angle approaches the first magic value, a state
with both a gap opening and a periodic modulation of
interlayer correlations is favored. We call this phase a
nematic insulator.

II. FREE ELECTRON MODEL

Following the seminal work of Ref. [25], we treat TBG
as a periodic moiré superlattice characterized by a twist
angle ✓. The top and bottom Dirac cones of the same
valley, denoted Kt and Kb, delineate the mini-Brillouin
zone (mBZ) of the superlattice (Fig. 1). Focusing on
the low energy and long wavelength description of TGB,
we restrict ourselves to small momentum transfers that
are diagonal in valley, and thus occur within a single
mBZ [26]. The characteristic kinetic energy scale of the
model, set by the typical di↵erence of kinetic energy of
electrons in di↵erent layers, is Ec = 2v0K sin(✓/2), where
v0 and K are respectively the Fermi velocity and the
Dirac momentum of monolayer graphene. In addition to
the kinetic energy in each layer, the single-particle Hamil-
tonian involves two di↵erent interlayer hopping ampli-
tudes. First, the amplitude w1 of interlayer hopping that
is o↵-diagonal in graphene sublattice is typically of order
w1 ⇡ 110 meV [25, 27]. Its strength relative to the ki-
netic energy is measured by the dimensionless parameter
↵ = w1/Ec. Second, the amplitude w2 = �w1 of in-
terlayer hopping that is diagonal in graphene sublattice
is measured by the relative strength � 2 [0, 1] in com-
parison to o↵-diagonal hopping. This relative strength
is di�cult to determine precisely in experiments, being
a↵ected by corrugation e↵ects, with typical values eval-
uated as � ⇡ 0.82 [28, 29]. Here we keep � as a free pa-
rameter. Note that our model thus interpolates between
the Bistritzer-MacDonald continuum (BMC) model for

(a) (b) (c) (d) (e)

FIG. 2. Diagrammatic expansion of the electron self-energy
to order 6 in the interlayer hopping amplitude ↵ = w1/Ec

relative to the kinetic energy Ec. The wavy line represents a
pair of opposite hopping processes, summed over all channels
with a transfer of momentum ±qj , j = 1, 2, 3. Diagram (a)
is of order ↵2, diagram (b) of order ↵4, and diagrams (c)-(e)
are of order ↵6. The expansion is non perturbative in the rel-
ative strength � between hoppings o↵-diagonal and diagonal
in sublattices.

� = 1 [3] and a chirally symmetric continuum (CSC)
model for � = 0 [6].
Following Ref. [3], we use a rotated basis where the

Dirac cones Kt,b of the two layers have the same (kx, ky)
coordinates in the mBZ, and measure all energies in units
of Ec (see Appendix A for details). The e↵ective Hamil-
tonian then reads H 0

0
= H0 +H↵ with

H0 = i (� · @) ⌧0, H↵ = ↵

3X

j=1

e
�iqj ·rT+

j + h.c., (1)

where @ = (@x, @y) and the hopping matrices T+

j are

T
+

j =
⇣
� �0 + e

i(j�1)2⇡/3
�+ + e

�i(j�1)2⇡/3
��

⌘
⌧+. (2)

Here we introduced two sets of Pauli matrices, � and ⌧ ,
which describe respectively the sublattice and layer sec-
tors, with �z = ±1 = A/B and ⌧z = ±1 = top/bottom.
The low-energy physics of this model is nontrivial even

without interactions. Indeed, the interlayer couplings
prohibit diagonalizing H

0
0
. This forbids the use of a

simple e↵ective theory valid for all twisting angles ✓ in
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FIG. 3. Fermi velocity v(↵,�) renormalized by interlayer hop-
pings at order ↵6, as a function of the relative strength ↵ of
the hopping amplitude with respect to the kinetic energy. As
the twist angle increases, so does ↵, and the renormalized ve-
locity vanishes at the first magic angle encoded in the first
magic value ↵0(�) where � sets the asymmetry between di-
agonal and o↵-diagonal in sublattice hoppings. Inset: ↵0(�)
depends weakly on corrugation e↵ects, i.e. on the value of �.
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one mini-Brillouin zone (mBZ) for each valley of monolayer
graphene. The two Dirac cones of the same valley, Kt andKb,
set the sides the mBZ of size 2K sin(✓/2), where K = |Kt,b| is
the Dirac momentum of monolayer graphene. Electron hop-
pings between the two layers involve a small momentum trans-
fer qj , j = 1, 2, 3 between Kt and each of the three nearest
Kb nodes of the mBZ.

the twist angle approaches the first magic value, a state
with both a gap opening and a periodic modulation of
interlayer correlations is favored. We call this phase a
nematic insulator.
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angle ✓. The top and bottom Dirac cones of the same
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zone (mBZ) of the superlattice (Fig. 1). Focusing on
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Dirac momentum of monolayer graphene. In addition to
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is of order ↵2, diagram (b) of order ↵4, and diagrams (c)-(e)
are of order ↵6. The expansion is non perturbative in the rel-
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� = 1 [3] and a chirally symmetric continuum (CSC)
model for � = 0 [6].
Following Ref. [3], we use a rotated basis where the

Dirac cones Kt,b of the two layers have the same (kx, ky)
coordinates in the mBZ, and measure all energies in units
of Ec (see Appendix A for details). The e↵ective Hamil-
tonian then reads H 0
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SYMMETRIES
• C3 rotation around z 

• C2 rotation around x 

• 2d-inversion x time reversal    

• (unitary) particle-hole antisymmetry, acts in real space as 
reflection  ,     ,  

C3z = e
2iπ
3 σ zτ0

My = C2x = σxτx

C2zT = IT = σxτ0𝒦

x → − x P = σxτz {P, H′�0} = 0

lost when: 
• keep angular dependence in kinetic energy ( )
•   terms included
• intervalley scattering allowed ( )

σ±θ/2 ⋅ k
O(k2)

K (g)
t/b ↔ K′�t/b(g)
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• call   the irrep under which the wavefunction transforms (4d irrep)

• find all copies of the trivial irreps in the product  

• those are the products   of the irreps below:

Γ

(Γ† ⊗ Γ) ⊗ (Γ† ⊗ Γ)

ρ ⊗ ρ
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the vicinity of the magic values. As a result, we resort
to a free electron model in which interlayer hopping ef-
fects are accounted for by a self-energy which is calcu-
lated in a perturbative expansion in ↵. Denoting G

0
0

and ⌃ the translationally-invariant components of the
propagator corrected by interlayer hoppings and the self-
energy respectively, we have (G0

0
)�1 = H0 � @⌧ � ⌃ ⇡

N [v(↵,�)i(� · @)⌧0 � @⌧ ], where @⌧ represents the par-
tial derivative with respect to imaginary time, N is a
wavefunction normalization and v(↵,�) the Fermi ve-
locity renormalized by the hopping processes (see Ap-
pendix B). An expansion to order 6 in ↵ but exact in �,
diagrammatically represented in Fig. 2, leads to
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We call ↵0(�) the lowest value of ↵ for which this Fermi
velocity vanishes, which sets the first magic angle value
to be approximately 1.1�. As shown in Fig. 3, this first
magic value depends weakly on the parameter �, and
thus on corrugation, and ranges from ↵0(1) = 0.598 for
the BMC model to ↵0(0) = 0.585 for the CSC model.
These constitute our first results.

III. SYMMETRY-ALLOWED INTERACTIONS

We now identify all short-ranged interaction potentials
allowed by the symmetries of the model. In order to do
so we turn to a field theoretic formalism and consider the
Euclidean action, S = S

0
0
+ Sint, written as a sum of the

free electron term

S
0
0
=

Z
d2r d⌧  †(H 0

0
� @⌧ ) , (4)

and an interaction term Sint which includes generic local
quartic couplings between the fermionic fields  † and  .
Using group theoretic methods, detailed in Appendix C,
we identify all couplings allowed by the symmetries of the
low energy model (1) [30]. This amounts to identiyfing
scalar invariants built as direct products of irreducible
representations of the corresponding symmetry group.
We find that the allowed couplings are (i) 8 channels
originating from one-dimensional (1d) corepresentations;
(ii) 4 channels originating from 2d corepresentations:

Sint = �

8X

i=1

gi

Z
d2r d⌧ ⇢(i)(r)⇢(i)(r)

�

4X

j=1

�j

Z
d2r d⌧ J (j)(r) · J (j)(r), (5)

where the densities ⇢(i)(r) =  
†
R

(i)(r) and currents
J (j)(r) =  

†M (j)(r) involve coupling matrices R(i)(r)
and M (j)(r). Following our choice of coordinates for

Corep. A+
1 a+

1 A+
2 a+

2 A�
1 a�

1 A�
2 a�

2

R̂(i) �0⌧0 �0⌧x �0⌧z �0⌧y �z⌧y �z⌧z �z⌧x �z⌧0

IT X X X X
C2 X X X X
P X X X X

Corep. E+
2 E+

4 E�
2 E�

4
p
2M̂ (j) �⌧0 �⌧x �⌧y �⌧z

TABLE I. One-dimensional (top) and two-dimensional (bot-
tom) corepresentations (corep.) of the magnetic symmetry
group of the continuum model, with their associated coupling
matrices R̂(i) and M̂ (j) expressed in terms of the Pauli ma-
trices in sublattice (�) and layer (⌧) subspaces. These cou-
pling matrices are normalized such that Tr[M̂ (j) · (M̂ (j))†] =
Tr[R̂(i) · (R̂(i))†] = 4. Each one-dimensional corep. can either
preserve (X) or break the combination of inversion and time
reversal symmetries IT , the mirror symmetry C2, and the
particle-hole antisymmetry P , while preserving the three-fold
rotational symmetry C3. The ± exponents label the eigen-
value of the IT symmetry.

the fields in Eq. (1), the coupling matrices in the ro-
tated basis, which enter Eq. (5), are obtained through
R

(i) = A(r)R̂(i)
A

†(r) and M (i) = A(r)M̂ (i)
A

†(r),
where A(r) is the transformation matrix of the field (see
Appendix A). The coupling matrices R̂

(i) and M̂ (i) are
provided in Tab. I. The couplings gi and �j are the am-
plitudes associated with the corresponding coupling po-
tentials.

The moiré pattern is invariant under four discrete
“symmetries”: (i) the 2⇡/3 rotation C3 = e

2i⇡/3�z⌧0

around the z axis orthogonal to the bilayer together
with (ii) the ⇡ rotation C2 = �x⌧x around the x axis
of Fig. 1 generate the point group D3, (iii) the composi-
tion IT = �x⌧0K of inversion and time reversal is an an-
tiunitary symmetry, where K denotes complex conjuga-
tion, and (iv) the unitary particle-hole antisymmetry [31]
P = �x⌧z, which satisfies {P,H

0
0
} = 0 [32]. The group

generated by D3 and P comprises all unitary operations
that leave the Hamiltonian invariant up to a sign. We
refer to this ensemble as the unitary group D̃3 of the
model. It can be decomposed into the semi-direct prod-
uct D̃3 = {e, P, ē, P̄}oD3, where e = �0⌧0 is the identity
operation, ē = (PC2)2 = �e and P̄ = ēP . The dichro-
matic magnetic group M generated by D̃3 and IT can
be written as the direct product M = D̃3 ⇥ {e, IT}. Us-
ing the Schur-Frobenius criterion [33–38], we determine
the corepresentations (corep.) of M from the irreducible
representations of D̃3, which can be constructed from
that of D3 by induction and basic properties of linear
representation theory (see Appendix C).

We combine the resulting coupling matrices of Tab. I
into three sets. The eight interactions originating from
1d coreps. correspond to the density-density couplings
diagonal in sublattice while preserving C3. Out of these
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eight one-dimensional coreps

four two-dimensional coreps

symmetric in sublattices

off-diagonal in sublattices

antisymmetric in sublattices

treat all these
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the vicinity of the magic values. As a result, we resort
to a free electron model in which interlayer hopping ef-
fects are accounted for by a self-energy which is calcu-
lated in a perturbative expansion in ↵. Denoting G
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and ⌃ the translationally-invariant components of the
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We call ↵0(�) the lowest value of ↵ for which this Fermi
velocity vanishes, which sets the first magic angle value
to be approximately 1.1�. As shown in Fig. 3, this first
magic value depends weakly on the parameter �, and
thus on corrugation, and ranges from ↵0(1) = 0.598 for
the BMC model to ↵0(0) = 0.585 for the CSC model.
These constitute our first results.

III. SYMMETRY-ALLOWED INTERACTIONS

We now identify all short-ranged interaction potentials
allowed by the symmetries of the model. In order to do
so we turn to a field theoretic formalism and consider the
Euclidean action, S = S
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+ Sint, written as a sum of the

free electron term

S
0
0
=

Z
d2r d⌧  †(H 0

0
� @⌧ ) , (4)

and an interaction term Sint which includes generic local
quartic couplings between the fermionic fields  † and  .
Using group theoretic methods, detailed in Appendix C,
we identify all couplings allowed by the symmetries of the
low energy model (1) [30]. This amounts to identiyfing
scalar invariants built as direct products of irreducible
representations of the corresponding symmetry group.
We find that the allowed couplings are (i) 8 channels
originating from one-dimensional (1d) corepresentations;
(ii) 4 channels originating from 2d corepresentations:
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where the densities ⇢(i)(r) =  
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(i)(r) and currents
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†M (j)(r) involve coupling matrices R(i)(r)
and M (j)(r). Following our choice of coordinates for
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TABLE I. One-dimensional (top) and two-dimensional (bot-
tom) corepresentations (corep.) of the magnetic symmetry
group of the continuum model, with their associated coupling
matrices R̂(i) and M̂ (j) expressed in terms of the Pauli ma-
trices in sublattice (�) and layer (⌧) subspaces. These cou-
pling matrices are normalized such that Tr[M̂ (j) · (M̂ (j))†] =
Tr[R̂(i) · (R̂(i))†] = 4. Each one-dimensional corep. can either
preserve (X) or break the combination of inversion and time
reversal symmetries IT , the mirror symmetry C2, and the
particle-hole antisymmetry P , while preserving the three-fold
rotational symmetry C3. The ± exponents label the eigen-
value of the IT symmetry.

the fields in Eq. (1), the coupling matrices in the ro-
tated basis, which enter Eq. (5), are obtained through
R

(i) = A(r)R̂(i)
A

†(r) and M (i) = A(r)M̂ (i)
A

†(r),
where A(r) is the transformation matrix of the field (see
Appendix A). The coupling matrices R̂

(i) and M̂ (i) are
provided in Tab. I. The couplings gi and �j are the am-
plitudes associated with the corresponding coupling po-
tentials.

The moiré pattern is invariant under four discrete
“symmetries”: (i) the 2⇡/3 rotation C3 = e

2i⇡/3�z⌧0

around the z axis orthogonal to the bilayer together
with (ii) the ⇡ rotation C2 = �x⌧x around the x axis
of Fig. 1 generate the point group D3, (iii) the composi-
tion IT = �x⌧0K of inversion and time reversal is an an-
tiunitary symmetry, where K denotes complex conjuga-
tion, and (iv) the unitary particle-hole antisymmetry [31]
P = �x⌧z, which satisfies {P,H

0
0
} = 0 [32]. The group

generated by D3 and P comprises all unitary operations
that leave the Hamiltonian invariant up to a sign. We
refer to this ensemble as the unitary group D̃3 of the
model. It can be decomposed into the semi-direct prod-
uct D̃3 = {e, P, ē, P̄}oD3, where e = �0⌧0 is the identity
operation, ē = (PC2)2 = �e and P̄ = ēP . The dichro-
matic magnetic group M generated by D̃3 and IT can
be written as the direct product M = D̃3 ⇥ {e, IT}. Us-
ing the Schur-Frobenius criterion [33–38], we determine
the corepresentations (corep.) of M from the irreducible
representations of D̃3, which can be constructed from
that of D3 by induction and basic properties of linear
representation theory (see Appendix C).

We combine the resulting coupling matrices of Tab. I
into three sets. The eight interactions originating from
1d coreps. correspond to the density-density couplings
diagonal in sublattice while preserving C3. Out of these
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the vicinity of the magic values. As a result, we resort
to a free electron model in which interlayer hopping ef-
fects are accounted for by a self-energy which is calcu-
lated in a perturbative expansion in ↵. Denoting G
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and ⌃ the translationally-invariant components of the
propagator corrected by interlayer hoppings and the self-
energy respectively, we have (G0
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N [v(↵,�)i(� · @)⌧0 � @⌧ ], where @⌧ represents the par-
tial derivative with respect to imaginary time, N is a
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We call ↵0(�) the lowest value of ↵ for which this Fermi
velocity vanishes, which sets the first magic angle value
to be approximately 1.1�. As shown in Fig. 3, this first
magic value depends weakly on the parameter �, and
thus on corrugation, and ranges from ↵0(1) = 0.598 for
the BMC model to ↵0(0) = 0.585 for the CSC model.
These constitute our first results.

III. SYMMETRY-ALLOWED INTERACTIONS

We now identify all short-ranged interaction potentials
allowed by the symmetries of the model. In order to do
so we turn to a field theoretic formalism and consider the
Euclidean action, S = S
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and an interaction term Sint which includes generic local
quartic couplings between the fermionic fields  † and  .
Using group theoretic methods, detailed in Appendix C,
we identify all couplings allowed by the symmetries of the
low energy model (1) [30]. This amounts to identiyfing
scalar invariants built as direct products of irreducible
representations of the corresponding symmetry group.
We find that the allowed couplings are (i) 8 channels
originating from one-dimensional (1d) corepresentations;
(ii) 4 channels originating from 2d corepresentations:
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trices in sublattice (�) and layer (⌧) subspaces. These cou-
pling matrices are normalized such that Tr[M̂ (j) · (M̂ (j))†] =
Tr[R̂(i) · (R̂(i))†] = 4. Each one-dimensional corep. can either
preserve (X) or break the combination of inversion and time
reversal symmetries IT , the mirror symmetry C2, and the
particle-hole antisymmetry P , while preserving the three-fold
rotational symmetry C3. The ± exponents label the eigen-
value of the IT symmetry.

the fields in Eq. (1), the coupling matrices in the ro-
tated basis, which enter Eq. (5), are obtained through
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†(r) and M (i) = A(r)M̂ (i)
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†(r),
where A(r) is the transformation matrix of the field (see
Appendix A). The coupling matrices R̂

(i) and M̂ (i) are
provided in Tab. I. The couplings gi and �j are the am-
plitudes associated with the corresponding coupling po-
tentials.

The moiré pattern is invariant under four discrete
“symmetries”: (i) the 2⇡/3 rotation C3 = e

2i⇡/3�z⌧0

around the z axis orthogonal to the bilayer together
with (ii) the ⇡ rotation C2 = �x⌧x around the x axis
of Fig. 1 generate the point group D3, (iii) the composi-
tion IT = �x⌧0K of inversion and time reversal is an an-
tiunitary symmetry, where K denotes complex conjuga-
tion, and (iv) the unitary particle-hole antisymmetry [31]
P = �x⌧z, which satisfies {P,H

0
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} = 0 [32]. The group

generated by D3 and P comprises all unitary operations
that leave the Hamiltonian invariant up to a sign. We
refer to this ensemble as the unitary group D̃3 of the
model. It can be decomposed into the semi-direct prod-
uct D̃3 = {e, P, ē, P̄}oD3, where e = �0⌧0 is the identity
operation, ē = (PC2)2 = �e and P̄ = ēP . The dichro-
matic magnetic group M generated by D̃3 and IT can
be written as the direct product M = D̃3 ⇥ {e, IT}. Us-
ing the Schur-Frobenius criterion [33–38], we determine
the corepresentations (corep.) of M from the irreducible
representations of D̃3, which can be constructed from
that of D3 by induction and basic properties of linear
representation theory (see Appendix C).

We combine the resulting coupling matrices of Tab. I
into three sets. The eight interactions originating from
1d coreps. correspond to the density-density couplings
diagonal in sublattice while preserving C3. Out of these
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only four have non-vanishing one-loop diagrams ; those associated to the irrep. a
�
2
, a�

1
, E+

2
and E

�
4
. Indeed, the

four IT -preserving interactions (with interaction matrices proportional to the identity �0 in the pseudospin space)
are not corrected at any order in the loop expansion in dimensional regularization, because near the lower critical
dimension dc = 2, the integrals over the momentum and the frequency compensate. Other schemes, such as a large
N expansion in 2 + 1 dimensions should be insensitive to this peculiarity and lead to a non-trivial flow [28, 30], but
we expect that either scheme find the same qualitative conclusion, namely that IT -preserving instabilities are weak.
In addition, the four remaining interactions whose matrices are not diagonal in the layer space, and thus depend on
position r, lead for all diagrams to a global transfer of momenta qj , with j = 1, 2, 3, which are much larger than the
momentum q of the low-energy excitations. As a result, these interactions are also not corrected, at least at one loop,
where the net momentum transfer cannot vanish. All these irrelevant interactions will henceforth be discarded, and
the corresponding couplings set to zero.

4. Analytical tricks

When expanding product of matrices and integrating the trace, many useful relations will be extensively used [31–
33]. The Feynman trick,

1

AB
=

Z
1

0

dx

Ax+B(1� x)
, (D12)

valid for any expressions A and B, enable to linearize products of denominators. For the four relevant interaction ze
consider here, the space-time integrals are isotropic and can be computed in arbitrary dimension d using

Z
ddQ

(2⇡)d
Q

2a

(Q2 +m2)b
=
�(b� a� d/2)�(a+ d/2)

(4⇡)d/2�(b)�(d/2)
m

�2(b�a�d/2)
, (D13)

for any reals a and b, and where Q = (q,!) is the relativistic d-momentum. The dummy mass m ! 0 plays the role
of an infrared regulator and � denotes Euler’s Gamma function, which satisfies

�(�n+ x) =
(�1)n

n!


1

x
+ (n+ 1) +O(x)

�
(D14)

for all real x and integer n; this relation is usually used with x = ✏. In Eq. (D14),  = (ln�)0 is Euler’s Digamma
function, which for integer values has expression

 (n+ 1) = �� +
nX

l=1

1

l
, (D15)

with � ⇡ 0.577 Euler-Mascheroni’s constant. Eq. (D15) does not avail at one loop, since we discard all finite quantities
in the MS scheme.

5. Polarization

The one-loop polarisation ⇧i is the self-energy of the auxiliary field �i (for i = 1, ..., 12). If �i(k,⌦) denotes the
corrected propagator of the bosonic field, we have ��1

i (k,⌦) = �0⌧0 � ⇧i(k,⌦), where the identity matrix �0⌧0 is
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FIG. 7. Polarisation at one loop, (a) at order ↵0; (b) at order ↵2. The double line is the fermionic propagator corrected by
interlayer hoppings, while the dashed line is the bosonic propagator. The external bosonic propagators must not be included
in the 1PI diagrams. The wavy line represents the sum over two insertions of all opposite momenta ⌘qj and ⌘̄qj .

FIG. 9. One-particle irreducible diagrams at one loop, up to order two in interlayer hoppings. The double line stands for the
fermionic propagator corrected by interlayer hoppings of Fig. 8(f), the dashed line for the bosonic propagator, and the wavy
line for the sum of interlayer hoppings of opposite momenta ±⌘qj , for ⌘ = ± and j = 1, 2, 3. Polarisation ⇧i at zero external
momentum and fixed Matsubara frequency, for the field �i at order (a) ↵0 and (b) ↵2. Three-point vertex Vil at order (c) ↵

0

and (d-g) ↵2, whose hopping line is (d) internal, (e) external, (f) isolated and (g) crossed.

G
0
0
(⌘qj , 0). This results in ⇧1

i = �3↵2
�ihi(�)⇧0

i where
�i equals either +1 for the interaction matrices �z⌧0 and
�⌧z or �1 for the interaction matrices �z⌧z and �⌧0; and
the corrugation-dependent function hi(�) equals either
1� �

2 or 1 if the interaction matrix matches �0 or �z in
the pseudospin sector, respectively. This fixes the renor-
malization constant to

Z�i = 1�
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�ihi(�)]

v✏
. (E15)

5. Vertices

We denote the one-loop contribution to the three-point
vertex of interaction i renormalised by interaction l by

Vil. The one-loop vertices at zero external momentum
k = 0 and fixed frequency ⌦ are drawn in Fig. 9(c) to 9(g)
and computed in Eq. (E16) to (E20). For the vertices
correcting an interaction i associated to a 2d channel, we
write the vertex for only one component of the matrix
Mi, simply denoted as Mi. The three-point vertex at
order ↵0, given by diagram shown in Fig. 9(c), reads

V
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3

 (2
p
gi)(4gl)

Z

q,!
MlG

0
0
(q,!)MiG

0
0
(q,!) ·Ml. (E16)

The three-point vertex at order ↵2 (mixed diagram with two interlayer hopping) have either multiplicity one, or two.
Those with multiplicity one nest either an internal hopping line, as in Fig. 9(d),
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or an external hopping line, as in Fig. 9(e),
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The mixed diagrams with multiplicity two nest either an isolated hopping line, as in Fig. 9(f),
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or a hopping line that crosses the interaction line, shown in Fig. 9(g),
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TABLE V. List of the functions fil(↵,�) appearing in the RG flows of the four non-trivial channels a�
2 , a

�
1 E+

2 , and E�
4 . The

interaction matrices associated to each of these channels are indicated in the first line of the table.

Similarly, we can define the pole of the integral appearing in Eq. (E16) as

Jil = lim
✏!0

v✏N
2

 

n

Z

q,!
Tr[MlG

0
0
(q,!)MiG

0
0
(q,!) ·MlMi] =

8
>>>><

>>>>:

0 if (Mi,Ml) match (�,�),

�1

4⇡ – (�,�z),

�1

2⇡ – (�z,�),

1

2⇡ – (�z,�z).

(E21)

such that V 1,in
il = V

1,ext
il = 3↵2
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0
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p
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sum of the diagrams with multiplicity two as
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such that V
1,iso
il + V

1,cro
il = N (2i

p
gi)(8↵2

glKil(�)/v✏).
The integrals Jil are numerical constants, dependent of
neither the number of fermion flavors n nor the corru-
gation parameter �, while Kil(�) depends on the corru-
gation parameter. Using commutation relations between
interaction and hopping matrices, we can express all ver-
tices (E16) – (E20) in terms of Jil and Kil only. We then
find the vertex renormalization constant to be

Zgi = 1�
4

v✏

X

l

gl[(1 + 6↵2
hi(�)�i)Jil + 2↵2

Kil(�)].

(E23)

6. RG flow equations

We express Zi = Z
2

giZ
�1

�i
to first order in the coupling

constants as

Zi = 1 +
12X

l=1

fil(↵,�)gl
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, (E24)

where

fil(↵,�) = 4 [(nIi�il � 2Jil) + 3↵2
hi(�)�i(nIi�il

�4Jil)� 4↵2
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⇤
. (E25)

and v is the Fermi velocity (B12). We compute the RG
flow equations by deriving Eq. (E3) with respect to µ at
constant bare couplings. This yields

�
@ log gi
@ logµ

= �✏+ v
�1

12X

l=1

fil(↵,�)gl. (E26)
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where for simplicity we assume the shift momenta to be aligned along a crystallographic axis of the moire pattern,
here along the y axis. The dimensionless functions F and F0/z read

F (x) =
2x

⇡2

h
� log

⇣p
x2 + 2� 1

⌘
+ log

⇣p
x2 + 2 + 1

⌘
� 2x cot�1

⇣
x

p
x2 + 2

⌘
+ 2 coth�1

⇣p
x2 + 2

⌘i
,

F0(x) =
1

⇡2

⇥
�
p
y� +

p
y+ + tanh�1

�p
y�

�
� tanh�1

�p
y+

�
� y� coth�1

�p
y�

�
+ y+ coth�1

�p
y+

�⇤
,

Fz(x) =
1

2⇡2


x
2 log

✓
1� x

1 + x

◆
� 2x2 tanh�1(x) + (1� 2x) log

�p
y� � 1

�
� (1 + 2x) log

�p
y+ � 1

�
+

z+ log
�p

y+ + 1
�
� z� log

�p
y� + 1

�
+ 2

�p
y+ �

p
y�

� �
,

(D5a)

(D5b)

(D5c)

where y± = 2 + x(x± 2) and z± = 1 + 2x(x± 1).

Appendix E: Renormalization

1. Hubbard-Stratonovitch decoupling

We aim at finding the most relevant insulating state
near charge neutrality. It is therefore practical to de-
couple the interactions in the direct, particle-hole chan-
nel, to evince order parameters of the form h 

†
M i for

M 2 {Ri,Mj}, where the bracket h...i denotes the en-
semble average over the complete action S = S

0
0
+ Sint.

Using Hubbard-Stratonovitch transformations, we in-
troduce one auxiliary bosonic field for each interaction,
whose ground state value in the correlated phase is a
constant solution of the classical equation of motion. We
must distinguish between the 1d corep., for which a scalar
field �i for i = 1, ..., 8, is su�cient, and the 2d corep., for
which a two-component field 'j = {'j,1,'j,2} must be
introduced, for j = 9, ..., 12. Such transformation enables
to recast the action for quartic fermion interactions (5)
into

Sint[ 
†
, ] ! SHub[ 

†
, ,�]

=
8X

i=1

Z
d2r d⌧

�
�
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p
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12X
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⇣
'2
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p
�i  

†'j ·Mj 

⌘
, (E1)

where the sum runs over both 1d and 2d irreps.. For sim-
plicity we dropped the spatial and time dependences of
the fields in Eq. (E1). The action for quartic fermion in-
teractions thus splits into a bosonic quadratic action (the
first term in the parenthesis), and a three-point vertex
which takes the form of a Yukawa coupling (the second
term in the parenthesis).

2. Renormalization procedure

The field theory described by the sum of action S
0
0
and

action SHub (E1) has critical dimension dc = 2, which en-
tails that in d = 3 space-time dimensions, we expect that

all interactions lead to quantum critical points that are
perturbative in the small parameter ✏ = d�2. From now
onwards, we work in Fourier space and express all fields
and integrals in terms of the momentum q and the Mat-
subara frequency !. A general Fourier-transformed field
is written �q,! for the bosonic case, or { q,!, 

†
q,!} for

the fermionic case, where  †
q,! = ( q,!)† denotes the con-

jugate of the Fourier-transformed field  q,!. To renor-
malize the field theory, we assume that the complete ac-
tion S is actually expressed in terms of bare fields {�̊,  ̊}
for � 2 {�i,'j} and couplings g̊ for g 2 {gi,�j} , which
are ill-defined in the interacting theory. The physical
parameters and fields—written without the˚symbol—
are connected to their bare counterparts through the so-
called Z constants.
We define define the Z constants for the fields such

that

�̊ = Z
1/2
� �,  ̊ = Z

1/2
  . (E2)

To regularize the theory, we work in an isotropic space-
time of dimension d = 2 + ✏, and introduce a mass scale
µ to make the regularized couplings dimensionless. A
renormalized coupling g is linked to its bare value g̊ by

g̊ = µ
�✏

N
2

 Z
2

gZ
�1

� g. (E3)

We included the normalization of the wavefunction N 

in the redefinition of the couplings in order to compen-
sate at all loop orders those arising from the corrected
fermionic propagator G

0
0
, given in Eq. (B11). Owing to

dimensional regularization, we must promote the Pauli
matrices in S0 to a Cli↵ord algebra in arbitrary dimension
d, satisfying the anticommutation rules {�i,�j} = 2�ij
for i, j = 1, ..., d. Using Eqs. (E2) and (E3), we find the
renormalized action SR = SR,0 + SR,↵ + SR,� + SR,int,
where the quadratic, decoupled action reads

SR,0 =

Z

q,!
 
†
q(� ·q⌧0 � i!�0⌧0) q. (E4)

The quadratic hopping action reads

SR,↵ = ↵

X

⌘
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†
qT

⌘
j  q+⌘qj . (E5)
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where y± = 2 + x(x± 2) and z± = 1 + 2x(x± 1).

Appendix E: Renormalization

1. Hubbard-Stratonovitch decoupling

We aim at finding the most relevant insulating state
near charge neutrality. It is therefore practical to de-
couple the interactions in the direct, particle-hole chan-
nel, to evince order parameters of the form h 

†
M i for

M 2 {Ri,Mj}, where the bracket h...i denotes the en-
semble average over the complete action S = S

0
0
+ Sint.

Using Hubbard-Stratonovitch transformations, we in-
troduce one auxiliary bosonic field for each interaction,
whose ground state value in the correlated phase is a
constant solution of the classical equation of motion. We
must distinguish between the 1d corep., for which a scalar
field �i for i = 1, ..., 8, is su�cient, and the 2d corep., for
which a two-component field 'j = {'j,1,'j,2} must be
introduced, for j = 9, ..., 12. Such transformation enables
to recast the action for quartic fermion interactions (5)
into

Sint[ 
†
, ] ! SHub[ 

†
, ,�]

=
8X

i=1

Z
d2r d⌧

�
�
2

i + 2
p
gi  

†
�iRi 

�

+
12X

j=9

Z
d2r d⌧

⇣
'2

j + 2
p
�i  

†'j ·Mj 

⌘
, (E1)
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and integrals in terms of the momentum q and the Mat-
subara frequency !. A general Fourier-transformed field
is written �q,! for the bosonic case, or { q,!, 

†
q,!} for

the fermionic case, where  †
q,! = ( q,!)† denotes the con-

jugate of the Fourier-transformed field  q,!. To renor-
malize the field theory, we assume that the complete ac-
tion S is actually expressed in terms of bare fields {�̊,  ̊}
for � 2 {�i,'j} and couplings g̊ for g 2 {gi,�j} , which
are ill-defined in the interacting theory. The physical
parameters and fields—written without the˚symbol—
are connected to their bare counterparts through the so-
called Z constants.
We define define the Z constants for the fields such

that

�̊ = Z
1/2
� �,  ̊ = Z

1/2
  . (E2)

To regularize the theory, we work in an isotropic space-
time of dimension d = 2 + ✏, and introduce a mass scale
µ to make the regularized couplings dimensionless. A
renormalized coupling g is linked to its bare value g̊ by

g̊ = µ
�✏

N
2

 Z
2

gZ
�1

� g. (E3)

We included the normalization of the wavefunction N 

in the redefinition of the couplings in order to compen-
sate at all loop orders those arising from the corrected
fermionic propagator G

0
0
, given in Eq. (B11). Owing to

dimensional regularization, we must promote the Pauli
matrices in S0 to a Cli↵ord algebra in arbitrary dimension
d, satisfying the anticommutation rules {�i,�j} = 2�ij
for i, j = 1, ..., d. Using Eqs. (E2) and (E3), we find the
renormalized action SR = SR,0 + SR,↵ + SR,� + SR,int,
where the quadratic, decoupled action reads

SR,0 =

Z

q,!
 
†
q(� ·q⌧0 � i!�0⌧0) q. (E4)

The quadratic hopping action reads

SR,↵ = ↵

X

⌘

3X

j=1

Z

q,!
 
†
qT

⌘
j  q+⌘qj . (E5)

Hubbard-Stratonovich decoupling: Sint[ψ†, ψ] → SHub[ψ†, ψ, ϕ]

RG parameter (momentum scale)

epsilon expansion,  d + 1 = D = 2 + ϵ

G′�0

1d irreps 2d irreps

coupling strengths

up to  α2

ϕ, φ

( )ϵ = 1
renormalized velocity

renormalized

where µ is the mass scale of the theory and total space-time dimension is d = 2 + ‘. Let’s define for a given
interaction type i, Z = Z2

i Z≠1
Ïi

= 1 + agi/‘ + bg2
i /‘ + cg2

i /‘2 + (...). Then we can show [2, 15] that the beta
function reads at two-loop order

—i(gi) = ≠‘gi ≠ ag2
i ≠ bg3

i (3.41)

and the coe�cients must satisfy c = a2. We defined the beta function as —i = ≠dgi/d ln µ.

3.2 Computation of the beta functions

3.2.1 Preliminary

We will distinguish between six couplings: four associated to the 1d irreps A+
1 , A≠

1 , A+
2 , A≠

2 and two associated
to the 2d irreps E+

2 and E≠
2 . The corresponding vertex matrices are given in Eq. (2.15) and (2.16). We denote

the couplings by g±
i with i = 1, 2 for the 1d irreps and u± for the 2d irreps. We use dimensional regularisation

to compute Feynman integrals, with dimension d = 2 + ‘. Some useful relations that will be extensively used
are [7, 15]

1
AB

=
ˆ 1

0

dx

Ax + B(1 ≠ x) , (3.42)

ˆ ddq

(2fi)d

q2a

(q2 + D)b
= �(b ≠ a ≠ d/2)�(a + d/2)

(4fi)d/2�(b)�(d/2)
D≠(b≠a≠d/2), (3.43)

where � is Euler’s Gamma function, which satisfies

�(≠n + x) = (≠1)n

n!

5
1
x

+ Â(n + 1) + O(x)
6

. (3.44)

The function Â = (ln �)Õ is the Euler Digamma function, which for integer values has expression (with “ ¥ 0.577
the Euler-Mascheroni constant)

Â(n + 1) = ≠“ +
nÿ

l=1

1
l
. (3.45)

In diagrams where V internal vertices with coupling g, L fermionic loops and I momentum insertions appear,
the prefactor of the diagram is

CV,L,I = 2V (≠1)L+I+V/2–IgV/2. (3.46)

Some diagrams contain both vertices due to the interaction and non-local contributions of the interlayer
coupling. These will be treated separately because they don’t simply change the value of the Fermi velocity v,
and their value varies from am interaction type to another. For instance, the four reps A1 acts on the transfer
matrices as A1 · T ÷

j = M†T ÷
j M with M one of the four interaction matrices. We find

A0
1 · T ÷

j = T ÷
j Ax

1 · T ÷
j = T ÷̄

j (3.47)
Az

1 · T ÷
j = ≠T ÷

j Ay
1 · T ÷

j = ≠T ÷̄
j . (3.48)

Hence the reps A+
1 acts on the transfer matrices with a + sign and idem for the ≠ sign (this is related to the

IT symmetry then). What is more, the Ax
1 and Ay

1 change ÷ into ÷̄, which can be thought as an inversion in
space. I will denote by �̄ those irreps that send ÷ to ÷̄. Hence Ax

1 = Ā+
1 and Ay

1 = Ā≠
1 . Similarly we have

A0
2 · T ÷

j = ≠T ÷
j Ax

2 · T ÷
j = ≠T ÷̄

j (3.49)
Az

2 · T ÷
j = T ÷

j Ay
2 · T ÷

j = T ÷̄
j . (3.50)

3.2.2 Tree level vertex

For conveniency we define the three-point vertex function at tree level but with momentum insertion at order
–2,

V (0,2)(k1,k2, Ê) = kkk111

÷̄qqqjjj

÷qqqjjj
kkk222

© (≠2i
Ô

g)–2
ÿ

÷,j

W (2)(M,k1,k2, Ê, ÷, j) (3.51)
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TABLE II. Isolated, non-gaussian critical fixed points (FPs)
for the four non-trivial instabilities.

at the origin is always stable in d = 3. Besides, we
identify four critical points, one for each non-trivial cou-
pling, listed in Tab. II. They control phase transitions
toward the four correlated phases discussed in the mean-
field analysis. As ↵ approaches the magic value ↵0, all
four critical FPs collapse towards the gaussian FP. Mean-
while, the (Dirac) semimetallic region, which corresponds
to the basin of attraction of the gaussian FP, shrinks and
disappears completely. As a result, these four couplings
are always relevant close enough to the magic angle, re-
gardless of the value of the bare interaction strength.
This scenario provides a natural way of identifying the
dominant instabilities near the magic angle: they corre-
spond to the couplings whose critical FPs collapse the
fastest towards the origin.

Hence, as follows from Tab. II, we discard the cou-
plings g0 and �0 (the amplitudes of interactions which
are symmetric in layers) and focus on the competition be-
tween the couplings which are antisymmetric in layers, of

(a) (b) (c) (d)

(e) (f) (g)

FIG. 6. (a) - (b) Polarization (bosonic self-energy) to first
order in the couplings, (a) at order ↵0 and (b) at order ↵2.
(c) - (g) Three-point vertex to first order in the couplings, (c)
at order ↵0; (d) - (e) at order ↵2 with multiplicity one; (f) -
(g) at order ↵2 with multiplicity two. The double line is the
fermionic propagator corrected by interlayer hoppings, while
the dashed line is the bosonic propagator. The wavy line
represents a pair of opposite hopping processes, summed over
all channels with a transfer of momentum ±qj for j = 1, 2, 3.

amplitude gz associated with the layer-polarized gapped
phase and �z associated with the C3-breaking density-
modulated phase. We note that, while the gapped phase
is reminiscent of the dynamical mass generation in the
Gross-Neveu model [42, 43], the C3-breaking density-
modulated phase is specific to TBG. The competition
between the two most relevant instabilities is dictated by
the following coupled RG flows (for derivation see Ap-
pendix E)

�µ
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4gz�z
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2�zgz
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As mentioned above, all FPs collapse to the origin at the
magic angle. Thus to explore the competition between
the phases, we plot the renormalization flow for the cou-
plings rescaled by the vanishing velocity. The e↵ect of the
proximity to the magic angle on this competition is shown
in Fig. 7, where we compare the flow close to the first
magic angle (b) with that for the case when interlayer
hopping is suppressed (a) [44]. This comparison shows
that the proximity to the magic angle favors the occur-
rence of density modulations. The large scale behavior is
dominated by the fastest diverging coupling, whether gz
or �z. Within our perturbative RG analysis, a crossover
line separates the corresponding regions, whose paramet-
ric equation reads �z = gz[1+6↵2(1��

2)]/[6↵2(3��
2)].

Around the crossover line, both order parameters coexist
over a large range of length scales, corresponding to the
appearance of a gapped, periodically modulated state,
asymmetric in layers and breaking the C3 and IT sym-
metries. We call it a nematic insulator by analogy with
phases discussed in Ref. [45]. This nematic insulating
behavior is characterized by a runaway RG flow of both
�z, gz. It appears for a wide range of coupling param-
eters, as a consequence of the proximity to the magic
angle.

VI. DISCUSSION AND OUTLOOK

Applying group theory supplemented by a renormal-
ization group approach, we found that a gapped nematic
state with C3 breaking modulation of density is favored
at charge neutrality in TBG when the twist angle ap-
proaches its first magic value. A gap was observed at
charge neutrality in TBG both in scanning tunneling mi-
croscopy and spectroscopy studies [14, 24, 46, 47] as well
as in four-terminal transport measurements [23]. Three-
fold symmetry breaking and nematic ordering were also
reported [22, 24, 47]. Both of these experimental ob-
servations strongly support the occurence of a nematic
insulating state at charge neutrality in TBG, as we ob-
tain within our RG scenario. We also find that such a
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modulated phase. We note that, while the gapped phase
is reminiscent of the dynamical mass generation in the
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over a large range of length scales, corresponding to the
appearance of a gapped, periodically modulated state,
asymmetric in layers and breaking the C3 and IT sym-
metries. We call it a nematic insulator by analogy with
phases discussed in Ref. [45]. This nematic insulating
behavior is characterized by a runaway RG flow of both
�z, gz. It appears for a wide range of coupling param-
eters, as a consequence of the proximity to the magic
angle.
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ization group approach, we found that a gapped nematic
state with C3 breaking modulation of density is favored
at charge neutrality in TBG when the twist angle ap-
proaches its first magic value. A gap was observed at
charge neutrality in TBG both in scanning tunneling mi-
croscopy and spectroscopy studies [14, 24, 46, 47] as well
as in four-terminal transport measurements [23]. Three-
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As mentioned above, all FPs collapse to the origin at the
magic angle. Thus to explore the competition between
the phases, we plot the renormalization flow for the cou-
plings rescaled by the vanishing velocity. The e↵ect of the
proximity to the magic angle on this competition is shown
in Fig. 7, where we compare the flow close to the first
magic angle (b) with that for the case when interlayer
hopping is suppressed (a) [44]. This comparison shows
that the proximity to the magic angle favors the occur-
rence of density modulations. The large scale behavior is
dominated by the fastest diverging coupling, whether gz
or �z. Within our perturbative RG analysis, a crossover
line separates the corresponding regions, whose paramet-
ric equation reads �z = gz[1+6↵2(1��
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Around the crossover line, both order parameters coexist
over a large range of length scales, corresponding to the
appearance of a gapped, periodically modulated state,
asymmetric in layers and breaking the C3 and IT sym-
metries. We call it a nematic insulator by analogy with
phases discussed in Ref. [45]. This nematic insulating
behavior is characterized by a runaway RG flow of both
�z, gz. It appears for a wide range of coupling param-
eters, as a consequence of the proximity to the magic
angle.

VI. DISCUSSION AND OUTLOOK

Applying group theory supplemented by a renormal-
ization group approach, we found that a gapped nematic
state with C3 breaking modulation of density is favored
at charge neutrality in TBG when the twist angle ap-
proaches its first magic value. A gap was observed at
charge neutrality in TBG both in scanning tunneling mi-
croscopy and spectroscopy studies [14, 24, 46, 47] as well
as in four-terminal transport measurements [23]. Three-
fold symmetry breaking and nematic ordering were also
reported [22, 24, 47]. Both of these experimental ob-
servations strongly support the occurence of a nematic
insulating state at charge neutrality in TBG, as we ob-
tain within our RG scenario. We also find that such a
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Semimetal Gap

Mixed

Semimetal Gap

Density
modulation

Mixed

FIG. 7. Renormalization flow of the couplings gz and �z at
� = 0.82 [28, 29], (a) for a weak interlayer hopping amplitude,
↵ = 0.1↵0; and (b) close to the first magic angle, ↵ ' ↵0. As
↵ approaches ↵0, the blue semimetal region shrinks to the
origin. To study the competition between the couplings we
rescale them by the vanishing velocity v. The red critical
FPs control the transitions toward the gapped (red region) or
density-modulated (green region) phases. The black source
FP gives rise to a crossover region (mixed state). It migrates
away from the vertical axis as we increase ↵, thus expanding
the density-modulated region.

state persists even when the strength of interactions is
weakened by screening as was experimentally observed
in Ref. [48]. Let us stress that our RG approach identi-
fies a gapped nematic behavior in the perturbative scal-
ing regime, but does not rule out that other types of
correlations develop at larger length scales, including
those of intervalley-coherent and generalized ferromag-
netic insulating states recently discussed in Refs. [49–
52]. It is worth noting that the energies of these di↵er-
ent ground states seem to be very close to each other,
suggesting a strong sensitivity to experimental condi-
tions: indeed, h-BN encapsulation, which induces chiral-
ity breaking, favors the layer-polarized insulators such as
the nematic insulator discussed in this paper as opposed
to intervalley-coherent or generalized ferromagnetic in-
sulating states [52, 53]. Finally, let us note that the oc-
curence of an analogous nematic insulating state close to
quantum spin Hall phase transitions raises the questions
of its relation with the topological nature of the under-
lying semimetal [32, 54, 55].
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Appendix A: Change of basis

The Hamiltonian describing the low-energy physics
near the two twisted Dirac cones at Kt,b originating from
a single valley of graphene can be written as [56]

Ĥ =

Z
d2r  ̂†

✓
v0� ·

�
i@ + q1

2

�
T̂

†(r)
T̂ (r) v0� ·

�
i@ �

q1

2

�
◆
 ̂.

(A1)

The momentum q1 = Kt�Kb gives the relative displace-
ment of the Dirac momentum K of each layer due to the
twist, while v0 is the Fermi velocity of graphene. Notice
that there are three equivalent K points in monolayer
graphene, each leading to one copy of the Hamiltonian
Ĥ with a relative displacement qj , j = 1, 2, 3, where the
momenta q2 and q3 are obtained through a rotation of q1
by an angle of 2⇡/3 and 4⇡/3 respectively. The interlayer
hopping matrix T̂ (r) reads

8
>><

>>:

T̂ (r) =
3X

j=1

e
�i(qj�q1)·rT+

j + h.c.

Tj =
tAA

3
�0 +

tAB

3

�
�+e

�2i(j�1)⇡/3 + h.c.
�

, (A2)

where tAA and tAB are the hopping amplitudes in the
AA and AB/BA regions, respectively.
Hamiltonian (A1) is simplified by rotating the basis [3]

 ̂(r, ⌧) = A1(r) (r, ⌧), Aj(r) = e
�i(qj ·r/2)⌧z , (A3)

which brings the Dirac cones to the same momentum:

H =

Z
d2r †

✓
v0� · i@ T

†(r)
T (r) v0� · i@

◆
 , (A4)

where T (r) =
P

3

j=1
e
�iqj ·rT+

j . Applying the same
change of basis to quartic terms in the action, e.g. cor-
responding to a density-density interaction of the form

Sint = g

Z
d2r d⌧  ̂†(r, ⌧)R̂ ̂(r, ⌧)

 ̂
†(r, ⌧)R̂ ̂(r, ⌧), (A5)

we arrive at

Sint = g

Z
d2r d⌧  †(r, ⌧)R(r) (r, ⌧)

 
†(r, ⌧)R(r) (r, ⌧) (A6)

with the rotated interaction matrix

R(r) =
1

3

3X

j=1

A
†
j(r)R̂Aj(r). (A7)

Though both R̂ and R(r) describe contact interactions,
while R̂ is space-independent, R(r) depends in general
on the position as a consequence of Eq. (A7).

  sublattice structure   no pole in  
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TABLE II. Isolated, non-gaussian critical fixed points (FPs)
for the four non-trivial instabilities.

at the origin is always stable in d = 3. Besides, we
identify four critical points, one for each non-trivial cou-
pling, listed in Tab. II. They control phase transitions
toward the four correlated phases discussed in the mean-
field analysis. As ↵ approaches the magic value ↵0, all
four critical FPs collapse towards the gaussian FP. Mean-
while, the (Dirac) semimetallic region, which corresponds
to the basin of attraction of the gaussian FP, shrinks and
disappears completely. As a result, these four couplings
are always relevant close enough to the magic angle, re-
gardless of the value of the bare interaction strength.
This scenario provides a natural way of identifying the
dominant instabilities near the magic angle: they corre-
spond to the couplings whose critical FPs collapse the
fastest towards the origin.

Hence, as follows from Tab. II, we discard the cou-
plings g0 and �0 (the amplitudes of interactions which
are symmetric in layers) and focus on the competition be-
tween the couplings which are antisymmetric in layers, of
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(e) (f) (g)

FIG. 6. (a) - (b) Polarization (bosonic self-energy) to first
order in the couplings, (a) at order ↵0 and (b) at order ↵2.
(c) - (g) Three-point vertex to first order in the couplings, (c)
at order ↵0; (d) - (e) at order ↵2 with multiplicity one; (f) -
(g) at order ↵2 with multiplicity two. The double line is the
fermionic propagator corrected by interlayer hoppings, while
the dashed line is the bosonic propagator. The wavy line
represents a pair of opposite hopping processes, summed over
all channels with a transfer of momentum ±qj for j = 1, 2, 3.

amplitude gz associated with the layer-polarized gapped
phase and �z associated with the C3-breaking density-
modulated phase. We note that, while the gapped phase
is reminiscent of the dynamical mass generation in the
Gross-Neveu model [42, 43], the C3-breaking density-
modulated phase is specific to TBG. The competition
between the two most relevant instabilities is dictated by
the following coupled RG flows (for derivation see Ap-
pendix E)
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As mentioned above, all FPs collapse to the origin at the
magic angle. Thus to explore the competition between
the phases, we plot the renormalization flow for the cou-
plings rescaled by the vanishing velocity. The e↵ect of the
proximity to the magic angle on this competition is shown
in Fig. 7, where we compare the flow close to the first
magic angle (b) with that for the case when interlayer
hopping is suppressed (a) [44]. This comparison shows
that the proximity to the magic angle favors the occur-
rence of density modulations. The large scale behavior is
dominated by the fastest diverging coupling, whether gz
or �z. Within our perturbative RG analysis, a crossover
line separates the corresponding regions, whose paramet-
ric equation reads �z = gz[1+6↵2(1��

2)]/[6↵2(3��
2)].

Around the crossover line, both order parameters coexist
over a large range of length scales, corresponding to the
appearance of a gapped, periodically modulated state,
asymmetric in layers and breaking the C3 and IT sym-
metries. We call it a nematic insulator by analogy with
phases discussed in Ref. [45]. This nematic insulating
behavior is characterized by a runaway RG flow of both
�z, gz. It appears for a wide range of coupling param-
eters, as a consequence of the proximity to the magic
angle.

VI. DISCUSSION AND OUTLOOK

Applying group theory supplemented by a renormal-
ization group approach, we found that a gapped nematic
state with C3 breaking modulation of density is favored
at charge neutrality in TBG when the twist angle ap-
proaches its first magic value. A gap was observed at
charge neutrality in TBG both in scanning tunneling mi-
croscopy and spectroscopy studies [14, 24, 46, 47] as well
as in four-terminal transport measurements [23]. Three-
fold symmetry breaking and nematic ordering were also
reported [22, 24, 47]. Both of these experimental ob-
servations strongly support the occurence of a nematic
insulating state at charge neutrality in TBG, as we ob-
tain within our RG scenario. We also find that such a
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flow equations in two-dimensional parameter space:

• non-interacting fixed point at origin

• flows controlled by critical points, dominant instabilities are 
those whose fixed point collapses the fastest towards the origin



ORDER PARAMETERS
• mean-field associated with four of the couplings (important in the RG)

4

FIG. 4. Schematic dispersion relation of (a) a gapped layer-
polarized correlated phase and (b) a density modulated phase.
While the gapped phase is characterized by the amplitude
of the gap �z opening at the Kt and Kb Dirac points, the
second phase is characterized by a shift of these Dirac points
of amplitude Gz. This shift leads to a modulation of the
relative amplitude of wavefunctions between the two layers,
revealed in the density | t +  b/2|2 probed e.g. by a STM
tip located on the top layer. The behavior of this density is
shown (c) without any shift and (d) for a shift Gz = 0.3ey.
The spatial C3-breaking of this phase is clearly manifested
by the appearance of stripes for this density, perpendicular
to Gz.

eight couplings, (i) the four interactions associated with
1d coreps. which preserves IT are those symmetric on
the A/B sublattices, of the form ( †

�0⌧µ )( †
�0⌧µ )

for µ = 0, x, y, z [39]. They are distinguished by their
breaking of C2 or P symmetries. (ii) The four interac-
tions associated with 1d coreps. which break IT are those
which are antisymmetric in the A/B sublattices, with
couplings of the form ( †

�z⌧µ )( †
�z⌧µ ). Similarly to

set (i), they can break C2 or P . Finally, the (iii) four in-
teractions originating from 2d coreps. are current-current
couplings between the layers, o↵-diagonal in sublattices,
of the form ( †�⌧µ ) · ( †�⌧µ ). They break all sym-
metries of the free model, and in particular the three-fold
rotational symmetry C3.

IV. NATURE OF THE CORRELATED PHASES

Let us first discuss the nature of the phases induced
by these couplings. The interactions of type (i), sym-

metric in sublattices, neither open a gap at the Dirac
point nor induce a density modulation. On the other
hand, interactions of type (ii) generate phases with a
gap �µ / gµh 

†
�z⌧µ i, reminiscent of the gap open-

ing in Boron Nitride, see Fig. 4(a). These various
gapped phases are distinguished by their layer correla-
tions. Current-current interactions of type (iii) lead to
radically di↵erent phases, in which the Dirac cones of
the two layers are shifted with respect to each other by
a momentum 2Gµ / �µh 

†�⌧µ i, as shown in Fig. 4(b).
They generate gapless phases with C3-breaking density
modulations. These spatial modulations are detected
when probing the electronic density from one side of the
bilayer, which amounts to coupling the local probe asym-
metrically to the top and bottom wavefunctions, thus
scanning some interlayer density of the form | t + r b|

2,
where 0 < r < 1 is the asymmetry parameter. In Fig. 4
we compare the corresponding density for an asymme-
try r = 1/2 in the absence of any instability in Fig. 4(c)
with that in the presence of a C3-breaking instability
in Fig. 4(d). Stripe-like modulations of the interlayer-
correlated density are readily observed in this last case.
To gain further insight into the behavior of these

phases close to the first magic angle, we now study their
mean-field behavior. As we will show later using a renor-
malization group analysis, only four out of the twelve cou-
plings are sensitive to the proximity of the magic angle.
They correspond to the interaction potentials diagonal
in layers, and originate from the a�
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2
coreps. of set (ii)

with respective amplitude gz, g0, and the E�
4
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+
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coreps.

of set (iii) with amplitudes �0, �z. The corresponding or-
der parameters satisfy the self-consistency equations [40]
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The correlators in Eq. (6) are the translationally-
invariant parts of statistical averages computed over the
Bloch Hamiltonian density H

0
MF

= H
0
0
+ � · (G0⌧0 +

Gz⌧z) + �z(�0⌧0 +�z⌧z). The corrections by interlayer
hoppings of the correlators in Eq. (6) are obtained within
a perturbation expansion in ↵. Incorporating the hop-
pings H↵ leads to an enhancement of the order parame-

ters by factors N (G/�)

0/z (↵,�), as is the case for the renor-
malization of the Fermi velocity; they are calculated di-
agrammatically to sixth order in ↵ in Appendix D.
The resulting dependence of each separate order pa-

rameter on the proximity to the magic angle and for var-
ious strengths of the couplings is depicted in Fig. 5. The
insulating phases, characterized by a gap �0 or �z, de-
velop at a critical coupling which decreases as the pa-
rameter ↵ approaches its magic value ↵0. Such gapped
phases generically occur in some range of twist angles
around the magic value, in agreement with the experi-
mental findings of Ref. [41]. At the mean-field level and

H′�MF = H′�0 + σ ⋅ (𝓖0τ0 + 𝓖zτz) + σz(Δ0τ0 + Δzτz)
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polarized correlated phase and (b) a density modulated phase.
While the gapped phase is characterized by the amplitude
of the gap �z opening at the Kt and Kb Dirac points, the
second phase is characterized by a shift of these Dirac points
of amplitude Gz. This shift leads to a modulation of the
relative amplitude of wavefunctions between the two layers,
revealed in the density | t +  b/2|2 probed e.g. by a STM
tip located on the top layer. The behavior of this density is
shown (c) without any shift and (d) for a shift Gz = 0.3ey.
The spatial C3-breaking of this phase is clearly manifested
by the appearance of stripes for this density, perpendicular
to Gz.
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we compare the corresponding density for an asymme-
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with that in the presence of a C3-breaking instability
in Fig. 4(d). Stripe-like modulations of the interlayer-
correlated density are readily observed in this last case.
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phases close to the first magic angle, we now study their
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plings are sensitive to the proximity of the magic angle.
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polarized correlated phase and (b) a density modulated phase.
While the gapped phase is characterized by the amplitude
of the gap �z opening at the Kt and Kb Dirac points, the
second phase is characterized by a shift of these Dirac points
of amplitude Gz. This shift leads to a modulation of the
relative amplitude of wavefunctions between the two layers,
revealed in the density | t +  b/2|2 probed e.g. by a STM
tip located on the top layer. The behavior of this density is
shown (c) without any shift and (d) for a shift Gz = 0.3ey.
The spatial C3-breaking of this phase is clearly manifested
by the appearance of stripes for this density, perpendicular
to Gz.
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velop at a critical coupling which decreases as the pa-
rameter ↵ approaches its magic value ↵0. Such gapped
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around the magic value, in agreement with the experi-
mental findings of Ref. [41]. At the mean-field level and

4

FIG. 4. Schematic dispersion relation of (a) a gapped layer-
polarized correlated phase and (b) a density modulated phase.
While the gapped phase is characterized by the amplitude
of the gap �z opening at the Kt and Kb Dirac points, the
second phase is characterized by a shift of these Dirac points
of amplitude Gz. This shift leads to a modulation of the
relative amplitude of wavefunctions between the two layers,
revealed in the density | t +  b/2|2 probed e.g. by a STM
tip located on the top layer. The behavior of this density is
shown (c) without any shift and (d) for a shift Gz = 0.3ey.
The spatial C3-breaking of this phase is clearly manifested
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to Gz.
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of the form ( †�⌧µ ) · ( †�⌧µ ). They break all sym-
metries of the free model, and in particular the three-fold
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Let us first discuss the nature of the phases induced
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try r = 1/2 in the absence of any instability in Fig. 4(c)
with that in the presence of a C3-breaking instability
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correlated density are readily observed in this last case.
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While the gapped phase is characterized by the amplitude
of the gap �z opening at the Kt and Kb Dirac points, the
second phase is characterized by a shift of these Dirac points
of amplitude Gz. This shift leads to a modulation of the
relative amplitude of wavefunctions between the two layers,
revealed in the density | t +  b/2|2 probed e.g. by a STM
tip located on the top layer. The behavior of this density is
shown (c) without any shift and (d) for a shift Gz = 0.3ey.
The spatial C3-breaking of this phase is clearly manifested
by the appearance of stripes for this density, perpendicular
to Gz.
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FIG. 7. Renormalization flow of the couplings gz and �z at
� = 0.82 [28, 29], (a) for a weak interlayer hopping amplitude,
↵ = 0.1↵0; and (b) close to the first magic angle, ↵ ' ↵0. As
↵ approaches ↵0, the blue semimetal region shrinks to the
origin. To study the competition between the couplings we
rescale them by the vanishing velocity v. The red critical
FPs control the transitions toward the gapped (red region) or
density-modulated (green region) phases. The black source
FP gives rise to a crossover region (mixed state). It migrates
away from the vertical axis as we increase ↵, thus expanding
the density-modulated region.

state persists even when the strength of interactions is
weakened by screening as was experimentally observed
in Ref. [48]. Let us stress that our RG approach identi-
fies a gapped nematic behavior in the perturbative scal-
ing regime, but does not rule out that other types of
correlations develop at larger length scales, including
those of intervalley-coherent and generalized ferromag-
netic insulating states recently discussed in Refs. [49–
52]. It is worth noting that the energies of these di↵er-
ent ground states seem to be very close to each other,
suggesting a strong sensitivity to experimental condi-
tions: indeed, h-BN encapsulation, which induces chiral-
ity breaking, favors the layer-polarized insulators such as
the nematic insulator discussed in this paper as opposed
to intervalley-coherent or generalized ferromagnetic in-
sulating states [52, 53]. Finally, let us note that the oc-
curence of an analogous nematic insulating state close to
quantum spin Hall phase transitions raises the questions
of its relation with the topological nature of the under-
lying semimetal [32, 54, 55].
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Appendix A: Change of basis

The Hamiltonian describing the low-energy physics
near the two twisted Dirac cones at Kt,b originating from
a single valley of graphene can be written as [56]
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The momentum q1 = Kt�Kb gives the relative displace-
ment of the Dirac momentum K of each layer due to the
twist, while v0 is the Fermi velocity of graphene. Notice
that there are three equivalent K points in monolayer
graphene, each leading to one copy of the Hamiltonian
Ĥ with a relative displacement qj , j = 1, 2, 3, where the
momenta q2 and q3 are obtained through a rotation of q1
by an angle of 2⇡/3 and 4⇡/3 respectively. The interlayer
hopping matrix T̂ (r) reads
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where tAA and tAB are the hopping amplitudes in the
AA and AB/BA regions, respectively.
Hamiltonian (A1) is simplified by rotating the basis [3]

 ̂(r, ⌧) = A1(r) (r, ⌧), Aj(r) = e
�i(qj ·r/2)⌧z , (A3)

which brings the Dirac cones to the same momentum:
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where T (r) =
P

3

j=1
e
�iqj ·rT+

j . Applying the same
change of basis to quartic terms in the action, e.g. cor-
responding to a density-density interaction of the form
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we arrive at
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with the rotated interaction matrix

R(r) =
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Though both R̂ and R(r) describe contact interactions,
while R̂ is space-independent, R(r) depends in general
on the position as a consequence of Eq. (A7).
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Sint = g

Z
d2r d⌧  ̂†(r, ⌧)R̂ ̂(r, ⌧)

 ̂
†(r, ⌧)R̂ ̂(r, ⌧), (A5)

we arrive at

Sint = g

Z
d2r d⌧  †(r, ⌧)R(r) (r, ⌧)

 
†(r, ⌧)R(r) (r, ⌧) (A6)

with the rotated interaction matrix

R(r) =
1

3

3X

j=1

A
†
j(r)R̂Aj(r). (A7)

Though both R̂ and R(r) describe contact interactions,
while R̂ is space-independent, R(r) depends in general
on the position as a consequence of Eq. (A7).
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FIG. 4. Schematic dispersion relation of (a) a gapped layer-
polarized correlated phase and (b) a density modulated phase.
While the gapped phase is characterized by the amplitude
of the gap �z opening at the Kt and Kb Dirac points, the
second phase is characterized by a shift of these Dirac points
of amplitude Gz. This shift leads to a modulation of the
relative amplitude of wavefunctions between the two layers,
revealed in the density | t +  b/2|2 probed e.g. by a STM
tip located on the top layer. The behavior of this density is
shown (c) without any shift and (d) for a shift Gz = 0.3ey.
The spatial C3-breaking of this phase is clearly manifested
by the appearance of stripes for this density, perpendicular
to Gz.

eight couplings, (i) the four interactions associated with
1d coreps. which preserves IT are those symmetric on
the A/B sublattices, of the form ( †

�0⌧µ )( †
�0⌧µ )

for µ = 0, x, y, z [39]. They are distinguished by their
breaking of C2 or P symmetries. (ii) The four interac-
tions associated with 1d coreps. which break IT are those
which are antisymmetric in the A/B sublattices, with
couplings of the form ( †

�z⌧µ )( †
�z⌧µ ). Similarly to

set (i), they can break C2 or P . Finally, the (iii) four in-
teractions originating from 2d coreps. are current-current
couplings between the layers, o↵-diagonal in sublattices,
of the form ( †�⌧µ ) · ( †�⌧µ ). They break all sym-
metries of the free model, and in particular the three-fold
rotational symmetry C3.

IV. NATURE OF THE CORRELATED PHASES

Let us first discuss the nature of the phases induced
by these couplings. The interactions of type (i), sym-

metric in sublattices, neither open a gap at the Dirac
point nor induce a density modulation. On the other
hand, interactions of type (ii) generate phases with a
gap �µ / gµh 

†
�z⌧µ i, reminiscent of the gap open-

ing in Boron Nitride, see Fig. 4(a). These various
gapped phases are distinguished by their layer correla-
tions. Current-current interactions of type (iii) lead to
radically di↵erent phases, in which the Dirac cones of
the two layers are shifted with respect to each other by
a momentum 2Gµ / �µh 

†�⌧µ i, as shown in Fig. 4(b).
They generate gapless phases with C3-breaking density
modulations. These spatial modulations are detected
when probing the electronic density from one side of the
bilayer, which amounts to coupling the local probe asym-
metrically to the top and bottom wavefunctions, thus
scanning some interlayer density of the form | t + r b|

2,
where 0 < r < 1 is the asymmetry parameter. In Fig. 4
we compare the corresponding density for an asymme-
try r = 1/2 in the absence of any instability in Fig. 4(c)
with that in the presence of a C3-breaking instability
in Fig. 4(d). Stripe-like modulations of the interlayer-
correlated density are readily observed in this last case.
To gain further insight into the behavior of these

phases close to the first magic angle, we now study their
mean-field behavior. As we will show later using a renor-
malization group analysis, only four out of the twelve cou-
plings are sensitive to the proximity of the magic angle.
They correspond to the interaction potentials diagonal
in layers, and originate from the a�

1
, a

�
2
coreps. of set (ii)

with respective amplitude gz, g0, and the E�
4
, E

+

2
coreps.

of set (iii) with amplitudes �0, �z. The corresponding or-
der parameters satisfy the self-consistency equations [40]

�0/z = �2g0/z

Z
d!

Z

⇤

d2q

(2⇡)3
h 

†
q,!�z⌧0/z q,!i,

G0/z = �2�0/z

Z
d!

Z

⇤

d2q

(2⇡)3
h 

†
q,!�⌧0/z q,!i.

(6a)

(6b)

The correlators in Eq. (6) are the translationally-
invariant parts of statistical averages computed over the
Bloch Hamiltonian density H

0
MF

= H
0
0
+ � · (G0⌧0 +

Gz⌧z) + �z(�0⌧0 +�z⌧z). The corrections by interlayer
hoppings of the correlators in Eq. (6) are obtained within
a perturbation expansion in ↵. Incorporating the hop-
pings H↵ leads to an enhancement of the order parame-

ters by factors N (G/�)

0/z (↵,�), as is the case for the renor-
malization of the Fermi velocity; they are calculated di-
agrammatically to sixth order in ↵ in Appendix D.
The resulting dependence of each separate order pa-

rameter on the proximity to the magic angle and for var-
ious strengths of the couplings is depicted in Fig. 5. The
insulating phases, characterized by a gap �0 or �z, de-
velop at a critical coupling which decreases as the pa-
rameter ↵ approaches its magic value ↵0. Such gapped
phases generically occur in some range of twist angles
around the magic value, in agreement with the experi-
mental findings of Ref. [41]. At the mean-field level and
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CONCLUSIONS
• RG procedure which is perturbative in interlayer coupling, rather than 

using band basis.  

• advantage: can analytically obtain everything, including magic angle

• find very weak dependence on   ( ) parameter, esp. below 
 , so chiral model may contain all needed ingredients to recover the 
physics

• Main result: dominant new instability at magic angle is the C3-
symmetry-breaking, i.e. “nematic”

• Technique development: 

• diagrammatic approach to velocity renormalization, alternate to band basis

• new RG approach to dominant instability when all are important (vanishing 
kinetic energy)

wAB β
β ∼ 0.8
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Semimetal Gap

Mixed

Semimetal Gap

Density
modulation
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FIG. 7. Renormalization flow of the couplings gz and �z at
� = 0.82 [28, 29], (a) for a weak interlayer hopping amplitude,
↵ = 0.1↵0; and (b) close to the first magic angle, ↵ ' ↵0. As
↵ approaches ↵0, the blue semimetal region shrinks to the
origin. To study the competition between the couplings we
rescale them by the vanishing velocity v. The red critical
FPs control the transitions toward the gapped (red region) or
density-modulated (green region) phases. The black source
FP gives rise to a crossover region (mixed state). It migrates
away from the vertical axis as we increase ↵, thus expanding
the density-modulated region.

state persists even when the strength of interactions is
weakened by screening as was experimentally observed
in Ref. [48]. Let us stress that our RG approach identi-
fies a gapped nematic behavior in the perturbative scal-
ing regime, but does not rule out that other types of
correlations develop at larger length scales, including
those of intervalley-coherent and generalized ferromag-
netic insulating states recently discussed in Refs. [49–
52]. It is worth noting that the energies of these di↵er-
ent ground states seem to be very close to each other,
suggesting a strong sensitivity to experimental condi-
tions: indeed, h-BN encapsulation, which induces chiral-
ity breaking, favors the layer-polarized insulators such as
the nematic insulator discussed in this paper as opposed
to intervalley-coherent or generalized ferromagnetic in-
sulating states [52, 53]. Finally, let us note that the oc-
curence of an analogous nematic insulating state close to
quantum spin Hall phase transitions raises the questions
of its relation with the topological nature of the under-
lying semimetal [32, 54, 55].
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Appendix A: Change of basis

The Hamiltonian describing the low-energy physics
near the two twisted Dirac cones at Kt,b originating from
a single valley of graphene can be written as [56]

Ĥ =

Z
d2r  ̂†

✓
v0� ·

�
i@ + q1

2

�
T̂

†(r)
T̂ (r) v0� ·

�
i@ �

q1

2

�
◆
 ̂.

(A1)

The momentum q1 = Kt�Kb gives the relative displace-
ment of the Dirac momentum K of each layer due to the
twist, while v0 is the Fermi velocity of graphene. Notice
that there are three equivalent K points in monolayer
graphene, each leading to one copy of the Hamiltonian
Ĥ with a relative displacement qj , j = 1, 2, 3, where the
momenta q2 and q3 are obtained through a rotation of q1
by an angle of 2⇡/3 and 4⇡/3 respectively. The interlayer
hopping matrix T̂ (r) reads

8
>><

>>:

T̂ (r) =
3X

j=1

e
�i(qj�q1)·rT+

j + h.c.

Tj =
tAA

3
�0 +

tAB

3

�
�+e

�2i(j�1)⇡/3 + h.c.
�

, (A2)

where tAA and tAB are the hopping amplitudes in the
AA and AB/BA regions, respectively.
Hamiltonian (A1) is simplified by rotating the basis [3]

 ̂(r, ⌧) = A1(r) (r, ⌧), Aj(r) = e
�i(qj ·r/2)⌧z , (A3)

which brings the Dirac cones to the same momentum:

H =

Z
d2r †

✓
v0� · i@ T

†(r)
T (r) v0� · i@

◆
 , (A4)

where T (r) =
P

3

j=1
e
�iqj ·rT+

j . Applying the same
change of basis to quartic terms in the action, e.g. cor-
responding to a density-density interaction of the form

Sint = g

Z
d2r d⌧  ̂†(r, ⌧)R̂ ̂(r, ⌧)

 ̂
†(r, ⌧)R̂ ̂(r, ⌧), (A5)

we arrive at

Sint = g

Z
d2r d⌧  †(r, ⌧)R(r) (r, ⌧)

 
†(r, ⌧)R(r) (r, ⌧) (A6)

with the rotated interaction matrix

R(r) =
1

3

3X

j=1

A
†
j(r)R̂Aj(r). (A7)

Though both R̂ and R(r) describe contact interactions,
while R̂ is space-independent, R(r) depends in general
on the position as a consequence of Eq. (A7).
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FIG. 1. In a continuum model, the relative twist of the
top (green) and bottom (red) layers by an angle ✓ leads to
one mini-Brillouin zone (mBZ) for each valley of monolayer
graphene. The two Dirac cones of the same valley, Kt andKb,
set the sides the mBZ of size 2K sin(✓/2), where K = |Kt,b| is
the Dirac momentum of monolayer graphene. Electron hop-
pings between the two layers involve a small momentum trans-
fer qj , j = 1, 2, 3 between Kt and each of the three nearest
Kb nodes of the mBZ.

the twist angle approaches the first magic value, a state
with both a gap opening and a periodic modulation of
interlayer correlations is favored. We call this phase a
nematic insulator.

II. FREE ELECTRON MODEL

Following the seminal work of Ref. [25], we treat TBG
as a periodic moiré superlattice characterized by a twist
angle ✓. The top and bottom Dirac cones of the same
valley, denoted Kt and Kb, delineate the mini-Brillouin
zone (mBZ) of the superlattice (Fig. 1). Focusing on
the low energy and long wavelength description of TGB,
we restrict ourselves to small momentum transfers that
are diagonal in valley, and thus occur within a single
mBZ [26]. The characteristic kinetic energy scale of the
model, set by the typical di↵erence of kinetic energy of
electrons in di↵erent layers, is Ec = 2v0K sin(✓/2), where
v0 and K are respectively the Fermi velocity and the
Dirac momentum of monolayer graphene. In addition to
the kinetic energy in each layer, the single-particle Hamil-
tonian involves two di↵erent interlayer hopping ampli-
tudes. First, the amplitude w1 of interlayer hopping that
is o↵-diagonal in graphene sublattice is typically of order
w1 ⇡ 110 meV [25, 27]. Its strength relative to the ki-
netic energy is measured by the dimensionless parameter
↵ = w1/Ec. Second, the amplitude w2 = �w1 of in-
terlayer hopping that is diagonal in graphene sublattice
is measured by the relative strength � 2 [0, 1] in com-
parison to o↵-diagonal hopping. This relative strength
is di�cult to determine precisely in experiments, being
a↵ected by corrugation e↵ects, with typical values eval-
uated as � ⇡ 0.82 [28, 29]. Here we keep � as a free pa-
rameter. Note that our model thus interpolates between
the Bistritzer-MacDonald continuum (BMC) model for

(a) (b) (c) (d) (e)

FIG. 2. Diagrammatic expansion of the electron self-energy
to order 6 in the interlayer hopping amplitude ↵ = w1/Ec

relative to the kinetic energy Ec. The wavy line represents a
pair of opposite hopping processes, summed over all channels
with a transfer of momentum ±qj , j = 1, 2, 3. Diagram (a)
is of order ↵2, diagram (b) of order ↵4, and diagrams (c)-(e)
are of order ↵6. The expansion is non perturbative in the rel-
ative strength � between hoppings o↵-diagonal and diagonal
in sublattices.

� = 1 [3] and a chirally symmetric continuum (CSC)
model for � = 0 [6].
Following Ref. [3], we use a rotated basis where the

Dirac cones Kt,b of the two layers have the same (kx, ky)
coordinates in the mBZ, and measure all energies in units
of Ec (see Appendix A for details). The e↵ective Hamil-
tonian then reads H 0

0
= H0 +H↵ with

H0 = i (� · @) ⌧0, H↵ = ↵

3X

j=1

e
�iqj ·rT+

j + h.c., (1)

where @ = (@x, @y) and the hopping matrices T+

j are

T
+

j =
⇣
� �0 + e

i(j�1)2⇡/3
�+ + e

�i(j�1)2⇡/3
��

⌘
⌧+. (2)

Here we introduced two sets of Pauli matrices, � and ⌧ ,
which describe respectively the sublattice and layer sec-
tors, with �z = ±1 = A/B and ⌧z = ±1 = top/bottom.
The low-energy physics of this model is nontrivial even

without interactions. Indeed, the interlayer couplings
prohibit diagonalizing H

0
0
. This forbids the use of a

simple e↵ective theory valid for all twisting angles ✓ in
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FIG. 3. Fermi velocity v(↵,�) renormalized by interlayer hop-
pings at order ↵6, as a function of the relative strength ↵ of
the hopping amplitude with respect to the kinetic energy. As
the twist angle increases, so does ↵, and the renormalized ve-
locity vanishes at the first magic angle encoded in the first
magic value ↵0(�) where � sets the asymmetry between di-
agonal and o↵-diagonal in sublattice hoppings. Inset: ↵0(�)
depends weakly on corrugation e↵ects, i.e. on the value of �.


