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A light, lightning recap



Atomic insulators 
(aka band representations)

• Real-space construction/ description 

• Manifestly symmetric and insulating

Particle-like electrons

Sym. rep: 
s,p,d… 

+ crystal field 

[Zak, 1980; Zak, Bacry, Michel, ~2000]



Band insulators

[Hemstreet & Fong (1974)] Wave-like

Sym. rep
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Boundary: Quantum
… (panic)

♪I like to move it

I’m freeeeeeeeee

Sup?



“Necessarily quantum” insulators 
(aka topological insulators)

• Band insulators without any classical (real-
space, symmetric and localized) description 

• “Wannier obstructions” 

• Nontrivial band topology forbidding smooth 
symmetric deformation to any atomic insulator

[HCP, Watanabe, Zaletel, Vishwanath, 1506.03816]

[Brouder et al (2007), Soluyanov-Vanderbilt (2011),…]



Main Goal

Efficient way(s) to tell trivial ≃ atomic ≃ classical 
from topological ≃ quantum

HCP, Vishwanath & Watanabe, 1703.00911 
Bradlyn et al, 1703.02050

Applications: 
large-scale materials discovery

Tang, HCP, Vishwanath, Wan, 1805.07314, 1806.04128, 1807.09744 
Zhang, …, Weng, Fang, 1807.08756 

Vergniory,..., Bernevig, Wang, 1807.10271
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How to compare?

Fourier Trans.
Wannier Fns. 

(if exist)

Real space Momentum space

Hard—requires knowing the Bloch 
wave functions over the BZ

Straight-forward

Simplification 
- Symmetry-data in the momentum space 
- Partial information, i.e., incomplete knowledge



Connaissance incomplète

With only momentum-space symmetry data… 
• Generally, impossible to tell if a set of bands is 

trivial (i.e., if it is a band representation) 

• But, possible to diagnose some band topology 
• i.e., not necessary, but sufficient, conditions 

on the existence of band topology



Clarification

Do not confuse sym. reps. in  

real vs. momentum spaces



Specifying sym. reps in…

- Full knowledge on a 
restricted set of band 
insulators (i.e., trivial)

- Restricted knowledge on 
the full set of band 
insulators

Real space Momentum space
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“Bootstrapping” from the trivial

- Full knowledge on a 
restricted set of band 
insulators (i.e., trivial)

Real space
I’ve computed everything 
about the trivial states!

          I thought we 
were interested in 
the nontrivial ones?

Uh. . .



“Bootstrapping” from the trivial

Here comes the magic!



Claim: 

Insofar as momentum-space symmetry 
representations are concerned, knowledge on 
the trivial insulators, defined in the real space, 
allows one to map out the “space” of band 
insulators, including the topological ones.

“Bootstrapping” from the trivial

HCP, Vishwanath & Watanabe, 1703.00911 
Watanabe*, HCP* & Vishwanath, 1707.01903
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• A more modern way to solve the ancient 
problem of band symmetries 
➡ By viewing band structures as a “vector space”  

• Comparing momentum vs real space 
➡ symmetry-based indicators of band topology  

• Applications 
➡ High throughput materials prediction
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Punchline 1

Band structures form a “vector space”



“Vector space”?

1. What does “addition” mean? 

2. What does “subtraction” mean??? 

3. What are the bases and how to expand? 

4. (Expert) Aren’t there some torsions?

Ans: Natural from a symmetry perspective

(More accurately,       )



Sym. reps of band structures

A symmetry either 
(i) Leaves a momentum invariant 

- (Degenerate) Bloch wave 
functions furnish (irreducible) 
representations 

(ii) Relates two momenta 
- Energies identical 
- Wave functions symmetry-related



Sym. reps of band structures
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Sym. reps of band structures

[Hemstreet & Fong (1974)]

Bands can cross 
only when they 
carry different 
symmetry labels

Irreps follow rules 
under symmetry 
lowering

Dimensions of the 
irreps determine 
how the bands 
are “stuck”



Topology meets band symmetries
• Topological properties: forget 

energetics within a set of bands 
• Labels become simple 

counting 
• Gaps above and below ensure 

counting is well-defined 
• Finite list of high-symmetry 

momenta & reps

[Hemstreet & Fong (1974)]



Adding = stacking

• Counts of symmetry labels simply 
add 

• Addition has the physical 
meaning of “stacking”, i.e., 
interlacing systems

[Hemstreet & Fong (1974)]

= +



Imposing Compatibility Relations
• But these counts are not independent: “Compatibility 

Relations”



The group {BS}
• Generally, integer-valued linear equations

• Gapped band structure = solutions to 

: dimension of solution space
•         is an abelian group with         generators

<latexit sha1_base64="(null)">(null)</latexit>



{Band structures} as a “vector space”



Example: 1D w/ inversion

• 2 special momenta 
• 2 types of irreps per 

momentum 
• Total number of bands 
• 5 symmetry labels

• 2 constraints

• 3 independent labels

[Turner et al (2012), Kruthoff et al (2016)]



1. Forget about energetics within a set of bands 
isolated by band gaps above and below 

2. Allow for negative “counts” 

• Inclusion of the negatives allows us to get a group 

• Similar spirit as K-theory-based discussions 

• Circumvent the nightmare of permutations!

Interlude: What have we done?

[Kitaev (2009); Freed & Moore (2013); Kruthoff et al (2016)]

[cf, eg, Bouckaert, Smoluchowski & Wigner (1936)]

[HCP, Vishwanath & Watanabe, 1703.00911]
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Punchline 2

Real-space (atomic) pictures contain all 
band-symmetry solutions

Atomic
Topo.



Trivial ≡ Atomic insulators
Trivial band structures: those with a real-space description

+

Lattice Points Orbitals

Fourier

Tight-binding orbitals fix momentum-space sym. reps. 
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Trivial = Atomic insulators
Trivial band structures: those with a real-space description

+

Lattice Points Orbitals

=

Subgroup from 
trivial BSs 

Fourier
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“Bootstrapping” from the trivial

For all 1,651 magnetic space groups, with or 
without spin-orbit coupling, 

is a finite abelian group. 

HCP, Vishwanath & Watanabe, 1703.00911 
Watanabe*, HCP* & Vishwanath, 1707.01903

⇒ as “vector spaces,” the dimensions  

⇒ Basis for {BS} constructible from that of {AI}

dBS = dAI



Computing the indicator
HCP, Vishwanath & Watanabe, 1703.00911 

Watanabe*, HCP* & Vishwanath, 1707.01903

Let                            be a complete basis for {AI}. 

Let     be the sym. rep. vector of a band insulator, then

{ai | i = 1,…, dAI}

b

b =
dAI

∑
i=1

qiai

for some rational coefficients     ; in addition 

• Any     is fractional ⇒     is topological 

• All     are integers ⇒     can be trivial 

qi

qi b

qi b



Example: Time-reversal & Inversion

• The Fu-Kane parity criterion:

Combinations of products of  
parities determine all the 

strong and weak         indices

• This guarantees          is nontrivial whenever 
inversion is a symmetry

[Fu & Kane, PRB 76, 045302 (2007)]
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TR & inversion symmetric systems

• For 2D, 
- simply the quantum spin Hall index 

• For 3D,

Weak TIs Strong TI 
& 

something more,  
protected by TR & inversion
[HCP, Vishwanath & Watanabe, 1703.00911]



“Something more”: 
Doubled Strong TI

• Two copies of the strong TI, no magnetoelectric 
response 

• Entanglement signature 

• Do not expect surface Dirac cone(s)

Hybridize

[Alexandradinata et al (2014); HCP et al (2017)]



Physical surface signature?

Inversion-symmetric 
open-boundary conditions

1D Helical mode  
~ quantum spin Hall edge

➡ Stable against small inversion-
breaking perturbation 

➡ “Hinge” modes

[Fang & Fu, 1709.01929]
Song, Fang & Fang, 1708.02952;  
Schindler et al., 1708.03636 
Langbehn et al., 1708.03640 
Benalcazar, Bernevig & Hughes, 1708.04230 
Fang & Fu, 1709.01929



Good news: One group done!
Done: 1

1650 magnetic space groups left



All 1,651 magnetic space groups 
(spinful or spinless)

& ~20 more pages

[Watanabe*, HCP* & Vishwanath, 1707.01903]



Physical consequence

etc.
Khalaf, HCP, et al, 1711.11589 

(also, Song, Zhang et al,  1711.11049 )

In class AII (spin-orbit coupled with 
time-reversal T 2=-1), nontrivial 
implies (up to energetics): 
• Strong topological insulator; or 
• Topological crystalline insulator 

• Weak TI 
• Mirror Chern 
• Hourglass 
• Higher-order 
• …



“Doubled strong TI”:

• Under spatial symmetry    

• Sign determined by the band topology of the bulk 
• “-ve signature”: surface cannot be gapped everywhere 
• Precise form of gaplessness determined by the 

symmetries at play

Class AII XBS: Surface States



Some cautions
1. Why “band structures” instead of “band 

insulators”? 
- Gap condition only imposed at high-symmetry 

momenta; could have irremovable gapless 
points at generic momenta 

2. A full classification? 
- NO: connaissance incomplète! 
- Certain topological phases are not detected 

(e.g. no symmetry other than translations) 
- Symmetry indicators of band topology

Hughes et al., PRB 83, 245132 (2011); 
Turner et al., PRB 85, 165120 (2012)
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Ideally…



ab initio energetics

Materials analysis flow
Chemistry data

k-space irreps

(semi-)metallic

Guaranteed 
nontrivial

ab initio &
wave function analysis

compute/ guess

Expand over {BS} fractional

Integral

Expand over {AI}
fractional

Integral



[Also: Zhang et al., 1807.08756, Vergniory et al., 1807.10271]

Non-magnetic materials search

Strong TIs Higher-order TCIs
𝛽-MoTe2 PdO

MgBi2O6

Dirac SM

[Tang, HCP, Vishwanath & Wan, 1805.07314, 1806.04128, 1807.09744]
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Thanks!


