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UNFRUSTRATED 
CLASSICAL MAGNETS

Weak/dilute disorder [Imry-Ma 1975, Harris 1974]

Random fields: strong effects, but not common

Random bonds: weak effects, except at phase 
transitions



FRUSTRATED MAGNETS

Defined by degeneracy

Effects:

enhanced thermal/
quantum fluctuations

sensitivity to weak 
perturbations

entropy in spin ice Dy2Ti2O7

Ramirez et al. 1999



ORDER OR DISORDER?

Issue: Do impurities lead to order or disorder?

Answer: It depends upon the nature of the frustration/degeneracy

Henley (1987): finite degeneracy => order (non-collinear)

Saunders+Chalker (2007): extensive degeneracy => disorder 
(spin glass)

This talk: sub-extensive degeneracy => order

How do we figure out which order?

When does this fail?



OUTLINE

Spinel context

Single impurities

Local or global?

Results

Comparison with experiments



A-SITE SPINELS

spinels AB2X4

diamond

pyrochlore

magnetic

Roth 1964



A-SITE SPINELS

Fritsch et al. 1992, Tristan et al. 2005, Suzuki et al. 2006
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3d, relatively weak SOC



A-SITE SPINELS

spinels AB2X4

diamond

pyrochlore

magnetic

Roth 1964

J1 J2

diamond is bipartite

not frustrated

second and third neighbor 
exchange not necessarily small

exchange paths A-X-B-X-B 
comparable



J2       0:  diamond NN  =>  Néel

J1       0:  FCC NN  =>  independent planes of spins

FRUSTRATION: MINIMAL 
MODEL

J2 > 0

Bergman, Alicea, Gull, Trebst, Balents (2007)

H = J1

�

�i,j�

Si · Sj + J2

�

��i,j��

Si · Sj



MnAl2O4 MnSc2S4CoAl2O4

GROUND STATE 
EVOLUTION

J1-J2 phase diagram

q
J2/J10 1/8

Néel degenerate coplanar spirals

Fritsch et al. 1992, Tristan et al. 2005, Suzuki et al. 2006, Krimmel et al. 2006, Bergman et al. 2007

example of degeneracy surfaces (reciprocal space)

point lines (FCC)S : q

J2/J1 = 0.2J2/J1 = 1/8 J2/J1 = 0.3 J2/J1 = 0.85 J2/J1 = ∞

"accidental" 2D degeneracy: weak interactions will break it at T = 0



PHASE DIAGRAM 
(MONTE CARLO)

MnSc2S4

ARTICLES

a b c

Figure 2 Spiral surfaces. a–c, ‘Spiral surfaces’ comprising the degenerate spiral ground-state wavevectors for coupling strengths J2/J1 of 0.2 (a), 0.4 (b) and 0.85 (c),
where the last value is appropriate for MnSc2S4. Order-by-disorder occurs at finite temperature, as thermal fluctuations lift the degeneracy in the free energy. The surfaces
are colour-coded according to the resulting low-temperature free energy at each wavevector, with high values being blue, low values being red, and green being the
absolute minima.

Information. Provided J1 != 0, we find that for q near the spiral
surface the stiffness becomes

κT(q) = κ0(q)+T 2/3Σ (q), (3)

where Σ (q) is temperature independent and generically vanishes
only at the spiral wavevectors ±Q, which are precisely the
locations of the Goldstone modes. Thus, entropy indeed lifts the
surface degeneracy, which cures the divergence in equation (2) and
stabilizes long-range order. Nevertheless, the order is in a sense
‘unconventional’ in that anomalies in thermodynamic quantities
appear owing to the non-analytic temperature dependence in
equation (3). In particular, the classical specific heat at low
temperatures scales as

Cclassical
v (T) = A+BT1/3,

where A and B are constants. A crude quantum treatment,
obtaining the magnon spectrum, h̄ω0(q) ∼√

κT(q), by quantizing
the classical spin-wave modes, predicts the fractional power
law, Cquantum

v (T) ∼ T7/3. This is intriguingly reminiscent of the
approximately T 2.5 behaviour observed in CoAl2O4 (ref. 18) and
related materials19.

We now address which state thermal fluctuations select.
Although the energy, E, associated with each wavevector on the
spiral surface is identical, their entropy, S, and hence free energy,
F = E − TS, generally differ. Typically, entropy favours states with
the highest density of nearby low-energy excitations. To compute
the free energy at low temperatures, it suffices to retain terms in
the hamiltonian that are quadratic in fluctuations about a state
ordered at wavevector Q. The free energy can then be computed
numerically for each Q on the surface. The results for select J2/J1

are shown in Fig. 2, where the surface is coloured according to
the magnitude of the free energy (blue is high, red is low and the
global minima are green). As indicated in Fig. 3, the free-energy
minima occur at the following locations as J2/J1 varies: (1) along
the (q,q,q) directions for 1/8 < J2/J1 ≤ 1/4 as in Fig. 2a; (2) at
the six wavevectors shown in Fig. 2b located around each ‘hole’ in
the surface for 1/4 < J2/J1 ∼< 1/2; (3) along the (q,q,0) directions
when 1/2 ∼< J2/J1 ∼< 2/3; and (4) at four points centred around each
(q,0,0) direction as in Fig. 2c for larger J2. Eventually the latter
points converge precisely onto the (q,0,0) directions, where the
nearest-neighbour f.c.c. antiferromagnet is known to order14.

Next, we turn to the evolution with increasing temperature, for
which we rely on extensive Monte Carlo simulations and analytic
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Figure 3 Phase diagram. Numerical results for the ordering temperature, Tc,
versus the coupling strength, J2/J1, for systems with up to N= 8× L3 = 4,096
spins. The ordering temperature rapidly diminishes in the Néel phase on adding J2,
and remains finite for J2/J1 > 1/8 where the spiral surface occurs in agreement
with our order-by-disorder analysis. The entropically selected ordering at low
temperatures is shown along the horizontal axis; 111∗ and 100∗ refer respectively to
the green points in Fig. 2b and c. The ‘bumpy’ modulations in Tc originate from an
unusual finite size effect, namely variations in the number of momenta in the
Brillouin zone that for the finite system approximate the spiral surface.

arguments. As we introduce frustration via J2, it is natural to
expect a sharply reduced transition temperature, Tc, relative to
ΘCW, and this is indeed borne out in our simulations. Figure 3
shows Tc/J1 versus J2/J1 computed numerically for systems with up
to N = 4,096 = 8×83 spins. In the Néel phase, a sharp decrease in
Tc is evident on increasing J2. As an interesting aside, for J2/J1 just
above 1/8 two ordering transitions appear below the paramagnetic
phase. This occurs due to thermal stabilization of the Néel phase
slightly beyond the value of J2/J1 = 1/8; the re-entrant Néel order
appears below the dashed black line in Fig. 3. More interestingly,
Tc clearly remains non-zero for J2/J1 > 1/8, in agreement with the
preceding order-by-disorder analysis. Throughout this region, the
transition is strongly first order.

Owing to the strong suppression of Tc when J2/J1 > 1/8, we can
explore a broad range of the spin-liquid regime in the paramagnetic

nature physics VOL 3 JULY 2007 www.nature.com/naturephysics 489
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powder-averaged structure factor in a 
“spiral spin liquid”

Krimmel et al. 2006, Bergman, Alicea, Gull, Trebst, Balents 2007

[expt]

[numerics]

spin liquid regime

diffuse scattering

order by disorder



CONTRASTING BEHAVIORS: 
CAN IMPURITIES HELP?

Why is MnSc2S4 ordered 
while CoAl2O4 is not? 
(chemists say quality is 
similar?)

Is the contrasting 
behavior in these two 
"similar" materials 
consistent with a single 
theory for impurities?

ARTICLES

a b c

Figure 2 Spiral surfaces. a–c, ‘Spiral surfaces’ comprising the degenerate spiral ground-state wavevectors for coupling strengths J2/J1 of 0.2 (a), 0.4 (b) and 0.85 (c),
where the last value is appropriate for MnSc2S4. Order-by-disorder occurs at finite temperature, as thermal fluctuations lift the degeneracy in the free energy. The surfaces
are colour-coded according to the resulting low-temperature free energy at each wavevector, with high values being blue, low values being red, and green being the
absolute minima.

Information. Provided J1 != 0, we find that for q near the spiral
surface the stiffness becomes

κT(q) = κ0(q)+T 2/3Σ (q), (3)

where Σ (q) is temperature independent and generically vanishes
only at the spiral wavevectors ±Q, which are precisely the
locations of the Goldstone modes. Thus, entropy indeed lifts the
surface degeneracy, which cures the divergence in equation (2) and
stabilizes long-range order. Nevertheless, the order is in a sense
‘unconventional’ in that anomalies in thermodynamic quantities
appear owing to the non-analytic temperature dependence in
equation (3). In particular, the classical specific heat at low
temperatures scales as

Cclassical
v (T) = A+BT1/3,

where A and B are constants. A crude quantum treatment,
obtaining the magnon spectrum, h̄ω0(q) ∼√

κT(q), by quantizing
the classical spin-wave modes, predicts the fractional power
law, Cquantum

v (T) ∼ T7/3. This is intriguingly reminiscent of the
approximately T 2.5 behaviour observed in CoAl2O4 (ref. 18) and
related materials19.

We now address which state thermal fluctuations select.
Although the energy, E, associated with each wavevector on the
spiral surface is identical, their entropy, S, and hence free energy,
F = E − TS, generally differ. Typically, entropy favours states with
the highest density of nearby low-energy excitations. To compute
the free energy at low temperatures, it suffices to retain terms in
the hamiltonian that are quadratic in fluctuations about a state
ordered at wavevector Q. The free energy can then be computed
numerically for each Q on the surface. The results for select J2/J1

are shown in Fig. 2, where the surface is coloured according to
the magnitude of the free energy (blue is high, red is low and the
global minima are green). As indicated in Fig. 3, the free-energy
minima occur at the following locations as J2/J1 varies: (1) along
the (q,q,q) directions for 1/8 < J2/J1 ≤ 1/4 as in Fig. 2a; (2) at
the six wavevectors shown in Fig. 2b located around each ‘hole’ in
the surface for 1/4 < J2/J1 ∼< 1/2; (3) along the (q,q,0) directions
when 1/2 ∼< J2/J1 ∼< 2/3; and (4) at four points centred around each
(q,0,0) direction as in Fig. 2c for larger J2. Eventually the latter
points converge precisely onto the (q,0,0) directions, where the
nearest-neighbour f.c.c. antiferromagnet is known to order14.

Next, we turn to the evolution with increasing temperature, for
which we rely on extensive Monte Carlo simulations and analytic
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Figure 3 Phase diagram. Numerical results for the ordering temperature, Tc,
versus the coupling strength, J2/J1, for systems with up to N= 8× L3 = 4,096
spins. The ordering temperature rapidly diminishes in the Néel phase on adding J2,
and remains finite for J2/J1 > 1/8 where the spiral surface occurs in agreement
with our order-by-disorder analysis. The entropically selected ordering at low
temperatures is shown along the horizontal axis; 111∗ and 100∗ refer respectively to
the green points in Fig. 2b and c. The ‘bumpy’ modulations in Tc originate from an
unusual finite size effect, namely variations in the number of momenta in the
Brillouin zone that for the finite system approximate the spiral surface.

arguments. As we introduce frustration via J2, it is natural to
expect a sharply reduced transition temperature, Tc, relative to
ΘCW, and this is indeed borne out in our simulations. Figure 3
shows Tc/J1 versus J2/J1 computed numerically for systems with up
to N = 4,096 = 8×83 spins. In the Néel phase, a sharp decrease in
Tc is evident on increasing J2. As an interesting aside, for J2/J1 just
above 1/8 two ordering transitions appear below the paramagnetic
phase. This occurs due to thermal stabilization of the Néel phase
slightly beyond the value of J2/J1 = 1/8; the re-entrant Néel order
appears below the dashed black line in Fig. 3. More interestingly,
Tc clearly remains non-zero for J2/J1 > 1/8, in agreement with the
preceding order-by-disorder analysis. Throughout this region, the
transition is strongly first order.

Owing to the strong suppression of Tc when J2/J1 > 1/8, we can
explore a broad range of the spin-liquid regime in the paramagnetic
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Bergman, Alicea, Gull, Trebst, Balents (2007)

a case, ultrahigh resolution synchrotron diffraction experi-
ments may reveal a structural change associated with the
magnetic ordering transition in MnSc2S4, though the neces-
sary low temperatures certainly pose a problem. However, a
symmetry reduction may also take place via a structural
modulation that preserves the cubic metric of the system. In
this case, diffraction experiments probing the global structure
may be inappropriate as it may differ from the local struc-
ture.

The ordered magnetic moment of MnSc2S4 amounts
4.05!5"!B at T=1.5 K which is significantly reduced com-
pared to 5!B expected for Mn2+ with S=5/2 and g=2. Due
to the low ordering temperature of TN1=2.3 K the lowest
experimentally accessible temperature of 1.5 K is insuffi-
cient to reach saturation. The diffraction measurements at
various temperatures result in a temperature dependent or-
dered magnetic moment that roughly follows a simple mean
field behavior. The experimental data and a corresponding fit
according to a S=5/2 Brillouin function are shown in Fig. 6.
Interestingly, the deviations of the temperature-dependent or-
dered magnetic moment from mean field behavior may re-
flect the twofold magnetic transition at TN1 and TN2, respec-
tively, as indicated by the dashed line and the arrows in Fig.
6.

The strongest magnetic intensity of MnSc2S4 correspond-
ing to the first magnetic reflection !±3/4 , ±3/4 ,0" is found
around 0.62 Å−1. The detailed shape of this reflection for
various temperatures is shown in the upper part of Fig. 7. It
consists of two different components; a sharp resolution lim-
ited Gaussian line and an additional broad Lorentzian shaped
scattering contribution. The temperature dependence of these
two magnetic intensities is shown in the lower frame of Fig.
7. The narrow Gaussian Bragg peak vanishes around 2.3 K
thus coinciding with the upper anomaly of the magnetic sus-
ceptibility and specific heat. It is therefore a signature of long
range magnetic order of MnSc2S4 which is established below
TN1=2.3 K. On the other hand, the second, intrinsically
broadened magnetic intensity extends to much higher tem-
peratures and can be traced back to 23 K corresponding to
"CW. These results confirm that short-range magnetic order
develops below "CW but that long-range magnetic order is
suppressed down to TN#"CW/10 due to frustration effects

and that even at T=1.5 K short-range fluctuations seem still
to persist. More information about these different magnetic
contributions can be extracted from neutron spectroscopic
measurements, as will be detailed in the next paragraph.

C. Neutron spectroscopy

Inelastic neutron scattering experiments were performed
in a temperature range 1.6#T#300 K on the time-of-flight
spectrometer IN6 at the Institut Laue Langevin, Grenoble.
Most experiments have been carried out using an incident
neutron wave length of 5.1 Å. For an increased resolution, a
few measurements have also been performed with neutrons
of 5.9 Å. Additionally, an empty can and a vanadium stan-
dard have been measured to account for background and de-
tector efficiency, respectively. The raw data have been cor-
rected in a standard way employing the LAMP program
package22 with a conversion of time-of-flight to energy trans-
fer and a constant Q or constant energy mapping resulting
finally in S!Q ,$". The dynamic structure factor S!Q ,$ ,T" is
directly proportional to the imaginary part of the generalized
susceptibility

S!Q,$,T" = !1 − e−h$/kBT"−1%!!Q,$,T" . !1"

The first term represents the detailed balance factor account-
ing for thermal population. An exponential spin relaxation
results in a Lorentzian shaped quasielastic line !multiplied

FIG. 6. Temperature dependence of the ordered magnetic mo-
ment of MnSc2S4 compared to an S=5/2 Brillouin function !full
line". The dashed line is a guide to the eye according to two mag-
netic transitions occurring at TN1 and TN2, respectively, as indicated
by the arrows.

FIG. 7. !Color online" Upper frame: The temperature depen-
dence of the first magnetic Bragg reflection of MnSc2S4 around
0.62 Å−1 measured on D20. The magnetic signal has two compo-
nents: a sharp resolution limited and Gaussian shaped component
and an additional broad Lorentzian shaped line. Lower frame: Tem-
perature dependence of the corresponding two magnetic intensities
based on fit results of HRPT data. Magnetic transition temperatures
are indicated by arrows.

KRIMMEL et al. PHYSICAL REVIEW B 73, 014413 !2006"

014413-4

MnSc2S4

CoAl2O4

Krimmel et al. (2006)



any kind of local impurity 
would do the job!

expect surface degeneracy 
breaking

EXTRA B SPIN

H
a
imp = Jimp

�

�a,i�

Sa · Si

Jimp � J1, J2

all NN spins aligned

impurity "type", a = 1, .., 4



Q PICKING

q0
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Q PICKING

q0

q0

q0

q0

q

q
q q

q
q

q0

Ea(q0) = energy(q0; with impurity)− energy(q0; without impurity)}
clean system's ground state energy 

(energy of a ground state spiral)test spiral wave vector

note: impurity energy cost can always be made O(1)



NUMERICS

Classical Monte Carlo with

spins fixed in a 
given spiral state

six NN to one given 
impurity aligned

free



IMPURITY FAVORED 
DIRECTIONS

But what happens with 
more than one impurity?

a)   single impurity

b)   impurity average

J2/J1
1/8 0.30.25 0.850.4

100∗100 100∗ 100∗

11̄1 11̄1∗ 11̄1∗ 11̄1∗ 11̄1∗

11̄1∗

E1(q)

E(q)

favored directions (minima of E1(q))

single impurity “phase diagram”



LOCAL OR GLOBAL?

AB2X4

4 possibilities



impurities break the degeneracy 
but favor different q vectors, 

so what happens?

LOCAL OR GLOBAL?

e.g.

impurity 3 
favors these q’s

impurity 1 
favors these q’s



LOCAL OR GLOBAL?

q0

q0

q0

local

q0

q0

q0

q0

q0 is a compromise => larger energy cost near impurities



LOCAL OR GLOBAL?

q1

q1

q3

global

q1

q1 q3

q3

q1 /q3 better close to impurities and small energy cost but over longer distances



REASON BY 
CONTRADICTION

calculate energy of smoothly deformed spirals

show it is divergent

deduce that deformations are local



"ORDER PARAMETER"

spirals:

q

S

e2

e1

d = ê1 + iê2
ê1 · ê2 = 0

S(r) = Re
�
d(r)eiq·r

�

all variations are encoded in d

Landau-like expansion of energy density

q → q+ δq

d → de−iδq·r−iδγ

redundancy, e.g.:

S(r) = Re
�
d(r)eiq0·r

�
fix this "gauge":

(d,q) :  spiralgiven



WEAKLY DEFORMED 
SPIRALS

qµ = qµ0 +
1

2
Im [d∗ · ∂µd]physical wavevector:

{

rotates d within 
the same plane

e2

e1 e3

takes S to 
another plane

{

e2

e1
e3

d(r) = d0 + δd(r)

δd(r) = iφ(r)d0 + ψ(r)ê3

ê3 = −1

2
Im [d× d∗]

φ ∈ R ψ ∈ C

S(r) = Re
�
d(r)eiq0·r

�



constraints: 

undeformed spirals: zero energy

variation must cost zero energy 
when q stays on spiral surface

stability

ENERGY DENSITY OF A 
WEAKLY DEFORMED SPIRAL

δd(r) = iφ(r)d0 + ψ(r)ê3

n̂

∇⊥ = n̂ ·∇ ∇� = ∇− n̂∇⊥

: unit vector perpendicular to the spiral surface

n̂

S(r) = Re
�
d(r)eiq0·r

�

E =
c

2
(∇⊥φ)

2 + c�∇⊥φ∇2
�φ+

c��

2
(∇2

�φ)
2 + d∇⊥ψ

∗∇⊥ψ + d�∇�ψ
∗ ·∇�ψ

"stiffness" κ

consequence of curved degeneracy surface for q



SPINEL V/S
PYROCHLORE

Recall local real space degeneracy in pyrochlore

H ∼ J

�
3�

µ=0

Sµ

�2

stiffness: measures the energy cost of an infinitesimal change of the 
spin state, deformed in a smooth fashion.

Here no real space picture.  Stiffness of q in reciprocal space.  
Stiffness varies along phase diagram.

J2/J10 1/8

Néel degenerate coplanar spirals

κ increases
high sensitivity 

to impurities

κ = 0

}

local degeneracy => no stiffness



SCALING
E =

c

2
(∇⊥φ)

2 + c�∇⊥φ∇2
�φ+

c��

2
(∇2

�φ)
2 + d∇⊥ψ

∗∇⊥ψ + d�∇�ψ
∗ ·∇�ψ{

isotropic

∼ |δψ|2

L2

∼ (δφ)2

L2
⊥

∼ (δφ)2

L⊥L2
�

∼ (δφ)2

L4
�{

=> relaxation length anisotropy: L⊥ ∼ L2
�

δq = q− q0 = ∇φ => δφ� ∼ L�δq�

large scale (~ L) deformations of q : prohibitively costly (>> O(1)) QED

energy density 
of deformation

energy density
scaling of 

deformation}
integrate over
deformation 

volume 

⇔ ×L2
�L⊥

Edeform(L) ∼ (L�δq)
2 + |δψ|2L

consequence:  impurities act independently of one another



NOTE: PHASE 
FLUCTUATION SUBTLETIES
E =

c

2
(∇⊥φ)

2 + c�∇⊥φ∇2
�φ+

c��

2
(∇2

�φ)
2 + d∇⊥ψ

∗∇⊥ψ + d�∇�ψ
∗ ·∇�ψ

∼ (δφ)2

L4
�

{
δφ ∼ (δq)L+ δφnon δq{

prohibited

large scale fluctuations of φ are a priori allowed

Cq(r) = �(q(r�)− q(r− r�))
2� ∼ Ã|r|α−2

expect  0 < α < 2
⇒

Cφ(r) = �(φ(r�)− φ(r− r�))
2� ∼ A|r|α for |r| → ∞



THE SWISS CHEESE MODEL

spiral

spiral

spiral

spiral

spiral

spiral

strong 
deformation

strong 
deformation

strong 
deformation

strong 
deformation

strong 
deformation

strong 
deformation

strong 
deformation

strong 
deformation

strong 
deformation

characteristics:

which spiral (which q)?

length scale ξ

order of magnitude of energy E

ξ



FAVORED DIRECTIONS

E(q) =
1

4
Ea(q)swiss cheese  =>

impurity-induced order phase diagram:
a)   single impurity

b)   impurity average

J2/J1
1/8 0.30.25 0.850.4

100∗100 100∗ 100∗

11̄1 11̄1∗ 11̄1∗ 11̄1∗ 11̄1∗

11̄1∗

E1(q)

E(q)

favored directions (minima of E(q))



DECAY LENGTH ξ
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WHY DOES IT SOMETIMES 
BREAK DOWN?

high sensitivity 
to impurities

}
critical concentration

order order

disorder

impurity 
concentration

ximp

NB: this is a sketch

spiral

spiral

spiral
spiral

impurity concentration too high: 

the "holes" overlap

critical concentration

J2/J10 1/8

κ increasesκ = 0

vanishing stiffness: very high sensitivity to defects



COMPARISON WITH 
EXPERIMENTS



WHAT WE COMPARE

Do impurities matter at the order v/s disorder level?

If order is what happens, is order-by-quenched-
disorder the degeneracy-breaking mechanism?

Interpretation of new experimental data on CoAl2O4



order in 110 direction, J2/J1 ~ 0.85

consistent with non-small stiffness κ

direction not that of impurities              
(or that of a different type of impurities)         

also, J3 is important, cf. Lee+Balents 2008

COMPARISON WITH 
EXPERIMENTS
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domains?

Kinetics important?

No LRO, T = 0 correlation length ~ 10 rnn

NEW DATA ON CoAl2O4temperature around −109 K. Despite this, only glass-like transi-
tions have been reported at a greatly reduced T! < 9 K (30–32),
implying strong frustration. Powder neutron diffraction has re-
vealed the emergence of short-range spin correlations at low tem-
peratures (33), which was reproduced within the spiral-spin-
liquid model of Bergman et al. by assuming J2

J1
¼ 1

8. A further ana-
lysis of inelastic neutron powder data by Krimmel et al. (34) con-
cluded J2

J1
∼ 0.17—well into the regime where spin-spiral physics is

expected. Contrarily, comparison of diffraction data and Monte
Carlo calculations led Zaharko et al. (35) to conclude that J2

J1
< 1

8,
suggesting that the system might instead undergo a continuous
transition to classical Néel order. To date, very little data exists
on single crystals, although it has been emphasized on several oc-
casions (4, 28, 34) that such data is essential to properly compare
experiment and theory.

To elucidate the nature of the low-temperature state and the
significance of T! in CoAl2O4, we have grown single crystals and
studied them extensively with neutron scattering. X-ray diffrac-
tion showed the crystals to be of high purity with no discernable
disorder and minimal Co–Al inversion, refining to 2% with an
uncertainty of 4%. The magnetization data shows a cusp at
T! ≈ 6.5 K, in the neighborhood of a broad peak in the heat
capacity, consistent with results reported for powders. Character-
ization of the samples is further discussed in SI Text. Neutron
studies of both static magnetic correlations and spin excitations
were performed using the High Flux Isotope Reactor (HFIR)
and Spallation Neutron Source (SNS) facilities of Oak Ridge
National Laboratory (ORNL).

Results and Discussion
Principal results of elastic scattering measurements are shown in
Fig. 2. As is observed in CoAl2O4 powders, the most prominent
feature in the elastic scattering data is a buildup of intense diffuse
scattering at low temperatures. For the regime 1

8 <
J2
J1
< 1

4, theory
predicts a spin-spiral state with enhanced diffuse scattering on a
spherical surface in the lowest Brillouin zone (4). What we have
observed for CoAl2O4 single crystals is scattering centered about
specific Bragg locations with selection rules (H K L) all odd or
(H K L) all even with Hþ K þ L ¼ 4nþ 2 for integer n. This
observation implies that the short-range correlations reflect a ten-
dency toward the collinear antiferromagnetic state expected for
near-neighbor antiferromagnetic A-site spinels (36) (see Fig. 1A).
To explore the correlations in detail, we performed radial and
transverse scans across several magnetic Bragg positions in the

(H H L) scattering plane shown in Fig. 1B. In Fig. 2A, we plot
radial scans across the (0 0 2) Bragg position at three representa-
tive temperatures. The (0 0 2) peak was chosen for illustrative pur-
poses because at this position the structural Bragg peak has
vanishing intensity while the magnetic scattering is strongest. A
narrow, temperature-independent multiple-scattering peak is visi-
ble for T ¼ 25 and 11 K (see SI Text). Magnetic scattering is visible
below 100 K and at high temperatures is a single peak that grows
in intensity and decreases in width as the temperature is reduced
(see, e.g., the broad scattering at 11 K in Fig. 2A). The lineshape
changes at low temperatures, as discussed below.

Fig. 2B shows a map in the (H H L) plane of the elastic scat-
tering at 2 K with that at 25 K subtracted. The signal is clearly
centered on the (0 0 2) position and drops off to zero in all direc-
tions. The temperature dependence of the magnetic scattering is
shown in detail in Fig. 2 C and D, where the multiple-scattering
peak as determined by fits to high-temperature data has been
subtracted. The logarithmic intensity scale of Fig. 2C illustrates
how the broad scattering at high temperatures narrows signifi-
cantly and intensifies as the temperature is lowered. The increase
in magnetic intensity is most dramatic as T approaches
T! ¼ 6.5 K, as demonstrated by Fig. 2D showing a series of radial
scans plotted on a linear scale for T < 10 K.

At high temperatures, the intensity of the diffuse scattering is
well described by a single isotropic Lorentzian function:

Fig. 1. Structure of CoAl2O4. (A) Magnetic cobalt ions of CoAl2O4 on the
A-site diamond-lattice. This can be deconstructed into two interpenetrating
FCC sublattices (colored here blue and orange, respectively). Arrows repre-
sent the ordered state observed to exist in diamond-lattice antiferromagnets
when nearest-neighbor exchange dominates. (B) The (H H L) plane of reci-
procal space for the diamond-structure using cubic notation. Blue diamonds
denote allowed structural Bragg peaks. Red circles denote allowed magnetic
Bragg peaks for the ordered state shown in A. At reciprocal points indexed
by three odd integers, both nuclear and magnetic Bragg scattering is ex-
pected. Green lines illustrate directions in reciprocal space for which spin-
wave dispersions are plotted in Fig. 4.

Fig. 2. Short-range magnetic correlations at low temperatures. (A) Radial
scans across the (0 0 2) position plotted for three temperatures. The intensity
is normalized to a fixed number of incident neutrons equaling approximately
10 s of counting time. Error bars are 1σ from Poisson counting statistics.
Strong diffuse scattering emerges at low temperature. Solid curves through
the data points represent lines of best fit to Eq. 2 plus an additional narrow
Gaussian term to account for multiple scattering. The solid blue line shows a
fit of Eq. 1 to the T ¼ 3.5 K data. Vertical black bars (bottom) show the full-
width of the instrumental resolution in the radial direction. (B) The scattering
intensity at T ¼ 2 K minus that at T ¼ 25 K in an extended region of recipro-
cal space about the (0 0 2) Bragg position. The diffuse scattering is clearly
centered on the Bragg position and quickly goes to zero in every direction
in reciprocal space. Intensity is presented on a logarithmic scale. (C) Scattering
intensity along the (0 0 L) direction as a function of temperature up to 25 K.
Intensity is plotted on a logarithmic scale. (D) A series of radial scans across
the (0 0 2) position, for temperatures below 10 K and with intensity on a
linear scale. In both C and D, the small peak due to multiple scattering
has been subtracted. Solid curves in D are lines of best fit to Eq. 2.
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neutron scattering spectra taken using the HB1 triple-axis spec-
trometer at the HFIR for two representative wavevectors, includ-
ing the magnetic zone boundary (1 0 3). Well below T!, these
show clear inelastic modes in addition to a peak centered on zero
energy. As the temperature is raised, the inelastic peaks weaken
and broaden as seen in the data at 25 K. The wavevector depen-
dence of the mode energies in three symmetry directions is de-
picted in Fig. 4 C–E, and the mode intensity along the (0 0 L)
direction is plotted in Fig. 4F. The solid red lines in Fig. 4 C–F
are generated by fitting the available data to a spin-wave model
(see SI Text) based on the Heisenberg Hamiltonian with nearest
(next-nearest) neighbor exchange parameters J1 (J2) and effec-
tive anisotropy field HA (43).

The model gives an excellent description of the data, with in-
ferred exchange parameter values J1 ¼ −0.434# 0.011 meV and
J2 ¼ −0.045# 0.003 meV. This implies J2

J1
¼ 0.104# 0.010, close

to the critical value of 1
8. The best fits also yield a small but finite

value for single-ion anisotropy, gμBHA ¼ 0.018# 0.006 meV,
implying the existence of a gap in the spectrum.

To resolve the low-energy excitations at the magnetic zone cen-
ter, cold neutron inelastic scattering measurements were made
using the Cold Neutron Chopper Spectrometer instrument at
the SNS. The main results are summarized in Fig. 5. A represen-
tative energy-momentum slice of this data taken at T ¼ 1.5 K is
plotted in Fig. 5A, with the expected spin-wave prediction super-
imposed. The adjacent Fig. 5B is a cut through this data at the
magnetic zone center (dashed line). The spectrum at base tem-
perature shows a well-defined magnon peak at the magnetic zone
center with a small gap Δ ¼ 0.66# 0.04 meV, in good agreement
with extrapolations from the triple-axis data. The observation of
a well-defined magnon at the zone center argues against a short-
range ordered glassy state. The presence of a gap may be signifi-

cant, because recent Monte Carlo calculations have suggested
that a single-ion anisotropy is necessary to stabilize Néel order
in CoAl2O4 (35). The gap likely arises from the effect of spin-
orbit coupling, which is known to be important for the Co2þ ion
in a tetrahedral environment (28), and incidentally provides an
explanation for the enhanced local moment inferred from bulk
magnetization measurements (44, 45). Finite domain size effects
may also play a role.

Fig. 5C shows an identical data slice at T ¼ 8.1 K, just above
T!. Fig. 5D directly compares energy cuts for the two tempera-
tures. At 8.1 K, the elastic intensity and spin-wave mode easily
resolved at low temperature give way to significant quasi-elastic
scattering, more typical of a disordered system.

The temperature dependence of the zone center scattering was
characterized by fitting the energy cuts to the following form:

SðQ;ωÞ ¼ A1 · GðωÞ þ A2 · LðωÞ þ A3 · DHOðωÞ; [3]

where GðωÞ is a Gaussian with width determined by energy
resolution describing elastic scattering from the Néel-ordered
domains, LðωÞ is a Lorentzian parameterizing the quasi-elastic
scattering, and DHOðωÞ is a damped harmonic oscillator term
describing the magnon. The functions are normalized to unit area
with LðωÞ and DHOðωÞ constructed to satisfy detailed balance
(see SI Text for explicit definitions of fitting functions). The inte-
grated intensities of the elastic (A1) and quasi-elastic (A2) com-
ponents are plotted vs. temperature in Fig. 5E. As expected, the

Fig. 4. Collective spin-wave excitations. (A and B) Representative neutron
scattering spectra at ðHKLÞ ¼ ð0.40 2.4Þ and (1 0 3), respectively, at tempera-
tures of 1.5 and 25 K. Counts are normalized to a fixed number of incident
neutrons corresponding to approximately 2 min per point. Error bars are 1σ
assuming Poisson counting statistics. (C–E) Excitation energies extracted from
fits to individual scans plotted vs. wavevector passing through the (0 0 2)
point along high-symmetry directions (H 0 H) (C), (H H H) (D), and (0 0 L)
(E). Solid curves show the dispersion predicted by fitting all data to linear
spin-wave theory for the ordered state shown in Fig. 1A. (F) Intensity of
the spin-wave mode along the (0 0 L) direction. Solid line is the prediction
of linear spin-wave theory. Error bars in C–F correspond to statistical errors
from fits.

Fig. 5. Zone center excitations and anisotropy gap. (A) Neutron scattering
intensity near the magnetic zone center (0 0 2) at T ¼ 1.5 K, plotted as a func-
tion of energy and momentum along (H 0 H). Color bar shows the intensity in
arbitrary units. The red line represents the expected dispersion curve for spin
waves in a Néel antiferromagnet, using parameters extracted from data in
Fig. 4. (B) Energy cut through the same data along the dashed line in A. Error
bars are 1σ from counting statistics. The solid line shows fit to Eq. 3. (C) Same
asA, except T ¼ 8.1 K. (D) Cuts as in B, plotted on a logarithmic intensity scale
for T ¼ 1.5 K and T ¼ 8.1 K. Solid lines represent fits to Eq. 3. (E) Integrated
intensities of the elastic (Gaussian, A1) and quasi-elastic (Lorentzian, A2) com-
ponents derived from fits of data to Eq. 3. The error bars are 1σ uncertainties
in the fitted parameters, and the solid lines are guides to the eye.
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IðQ;ω ¼ 0Þ ¼ A

ð1þ Q2

κ2 Þ
; [1]

the conventional Ornstein–Zernicke form for short-range corre-
lations above a magnetic phase transition (37). Here, Q is the dis-
tance from the magnetic Bragg point, and the width parameter, κ,
can be associated with the inverse magnetic correlation length.
In Fig. 3A, we show the heights and widths extracted from simul-
taneously fitting radial and transverse scans across (0 0 2) to
Eq. 1 up to T ¼ 25 K. As the temperature is lowered, the strength
and extent of the magnetic correlations grow smoothly until
saturating at T%. The width of the magnetic diffuse scattering at
low temperature is substantially larger than the instrumental re-
solution width shown as vertical black bars in Fig. 2A.

Below T%, there is a qualitative change in lineshape, and a sin-
gle Lorentzian is no longer sufficient to describe the scattering.
This is emphasized by the plot of χ2 in Fig. 3B showing the failure
of the single Lorentzian at low temperatures. It is further illu-
strated by the blue line in Fig. 2A, which represents the best fit
of a single Lorentzian to the data at T ¼ 3.5 K. In fact, the low-
temperature diffuse scattering cannot be fit well by any physically
reasonable single peak lineshape (see details in SI Text); below
T%, a second component of the scattering emerges. The best
description of the data is obtained by adding an additional ani-
sotropic Lorentzian-squared function peaked at the same posi-
tion. Accordingly, the neutron intensities below T% are fit to the
two-component form:

IðQ;ω ¼ 0Þ ¼ A1

ð1þ Q2

κ2
1

Þ
þ A2

ð1þ
Q2

jj
κ2
2;jj
þ Q2

⊥
κ2
2;⊥
Þ2
: [2]

Here,Qjj and Q⊥ denote the distance from the magnetic Bragg
point, G, of momentum transfer parallel and perpendicular to G
in the (H H L) scattering plane, and κ2;jj and κ2;⊥ are the respec-
tive peak widths in those directions. The quality of the fit for tem-
peratures below 15 K is displayed in Fig. 3B. At temperatures
greater than T%, the fit is not improved by adding a second
component; however, at low temperatures Eq. 2 is a far superior
description of the data.

The main panel of Fig. 3C shows the relative heights of the two
components to the scattering. The intensity of the Lorentzian-
squared component shows a sudden onset at a temperature that
can be identified using linear extrapolation (dashed line) as
6.4& 0.5 K, equal within error to T% identified via bulk probes.
The inset shows κ2;jj

κ2;⊥
, a measure of the anisotropy of the Lorent-

zian-squared component. In contrast, the Lorentzian component
remains isotropic at all temperatures.

The strong temperature dependence and the observed line-
shape below T% have important implications for the physics of

CoAl2O4. The abrupt emergence of an anisotropic Lorentzian-
squared component of the scattering may be a signature of a
first-order phase transition at T% to a Néel ordered state. This
can be understood through the following reasoning. As discussed
earlier, below a discontinuous phase transition, ordered regions
nucleate in one of the available degenerate ground states and
grow until they meet. At this point, the sample volume consists
of ordered domains separated by walls. An array of sharp domain
walls gives rise to diffuse scattering with a Lorentzian-squared
lineshape (38), characteristic of the coarsening regime of first-
order phase transition kinetics (39, 40). If there is sufficient ther-
mal energy, the large domains grow and the small ones disappear,
resulting in narrower peaks in the diffuse scattering. When the
temperature is low compared to the natural energetics of the
system, as occurs in frustrated systems, the walls are kinetically
frozen and the scattering remains broad. The Lorentzian-squared
peak observed below T% in CoAl2O4 suggests antiferromagnetic
domains with average size of order 10 spins in each direction. The
Lorentzian component of the scattering below T% indicates that
some fraction of the spins, most likely those located at walls,
remains disordered.

Lorentzian-squared lineshapes have been observed before in
frustrated magnets and spin glasses and have usually been attrib-
uted to random fields, possibly arising from impurities. We note,
however, that the random-field model should not be relevant to
a clean single-crystal system with no applied field. Moreover,
although random fields can lead to Lorentzian plus Lorentzian-
squared (L þ L2) scattering (41), in principle the κ parameters of
each component should be equal, and there is no reason to expect
anisotropy. In contrast, scattering arising from an array of domain
walls is often anisotropic as a consequence of energetics (39, 42).
Numerical calculations appropriate for CoAl2O4 (see SI Text)
show that domain walls perpendicular to the (H H 0) direction
have a lower energy than those perpendicular to the (0 0 L)
direction. This leads to a smaller average distance between walls
and hence broader lineshapes along (H H 0), consistent with
experiment.

Given the specific predictions for CoAl2O4 (4), it seems likely
that the first-order nature of the transition can be attributed to
the classical order-by-disorder mechanism. However, it is worth
noting that any discontinuous magnetic transition in a frustrated
system might be expected to demonstrate similar behavior. The
saturation of the scattering width at value above the resolution
width is inconsistent with a continuous transition, where one
would expect the correlation length to diverge as the system ap-
proaches the transition temperature from above. A direct com-
parison of the current data with those above a continuous phase
transition in a closely related system is provided in SI Text.

Further evidence for the existence of Néel order in CoAl2O4

is provided by the appearance of dispersive spin-wave excitations
at low temperatures. Fig. 4 A and B show single-crystal inelastic

Fig. 3. Emergent component to the scattering profile. Combined data for radial and transverse scans across the (0 0 2) peak were fit to Eqs. 1 and 2. (A) Peak
heights and widths extracted from fits to the single peak Lorentzian form Eq. 1. (B) Comparison of the normalized χ2 for each fit as a function of temperature.
(C) Peak heights extracted using two-peak form Eq. 2 to fit data below T ¼ T %. Blue squares denote the height of the Lorentzian component, red circles that of
the Lorentzian-squared component. (Inset) Ratio of Lorentzian-squared width in the 00L direction to that in the HH0 direction. Error bars in all plots are
statistical 1σ extracted from least-squares fits.
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SUMMARY AND 
PERSPECTIVES

Summary:

very general conclusions

in general, impurities lead to order

cause of swiss cheese model: degeneracy manifold is a curved surface

physics of the swiss cheese model: independent impurities (+subtleties)

gives criteria for sensitivity to defects

allows to account for different behaviors in single class of materials

Perspectives

compare with more materials or models

need more materials close to Lifshitz point to correlate glassiness with region of phase diagram

nature of glassy phase for stronger disorder/smaller stiffness?

quantum systems near Lifshitz point

...
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