Symmetry Indicators of Band Topology Adrian Po (MIT)

HCP, Vishwanath & Watanabe, 1703.00911; Nat. Commun. 2017 Watanabe*, HCP* & Vishwanath, 1707.01903; Sci. Adv. 2018

Ashvin Vishwanath (Harvard)

Haruki Watanabe (U of Tokyo)

Also: Eslam Khalaf (Harvard), Feng Tang & Xiangang Wan (Nanjing U)

A light, lightning recap

Atomic insulators (aka band representations) [Zak, 1980; Zak, Bacry, Michel, ~2000]

- Real-space construction/ description
- Manifestly symmetric and insulating

Sym. rep: s,p,d... + crystal field

Particle-like electrons

Band insulators

Classical vs Quantum insulators

Particle-like

Classical vs Quantum insulators

Boundary: Classical

Boundary: Classical

Boundary: Classical

"Necessarily quantum" insulators (aka topological insulators)

[HCP, Watanabe, Zaletel, Vishwanath, 1506.03816]

- Band insulators without any classical (realspace, symmetric and localized) description
- "Wannier obstructions"
- Nontrivial band topology forbidding smooth symmetric deformation to any atomic insulator [Brouder et al (2007), Soluyanov-Vanderbilt (2011),...]

HCP, Vishwanath & Watanabe, 1703.00911 Bradlyn et al, 1703.02050

Efficient way(s) to tell trivial \simeq atomic \simeq classical from topological \simeq quantum

Applications: large-scale materials discovery

Tang, HCP, Vishwanath, Wan, 1805.07314, 1806.04128, 1807.09744 Zhang, ..., Weng, Fang, 1807.08756 Vergniory,..., Bernevig, Wang, 1807.10271

HCP, Vishwanath & Watanabe, 1703.00911 Bradlyn et al, 1703.02050

Efficient way(s) to tell trivial \simeq atomic \simeq classical from topological \simeq quantum

HCP, Vishwanath & Watanabe, 1703.00911 Bradlyn et al, 1703.02050

Efficient way(s) to tell trivial \simeq atomic \simeq classical from topological \simeq quantum

(momentum space)

HCP, Vishwanath & Watanabe, 1703.00911 Bradlyn et al, 1703.02050

Efficient way(s) to tell trivial \simeq atomic \simeq classical from topological \simeq quantum

How to compare? Real space Momentum space

Lattice sites

groups

Reps of site-sym.

- Energy bands
- Bloch wave functions
 - Reps at high-sym. momenta

How to compare? Real space Momentum space

- Energy bands
- Bloch wave functions
 - Reps at high-sym. momenta

Fourier Trans.

- Lattice sites
- Reps of site-sym. groups

How to compare? Real space Momentum space

- Lattice sites
- Reps of site-sym. groups

- Energy bands

- Bloch wave functions
 - Reps at high-sym. momenta

Fourier Trans.

Wannier Fns. (if exist)

wave functions over the BZ

wave functions over the BZ

Simplification

- Symmetry-data in the momentum space
- Partial information, i.e., incomplete knowledge

Connaissance incomplète

With only momentum-space symmetry data...

- Generally, *impossible* to tell if a set of bands is trivial (i.e., if it is a band representation)
- But, possible to *diagnose* some band topology
 - i.e., not necessary, but sufficient, conditions on the existence of band topology

Clarification

Do not confuse sym. reps. in real vs. momentum spaces

Specifying sym. reps in...

Real space

- *Full knowledge* on a *restricted set* of band insulators (i.e., trivial)

Momentum space

 Restricted knowledge on the full set of band insulators

- *Full knowledge* on a *restricted set* of band insulators (i.e., trivial)

I've computed everything about the trivial states!

Real space

- *Full knowledge* on a *restricted set* of band insulators (i.e., trivial)

I've computed everything about the trivial states!

Uh...I thought we were interested in the nontrivial ones?

Here comes the magic!

Claim:

Insofar as momentum-space symmetry representations are concerned, knowledge on the trivial insulators, defined in the real space, allows one to map out the "space" of band insulators, including the topological ones.

> HCP, Vishwanath & Watanabe, 1703.00911 Watanabe*, HCP* & Vishwanath, 1707.01903

Outline aka Take-homes

- A more modern way to solve the ancient problem of band symmetries
 By viewing band structures as a "vector space"
- Comparing momentum vs real space
 symmetry-based indicators of band topology
- Applications
 - High throughput materials prediction

Outline aka Take-homes

- A more modern way to solve the ancient problem of band symmetries
 - By viewing band structures as a "vector space"
- Comparing momentum vs real space
 symmetry-based indicators of band topology
- Applications
 - High throughput materials prediction

Punchline 1 $-\vec{b}_1 + 3\vec{b}_2$ \vec{b}_2 \vec{b}_1

Band structures form a "vector space"

"Vector space"? (More accurately, \mathbb{Z}^d)

- 1. What does "addition" mean?
- 2. What does "subtraction" mean???
- 3. What are the bases and how to expand?
- 4. (Expert) Aren't there some torsions?

Ans: Natural from a symmetry perspective

A symmetry either

(i) Leaves a momentum invariant

- (Degenerate) Bloch wave functions furnish (irreducible) representations
- (ii) Relates two momenta
 - Energies identical
 - Wave functions symmetry-related

Bands can cross only when they carry different symmetry labels

Bands can cross only when they carry different symmetry labels

Dimensions of the irreps determine how the bands are "stuck"

Bands can cross only when they carry different symmetry labels

Dimensions of the irreps determine how the bands are "stuck"

[Hemstreet & Fong (1974)]

Irreps follow rules under symmetry lowering

$$\Gamma_{1} \to \Delta_{1}$$

$$\Gamma_{12} \to \Delta_{1} \oplus \Delta_{2}$$

$$\Gamma_{15} \to \Delta_{1} \oplus \Delta_{3,4}$$

Topology meets band symmetries

- Topological properties: forget energetics within a set of bands
- Labels become simple counting
- Gaps above and below ensure counting is well-defined
- Finite list of high-symmetry momenta & reps

$$(n_{\Gamma_1}, n_{\Gamma_{12}}, n_{\Gamma_{15}}, n_{\Sigma_1}, \dots, \nu)$$

= $(0, 0, 1, 2, \dots, 3) \in \mathbb{Z}^D$

Adding = stacking

[[]Hemstreet & Fong (1974)]

- Counts of symmetry labels simply add
- Addition has the physical meaning of "stacking", i.e., interlacing systems

Imposing Compatibility Relations

 But these counts are not independent: "Compatibility Relations"

The group {BS}

Generally, integer-valued linear equations

$$\underbrace{\begin{pmatrix} 1 & 1 & 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{pmatrix}}_{\mathcal{C}} \begin{pmatrix} n_{\Gamma_{1}} \\ n_{\Gamma_{12}} \\ n_{\Delta_{1}} \\ n_{\Delta_{2}} \\ n_{\Delta_{3,4}} \end{pmatrix} = 0$$

• Gapped band structure = solutions to $C\vec{n} = \vec{0}$ $\{BS\} \equiv \ker C \cap \mathbb{Z}^D \simeq \mathbb{Z}^{d_{BS}}$

 $d_{\rm BS}$: dimension of solution space

• $\mathbb{Z}^{d_{\mathrm{BS}}}$ is an abelian group with d_{BS} generators.

Example: 1D w/ inversion

[Turner et al (2012), Kruthoff et al (2016)]

- 2 special momenta
- 2 types of irreps per momentum
- Total number of bands
- 5 symmetry labels

$$\vec{n} = (n_0^+, n_0^-, n_\pi^+, n_\pi^-, \nu)$$

• 2 constraints

$$n_0^+ + n_0^- = \nu$$

 $n_\pi^+ + n_\pi^- = \nu$

3 independent labels

 $\{BS\} = \mathbb{Z}^3$

Interlude: What have we done? [HCP, Vishwanath & Watanabe, 1703.00911]

- Forget about energetics within a set of bands isolated by band gaps above and below
- 2. Allow for negative "counts"
- Inclusion of the negatives allows us to get a group
- Similar spirit as K-theory-based discussions [Kitaev (2009); Freed & Moore (2013); Kruthoff et al (2016)]
- Circumvent the nightmare of permutations!

[cf, eg, Bouckaert, Smoluchowski & Wigner (1936)]

Outline aka Take-homes

- A more modern way to solve the ancient problem of band symmetries
 - By viewing band structures as a "vector space"
- Comparing momentum vs real space
 symmetry-based indicators of band topology
- Applications
 - High throughput materials prediction

Real-space (atomic) pictures contain all band-symmetry solutions

Trivial band structures: those with a real-space description

Lattice Points

Tight-binding orbitals fix momentum-space sym. reps.

Trivial band structures: those with a real-space description

Lattice Points

Orbitals

Trivial band structures: those with a real-space description

Trivial band structures: those with a real-space description

Trivial band structures: those with a real-space description

$\{BS\} vs \{AI\}$

\diamondsuit

$\{BS\} vs \{AI\}$

Atomic

"Bootstrapping" from the trivial

HCP, Vishwanath & Watanabe, 1703.00911 Watanabe*, HCP* & Vishwanath, 1707.01903

For all 1,651 magnetic space groups, with or without spin-orbit coupling,

$$X_{\rm BS} \equiv \frac{\{\rm BS\}}{\{\rm AI\}}$$

is a finite abelian group.

 \Rightarrow as "vector spaces," the dimensions $d_{\rm BS} = d_{\rm AI}$

 \Rightarrow Basis for {BS} constructible from that of {AI}

Computing the indicator

HCP, Vishwanath & Watanabe, 1703.00911 Watanabe*, HCP* & Vishwanath, 1707.01903

Let $\{\mathbf{a}_i \mid i = 1, ..., d_{AI}\}$ be a complete basis for $\{AI\}$.

Let \mathbf{b} be the sym. rep. vector of a band insulator, then

$$\mathbf{b} = \sum_{i=1}^{d_{\mathrm{AI}}} q_i \mathbf{a}_i$$

for some rational coefficients q_i ; in addition

- Any q_i is fractional \Rightarrow **b** is topological
- All q_i are integers \Rightarrow **b** can be trivial

Example: Time-reversal & Inversion

• The Fu-Kane parity criterion:

Combinations of products of parities determine all the strong and weak \mathbb{Z}_2 indices

[Fu & Kane, PRB 76, 045302 (2007)]

- This guarantees $X_{\rm BS}$ is nontrivial whenever inversion is a symmetry

TR & inversion symmetric systems

- For 2D, $X_{\mathrm{BS}} = \mathbb{Z}_2$
 - simply the quantum spin Hall index
- For 3D,

$$X_{\rm BS} = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$$

TR & inversion symmetric systems

- For 2D, $X_{\mathrm{BS}} = \mathbb{Z}_2$
 - simply the quantum spin Hall index
- For 3D,

$$X_{\rm BS} = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$$

Weak TIs

TR & inversion symmetric systems

- For 2D, $X_{\mathrm{BS}} = \mathbb{Z}_2$
 - simply the quantum spin Hall index
- For 3D,

$$X_{\rm BS} = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$$

Weak TIs Strong TI & something more, protected by TR & inversion [HCP, Vishwanath & Watanabe, 1703.00911]

"Something more": Doubled Strong TI

- Two copies of the strong TI, no magnetoelectric response
- Entanglement signature [Alexandradinata et al (2014); HCP et al (2017)]
- Do not expect surface Dirac cone(s)

Physical surface signature?

[Fang & Fu, 1709.01929]

Inversion-symmetric open-boundary conditions

1D Helical mode ~ quantum spin Hall edge

 Stable against small inversionbreaking perturbation
 "Hinge" modes

> Song, Fang & Fang, 1708.02952; Schindler et al., 1708.03636 Langbehn et al., 1708.03640 Benalcazar, Bernevig & Hughes, 1708.04230 Fang & Fu, 1709.01929

Good news: One group done! Done: 1

1650 magnetic space groups left

All 1,651 magnetic space groups (spinful or spinless)

[Watanabe*, HCP* & Vishwanath, 1707.01903]

TABLE III.	Characterization of ma	gnetic space groups	(MSGs) in the	triclinic family	y for spinful electrons
			(/		

MSG	d	$X_{\rm BS}$	$\nu_{\rm BS}$	M	SG	d	$X_{\rm BS}$	$\nu_{\rm BS}$	MS	G	d	$X_{\rm BS}$	$\nu_{\rm BS}$	M	SG	d	$X_{\rm BS}$	$\nu_{\rm BS}$
1.1 I	1	(1)	1	1.3	IV	1	(1)	2	2.5	II	9	(2, 2, 2, 4)	2	2.7	IV	5	(2)	2
1.2 II	1	(1)	2	2.4	Ι	9	(2, 2, 2, 4)	1	2.6	III	1	(1)	2					

d: Rank of the band structure group {BS}

X_{BS}: Symmetry-based indicators of band topology

 $\nu_{\rm BS}$: Set of ν bands are symmetry-forbidden from being isolated by band gaps if $\nu \notin \nu_{\rm BS} \mathbb{Z}$

TABLE IV. Characterization of magnetic space groups (MSGs) in the monoclinic family for spinful electrons.																	
MS	G	d	$X_{\rm BS}$	$\nu_{\rm BS}$	MS	G	d	$X_{\rm BS}$	$\nu_{\rm BS}$	MSG	d	$X_{\rm BS}$	$\nu_{\rm BS}$	MSG	d	$X_{\rm BS}$	$\nu_{\rm BS}$
3.1	Ι	5	(2)	1	7.24	Ι	1	(1)	2	10.47 IV	7	(2, 2)	2	13.70 IV	4	(2)	4
3.2	II	1	(1)	2	7.25	II	1	(1)	4	10.48 IV	6	(2)	2	13.71 IV	3	(2)	4
3.3	III	1	(1)	1	7.26	III	1	(1)	2	10.49 IV	8	(2)	2	13.72 IV	5	(2)	2
3.4	IV	3	(2)	2	7.27	IV	1	(1)	4	11.50 I	6	(2)	2	13.73 IV	3	(2)	4
3.5	IV	1	(1)	2	7.28	IV	1	(1)	2	11.51 II	5	(2, 2, 4)	4	13.74 IV	4	(2)	4
3.6	IV	3	(1)	2	7.29	IV	1	(1)	4	11.52 III	2	(1)	2	14.75 I	5	(2)	2
4.7	Ι	1	(1)	2	7.30	IV	1	(1)	4	11.53 III	1	(1)	2	14.76 II	5	(2, 4)	4
4.8	II	1	(1)	4	7.31	IV	1	(1)	2	11.54 III	5	(2, 2, 4)	2	14.77 III	1	(1)	4
4.9	III	1	(1)	2	8.32	Ι	2	(1)	1	11.55 IV	3	(2)	4	14.78 III	1	(1)	4
4.10	IV	1	(1)	4	8.33	II	1	(1)	2	11.56 IV	5	(2)	2	14.79 III	5	(2, 4)	2
4.11	IV	1	(1)	2	8.34	Ш	1	(1)	1	11.57 IV	3	(2)	4	14.80 IV	3	(2)	4
4.12	IV	1	(1)	2	8.35	IV	1	(1)	2	12.58 I	10	(2, 2)	1	14.81 IV	3	(2)	4
5.13	Ι	3	(1)	1	8.36	IV	1	(1)	2	12.59 II	7	(2, 2, 4)	2	14.82 IV	3	(2)	4
5.14	Π	1	(1)	2	9.37	Ι	1	(1)	2	12.60 III	1	(1)	2	14.83 IV	5	(2)	2
5.15	III	1	(1)	1	9.38	II	1	(1)	4	12.61 III	1	(1)	2	14.84 IV	3	(2)	4
5.16	IV	2	(1)	2	9.39	III	1	(1)	2	12.62 III	7	(2, 2, 4)	1	15.85 I	6	(2, 2)	2
5.17	IV	1	(1)	2	9.40	IV	1	(1)	2	12.63 IV	5	(2)	2	15.86 II	5	(2, 4)	4
6.18	Ι	3	(1)	1	9.41	IV	1	(1)	4	12.64 IV	5	(2)	2	15.87 III	1	(1)	2
6.19	Π	1	(1)	2	10.42	Ι	15	(2, 2, 2)	1	13.65 I	7	(2,2)	2	15.88 III	2	(1)	2
6.20	III	1	(1)	1	10.43	Π	9	(2, 2, 2, 4)	2	13.66 II	5	(2, 2, 4)	4	15.89 III	5	(2, 4)	2
6.21	IV	1	(1)	2	10.44	III	1	(1)	2	13.67 III	1	(1)	2	15.90 IV	4	(2)	2
6.22	IV	2	(1)	2	10.45	III	1	(1)	2	13.68 III	3	(1)	2	15.91 IV	3	(2)	4
6.23	IV	2	(1)	2	10.46	III	9	(2, 2, 2, 4)	1	13.69 III	5	(2, 2, 4)	2				

d: Rank of the band structure group {BS}

 X_{BS} : Symmetry-based indicators of band topology

 ν_{BS} : Set of ν bands are symmetry-forbidden from being isolated by band gaps if $\nu \notin \nu_{BS} \mathbb{Z}$

TABLE	IABLE V. Characterization of magnetic space groups (MSGs) in the orthorhombic family for spinful electrons																			
1	MS	G	d	$X_{\rm BS}$	$\nu_{\rm BS}$	MSC	3	d	X _{BS}	$\nu_{\rm BS}$	MSC	3	d	$X_{\rm BS}$	$\nu_{\rm BS}$	MSC	3	d	$X_{\rm BS}$	$\nu_{\rm BS}$
10	5.1	Ι	1	(1)	2	23.51	Ш	3	(1)	1	29.101	Ш	1	(1)	4	33.151	IV	1	(1)	4
10	5.2	П	1	(1)	2	23.52	IV	1	(1)	2	29.102	ш	1	(1)	4	33.152	IV	1	(1)	4
10	5.3	ш	5	(2)	1	24.53	I	4	(1)	2	29.103	ш	1	(1)	4	33.153	IV	1	(1)	4
10	5.4	IV	1	(1)	2	24.54	п	1	(1)	4	29.104	IV	1	(1)	4	33.154	IV	1	(1)	4
10	5.5	IV	1	(1)	4	24.55	ш	2	(1)	2	29.105	IV	1	(1)	8	33.155	IV	1	(1)	4
10	6.6	IV	1	(1)	4	24.56	IV	3	(1)	2	29.106	IV	1	(1)	4	34.156	I	3	(1)	2
17	1.7	Ι	5	(1)	2	25.57	Ι	1	(1)	2	29.107	IV	1	(1)	4	34.157	П	1	(1)	4
17	7.8	п	1	(1)	4	25.58	п	1	(1)	2	29.108	IV	1	(1)	4	34.158	ш	1	(1)	2
17	.9	ш	1	(1)	2	25.59	ш	3	(1)	1	29.109	IV	1	(1)	4	34.159	ш	3	(1)	2
17	.10	ш	3	(2)	2	25.60	ш	5	(2)	1	29.110	IV	1	(1)	4	34.160	IV	2	(1)	4
17	.11	IV	2	(1)	4	25.61	IV	1	(1)	4	30.111	Ι	3	(1)	2	34.161	IV	1	(1)	4
17	.12	IV	5	(1)	2	25.62	IV	1	(1)	2	30.112	П	1	(1)	4	34.162	IV	2	(1)	4
17	.13	IV	4	(1)	2	25.63	IV	1	(1)	4	30.113	Ш	1	(1)	2	34.163	IV	3	(2)	4
17	.14	IV	3	(1)	4	25.64	IV	1	(1)	4	30.114	ш	1	(1)	2	34.164	IV	3	(1)	2
17	.15	IV	3	(1)	4	25.65	IV	1	(1)	4	30.115	ш	3	(1)	2	35.165	I	2	(1)	2
18	.16	Ι	3	(1)	2	26.66	Ι	1	(1)	2	30.116	IV	2	(1)	4	35.166	П	1	(1)	2
18	.17	П	1	(1)	4	26.67	П	1	(1)	4	30.117	IV	3	(2)	4	35.167	Ш	2	(1)	1
18	.18	Ш	3	(2)	2	26.68	ш	1	(1)	2	30.118	IV	1	(1)	4	35.168	Ш	4	(2)	1
18	.19	Ш	1	(1)	2	26.69	Ш	3	(1)	2	30.119	IV	3	(1)	2	35.169	IV	1	(1)	4
18	.20	IV	2	(1)	4	26.70	Ш	1	(1)	2	30.120	IV	2	(1)	4	35.170	IV	2	(1)	2
18	.21	IV	1	(1)	4	26.71	IV	1	(1)	4	30.121	IV	2	(1)	4	35.171	IV	2	(1)	4
18	.22	IV	2	(1)	4	26.72	IV	1	(1)	4	30.122	IV	2	(1)	4	36.172	I	1	(1)	2
18	.23	IV	3	(1)	2	26.73	IV	1	(1)	2	31.123	Ι	2	(1)	2	36.173	Π	1	(1)	4
18	.24	IV	3	(1)	2	26.74	IV	1	(1)	2	31.124	П	1	(1)	4	36.174	Ш	1	(1)	2
19	.25	Ι	1	(1)	4	26.75	IV	1	(1)	4	31.125	ш	1	(1)	2	36.175	ш	2	(1)	2
19	.26	П	1	(1)	8	26.76	IV	1	(1)	4	31.126	ш	2	(1)	2	36.176	Ш	1	(1)	2
19	.27	ш	1	(1)	4	26.77	IV	1	(1)	4	31.127	ш	1	(1)	2	36.177	IV	1	(1)	2
19	.28	IV	1	(1)	4	27.78	I	1	(1)	2	31.128	IV	2	(1)	4	36.178	IV	1	(1)	4
19	.29	IV	1	(1)	4	27.79	П	1	(1)	4	31.129	IV	1	(1)	4	36.179	IV	1	(1)	2
19	.30	IV	1	(1)	4	27.80	ш	1	(1)	2	31.130	IV	1	(1)	4	37.180	Ι	2	(1)	2
20	.31	Ι	3	(1)	2	27.81	ш	5	(2)	2	31.131	IV	1	(1)	4	37.181	П	1	(1)	4
20	.32	П	1	(1)	4	27.82	IV	1	(1)	2	31.132	IV	2	(1)	2	37.182	ш	1	(1)	2
20	.33	ш	1	(1)	2	27.83	IV	1	(1)	4	31.133	IV	2	(1)	4	37.183	ш	4	(2)	2
20	.34	ш	2	(1)	2	27.84	IV	1	(1)	4	31.134	IV	2	(1)	2	37.184	IV	1	(1)	2
20	.35	IV	3	(1)	2	27.85	IV	1	(1)	4	32.135	Ι	3	(1)	2	37.185	IV	2	(2)	4
20	.36	IV	1	(1)	4	27.86	IV	1	(1)	4	32.136	п	1	(1)	4	37.186	IV	2	(1)	2
20	.37	IV	3	(1)	2	28.87	1	4	(1)	2	32.137	ш	1	(1)	2	38.187	1	1	(1)	2
21	.38	1	2	(1)	2	28.88	ш	1	(1)	4	32.138	ш	3	(2)	2	38.188	ш	1	(1)	2
21	.39	ш	1	(1)	2	28.89	ш	1	(1)	2	32.139	IV	1	(1)	4	38.189	ш	2	(1)	1
21	.40	ш	4	(2)	1	28.90	ш	2	(1)	2	32.140	IV	2	(1)	4	38.190	ш	3	(1)	1
21	.41	ш	3	(1)	1	28.91	ш	3	(2)	2	32.141	IV	3	(1)	2	38.191	ш	3	(1)	1
21	.42	IV	1	(1)	2	28.92	IV	4	(1)	2	32.142	IV	2	(1)	4	38.192	IV	1	(1)	2
21	.43	IV	2	(1)	2	28.93	IV	2	(1)	4	32.143	IV	3	(1)	4	38.193	IV	1	(1)	2
21	.44	IV	2	(1)	2	28.94	IV	1	(1)	4	33.144	I	1	(1)	4	38.194	IV	1	(1)	4
22	.45	1	1	(1)	2	28.95	IV	2	(1)	4	33.145	ш	1	(1)	0	39.195	П	1	(1)	2
22	.40	ш	1	(1)	2	20.90	IV	4	(1) (1)	4	33.140	ш	1	(1)	4	39.196	ш	1	(1)	4
22	.4/	III IV	1	(1)	1	28.97	IV	0	(1)	2	33.14/	ш	1	(1)	4	39.19/	ш	2	(1)	2
22	40	IV	1	(1)	2	20.90	T	1	(1) (1)	4	33.148	IV	1	(1)	4	30 100	ш	2	(1)	2
23	50	п	1	(1)	2	29.99	п	1	(1)	4	33.149	IV	1	(1)	4	39.199	III	1	(2)	4
23		11	1	(1)	4	29.100	11	11	(1)	0	55.150	IV	1	(1)	0	137.200	1 1	11	(1)	*

& ~20 more pages

Physical consequence

In class All (spin-orbit coupled with time-reversal T^{2} =-1), nontrivial X_{BS} implies (up to energetics):

- Strong topological insulator; or
- Topological crystalline insulator
 - Weak TI
 - Mirror Chern
 - Hourglass
 - Higher-order

Khalaf, HCP, et al, 1711.11589 (also, Song, Zhang et al, 1711.11049)

Class All X_{BS}: Surface States

"Doubled strong TI":

- Under spatial symmetry g

$$m(g \cdot \mathbf{r}) = \pm m(\mathbf{r})$$

- Sign determined by the band topology of the bulk
- "-ve signature": surface cannot be gapped everywhere
- Precise form of gaplessness determined by the symmetries at play
Some cautions

- 1. Why "band structures" instead of "band insulators"?
 - Gap condition *only* imposed at high-symmetry momenta; could have *irremovable* gapless points at generic momenta

Hughes *et al.,* PRB 83, 245132 (2011); Turner *et al.*, PRB 85, 165120 (2012)

- 2. A full classification?
 - NO: connaissance incomplète!
 - Certain topological phases are not detected (e.g. no symmetry other than translations)
 - Symmetry indicators of band topology

Outline aka Take-homes

- A more modern way to solve the ancient problem of band symmetries
 By viewing band structures as a "vector space"
- Comparing momentum vs real space
 symmetry-based indicators of band topology

					
 Applications 					
High throughput ma	aterials pr	redicti	on		
'					

Ideally...

Non-magnetic materials search

[Tang, HCP, Vishwanath & Wan, 1805.07314, 1806.04128, 1807.09744]

[Also: Zhang et al., 1807.08756, Vergniory et al., 1807.10271]

Strong TIs Higher-order TCIs Dirac SM

Non-magnetic materials search

[Tang, HCP, Vishwanath & Wan, 1805.07314, 1806.04128, 1807.09744]

SG	$X_{\rm BS}$	Topological insulators					
2	$\mathbb{Z}_3^2 imes \mathbb{Z}_4$	Ag_2F_5		Co[6 7] Ag. Q	$\mathbb{E}_{\mathbf{r}}[\mathbf{e}_{-0}] \wedge \mathbb{E}_{\mathbf{r}} \otimes \mathbb{E}_{\mathbf{r}}[1_{0}] \otimes \mathbb{E}_{\mathbf{r}} \otimes \mathbb{E}_{\mathbf{r}}[1_{0}] \otimes$		
11	$\mathbb{Z}_2^2 \times \mathbb{Z}_4$	BBeLi	SG	X _{BS}	Topological crystalline insulators		
		Ag_4K_2 2		$\mathbb{Z}_3^2 \times \mathbb{Z}_4$	CsHg[256]		
12	$\pi^2 \times \pi$	Ba_2Cd	11	$\mathbb{Z}_2^2 \times \mathbb{Z}_4$	BaSb ₂ [257],MoTe ₂ [258], <i>SG</i>	Topological (semi-)metals	
	L2 × L4	Bi ₄ Pb			$Al_4Cl_{51}Zr_{12}[262], Al_4Na_4$ 11	$Br_9TeW[396], CBrHgNS[397], Li_7Sn_3[398], Mo_2S_2Sb[399]$	
		$, PdSe_6$	12	$\mathbb{Z}_2^2 \times \mathbb{Z}_4$	$As_4Ba_3Zn_2[269], Ba_3Cd_2$ 15	$BaI_4La[400]$	
14	$\mathbb{Z}_2 imes \mathbb{Z}_4$	Ag_2Te			Cl ₈ NSc ₅ [277],NbP ₂ [278] 51	AuCd[401],AuTi[402]	
15	$\mathbb{Z}_2 \times \mathbb{Z}_4$	MoP ₄ [14	$\mathbb{Z}_2 \times \mathbb{Z}_4$	LaSbSe[285],AsSY[286], 52	$Ag_{2}BiO_{3}[403], Bi_{3}Sr_{2}[404]$	
51	$\mathbb{Z}_2^2 \times \mathbb{Z}_4$	AlPt ₂ [51	$\mathbb{Z}_2^2 \times \mathbb{Z}_4$	GaPt ₂ [287] 55	$Al_3Pd_5[405], Al_3Pt_5[406], BCl_6Sc_4[407], Bi_9Ca_9Cd_4[408], Bi_9Ca_9Zn_4[409], Bi_9Cd_4Sr_9[408], In_5S_{13}Y_4[410]$	
55	$\mathbb{Z}_2 \times \mathbb{Z}_4$	Bi_6In_2	55	$\mathbb{Z}_2 \times \mathbb{Z}_4$	$Ca_5Ga_2Sb_6[288]$ 57	AlCaPd[411], BiK ₂ Sn[412]	
58	\mathbb{Z}_4	Bi ₂ Hf[58	\mathbb{Z}_4	Bi ₃ RbS ₅ [289] 58	C ₆₀ K[413]	
59	$\mathbb{Z}_2 \times \mathbb{Z}_4$	Ag_3Sb	59	$\mathbb{Z}_2 \times \mathbb{Z}_4$	BrNTi[290] 59	$Ag_3Sn[414]$	
60	\mathbb{Z}_4	Au ₂ Pt	62	\mathbb{Z}_4	$HgSr_3[291], LaSbTe[292] 60$	$F_4NaTi[415], O_2Re[416]$	
62 Z4		AsCdN		$\mathbb{Z}_2 \times \mathbb{Z}_4$	BaGe[293],BaSi[294], B 61	$AgF_{2}[417]$	
		68],FS GeHfP	63			AgAuF ₇ [418],AgF ₃ K[419],AlPt ₂ [420]	
	100000				$Cd_2FSb_5Sr_5[302],PbSr[3]$	$Bi_3Ca_5[421], Bi_3Sr_5[422], Ca_5Sb_3[423]$	
	\mathbb{Z}_4	Ge_2W	64	$\mathbb{Z}_2 \times \mathbb{Z}_4$	$Ca_5Ga_2N_4[308],Li[309]$ 62	$GeNb_3Te_6[424], GePd_2Y[425], N_3Nb_2[426], Nb_3Si[427]$	
		$P_2Zr[8]$	69	$\mathbb{Z}_2^2 \times \mathbb{Z}_4$	$Ge_6L_{12}Sr_4[310]$	$PdSbZr[428], SiTa_{3}Te_{6}[428], AuLu_{2}[429], GeLa[430], GeLaPd_{2}[430], GeLuPd_{2}[431], LuPd_{2}Si[432], LuPt[433], LuPt[433], LuPd_{2}Si[432], LuPt[433], LuPt$	
		94],SiS	71	$\mathbb{Z}_2 \times \mathbb{Z}_4$	Ba ₃ Bi ₄ Li ₄ [311],Ba ₃ Li ₄ S	$LuPt_2Si[434]$	
		AILaP	87	$\mathbb{Z}_2 \times \mathbb{Z}_8$	Au ₄ Ti[312]	$AgCa[435], AuCa[436], BiZr[437], Ga_3PdSr[438], Ga_5Zr_3[439], GeSc[440], GeY[441], $	
0.0	F 77	$AgS_3 I$	88	Z 4	$\begin{array}{c} O_4 Pb Pd_2[313] \\ \hline \end{array} \qquad 63$	$HfSb[442], K_3O_4Pd_2[443], K_3O_4Pt_2[444], K_4P_3[445, 446], N_5NaTa_3[447], PdY[448], SiY[449], N_5NaTa_3[447], PdY[448], N_5NaTa_3[447], PdY[448], N_5NaTa_3[447], PdY[448], N_5NaTa_3[447], N_5NaTa_3[447], PdY[448], Pdy[46], Pdy[46], Pdy[46], Pdy[46], Pdy[46], Pdy[46], Pdy[46], Pdy[46], Pdy[46], Pd$	
03	$\mathbb{Z}_2 \times \mathbb{Z}_4$		123	$\mathbb{L}_2 \times \mathbb{L}_4 \times \mathbb{L}_8$	As ₃ CsZn ₄ [314],As ₃ RbZr	$Sr_3Tl_5[450],LuSi[451],Al_6Re[452]$	
64	7 ~ 7	ALLa	129	$\mathbb{Z}_2 \times \mathbb{Z}_4$	AsGeNb[316],GeHfS[317 64	$AgCs_2F_4[453], Au_{10}Ca_4In_3[454], Bi[455, 456], LaSb_2[457]$	
65	$\mathbb{Z}_2 \times \mathbb{Z}_4$ $\mathbb{Z}_2 \times \mathbb{Z}$	AgaTo	197	77	$\begin{array}{c} \text{GeSeZr[317],HISSI[317], 65} \\ \text{DecL:} \text{N[222]} \end{array}$	$C_7 Re_2 Sc_5 [458], Ge_{10} La_7 Li_8 [459]$	
60	$\mathbb{Z}_2 \times \mathbb{Z}_4$ $\mathbb{Z}^2 \times \mathbb{Z}_4$	Rg31e Bos7n	191	4	$\frac{Da_{2}LIN[322]}{A_{2}D_{2}[222]A_{2}C_{2}[224]} = \frac{71}{74}$	$\operatorname{ReSi}_{2}[460]$	
71	$\mathbb{Z}_2 \times \mathbb{Z}_4$	AsToT	139	$\mathbb{Z}_2 \times \mathbb{Z}_8$	$AsDa_2[525], AsOa_2[524] 74$ $Ba_3Bi[325] Ba_3Sb[326] For$	$Ag_{2}La[461], Au_{2}La[461], In_{2}La[462]$	
72	$\mathbb{Z}_2 \times \mathbb{Z}_4$	BroHo	140	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	Bi[330] GePta[331]	$Ba_{9}II_{4}[403], II_{4}Pd_{17}Se_{4}[404], Pt_{11}\Sigma f_{9}[405], Pt_{12}St_{5}[400]$	
87	$\mathbb{Z}_2 \times \mathbb{Z}_4$	HfrTe	148	$\mathbb{Z}_2 \times \mathbb{Z}_8$	MosS4[332]	$A_{21}F_{18}[407], OSFO_{35}[406], Ge_{8}Fd_{21}[409], LaO_{4}Fd_{2}[470]$ $A_{22}Dt [471] A DDt [471] A_{2}Dr Dd [472] A_{2}Dd [T][472]$	
121	7.0	AgoSA	164	$\mathbb{Z}_2 \times \mathbb{Z}_4$	BaSia[333] BiTe[334] Bic	$Agrr (5[471], Airr (5[471], Asinr (5[472], Asr (5[11]475]) AgDt_{T}[472] Agg Pa Pda [474] Pa Pa Pda [475] Ca Pb [476]$	
122	7.0	AsaCd		~~~ ~~ ~~ 4	AsNaTesZrs[340] AssCd	$CdPd[477] CdPd_r Se[478] CdPt[479] Cd_s Zr[480]$	
123	$\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_8$	BaGea			As ₃ Cd ₄ Na[341],As ₃ Cd ₄] ¹²³	$FKNb_4O_{F}[481]$ HgPd[482] HgPd_{F}Se[483] HgPt[484] Hg_Pt[484]	
127	The X The	B ₄ Y[1]	166	$\mathbb{Z}_2 \times \mathbb{Z}_4$	ClZr[348],Hg[349],P[350]	$InPPd_{5}[485].InPPt_{5}[485].PPd_{5}T][485].PPt_{5}T][485]$	
129	$\mathbb{Z}_2 \times \mathbb{Z}_4$	HfSb ₂			BrLa[351]	$PdTi[486], Pd_5SeZn[487], SiSr[488], Sr[489], C_2Re[490], AsLa[491], LaSb[492]$	
136	ZA	Ag5Cs	187	$\mathbb{Z}_3 \times \mathbb{Z}_3$	CHf[352],InNbSe ₂ [353, 3	$AlSc_2Si_2[493], Au_2Ca_2Pb[494], Au_2InY_2[495], B_2Ta_3[496]$	
		Ag ₂ Zr	100	F 77	AgAsCa[4, 356], AgCaP[$B_4W[497], C_2B_2Y[498], Ga_2MgSc_2[499], Ca_3Hg_2[500]$	
139	$\mathbb{Z}_2 \times \mathbb{Z}_8$	CaGe ₂	189	$\mathbb{Z}_3 \times \mathbb{Z}_3$	GeLiY[358],AsLuPd[359 ¹²⁷	$Ga_2Nb_3[501], Ga_2Ta_3[502], Ge_2Hf_3[503], Hg_2Sr_3[504, 505]$	
·			191	$\mathbb{Z}_6 \times \mathbb{Z}_{12}$	$B_2Zr[360]$	$InPd_2Y_2[506], In_5Ti_2[507], LiSi_2Y_2[508], PbPd_2Y_2[509], N_2Re[510]$	
	Str	nn	193	\mathbb{Z}_{12}	Pb ₃ SZr ₅ [361] 129	$\label{eq:agMgSb[511],AsNbSi[512],AsSiTa[513],BaMgSi[514],BiKMg[515],GeTeZr[516],MoNTa[517]} \\$	
			194	\mathbb{Z}_{12}	AsHgK[362, 363],C[364] 130	$AlMg_4Si_3[518], Se_3Tl_5[519]$	
			221	π \times π	Ba ₃ OPb[368, 369],CaPd131	OPd[520]	
			441	14 × 148	NY[373],OPbSr ₃ [368, 36 136	AlNb ₂ [521],AlTa ₂ [522],Bi ₂ MgO ₆ [523], O ₂ Pb[524, 525],O ₂ Pd[526],O ₂ Pt[527],O ₂ Re[528]	

Outline aka Take-homes

- A more modern way to solve the ancient problem of band symmetries
 By viewing band structures as a "vector space"
- Comparing momentum vs real space
 symmetry-based indicators of band topology
- ✓ Applications
 - High throughput materials prediction

Thanks!