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Abstract. - We experimentally study the fluctuations of the work done by an external Gaussian
random force on two different stochastic systems coupled to a thermal bath: a colloidal particle
in an optical trap and an atomic force microscopy cantilever. We determine the corresponding
probability density functions for different random forcing amplitudes ranging from a small fraction
to several times the amplitude of the thermal noise. In both systems for sufficiently weak forcing
amplitudes the work fluctuations satisfy the usual steady state fluctuation theorem. As the forcing
amplitude drives the system far from equilibrium, deviations of the fluctuation theorem increase
monotonically. The deviations can be recasted to a single master curve which only depends on
the kind of stochastic external force.

Introduction. – Fluctuation relations are a very
important theoretical result for the description of non-
equilibrium microscopic systems since they quantify the
statistical properties of fluctuating energy exchanges un-
der rather general conditions [1]. In particular, the so-
called fluctuation theorem (FT) [2,3] quantifies the asym-
metry of the distribution of positive and negative fluctu-
ations of a given time-integrated quantity (injected work,
entropy production, etc.). For a system in contact with
a thermostat at temperature T and driven by an external
force in a non-equilibrium steady state, the FT states that
the ratio of the probability of finding a positive fluctuation
with respect to that of the corresponding negative value
for the work Wτ done by the force during a time interval
τ satisfies

ln
P (Wτ = W )

P (Wτ = −W )
→ W

kBT
, τc ≪ τ, (1)

where τc is the longest characteristic relaxation time of
the system. Equation (1) has been tested in several ex-
periments such as fluidized granular media [4], a colloidal
particle dragged by an optical trap [5], electrical circuits
[6], mechanical harmonic oscillators [7] and a colloidal par-
ticle near the stochastic resonance [8]. New fluctuation
relations have been proposed as well for the entropy pro-
duction [9] or by considering modifications of the statisti-
cal properties of the thermal bath [10–12]. In all of these

examples the force which drives the system out of equi-
librium is inherently deterministic. However, it has been
recently argued that the nature (deterministic or stochas-
tic) of the forcing can play an important role in the distri-
bution of the injected work leading to possible deviations
from the relation (1) for large fluctuations (Wτ/⟨Wτ ⟩ > 1).
Indeed, it has been found in experiments and simulations
such as a Brownian particle in a Gaussian white [13] and
colored [14] noise bath, turbulent thermal convection [15],
wave turbulence [16], a vibrating metalic plate [17], an
RC electronic circuit [18] and a gravitational wave detec-
tor [19] that the probability density functions of the work
done by a stochastic force are not Gaussian but asym-
metric with two exponential tails leading to violations of
the FT in the form of effective temperatures or nonlin-
ear relations between the left and the rigth hand side of
eq. (1). It is important to remark that in the systems pre-
viously cited the steady state FT is violated because in
such a case the external random force acts itself as a kind
of thermal bath. One question which naturally arises is
what the work fluctuation relations will become when in
addition to the external random forcing a true thermal-
ization process is allowed. In this situation there are two
sources of work fluctuations: the external force and the
thermal bath. As pointed out in [12,17], one is interested
in the distribution of the work fluctuations done by the
external random force in presence of a thermostat and the
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conditions under which the FT could be valid.

In the present work we address these questions in two
experimental systems: a Brownian particle in an opti-
cal trap and a micro-cantilever used for atomic force mi-
croscopy (AFM). Both are in contact with a thermal bath
and driven out of equilibrium by an external random force
whose amplitude is tuned from a small fraction to several
times the amplitude of the intrinsic thermal fluctuations
exerted by the thermostat.
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Fig. 1: a) Colloidal particle in the optical trap with modulated
position. b) AFM cantilever close to a metallic surface. See
text for explanation.

Colloidal particle in an optical trap. – The first
system we study consists on a spherical silica bead of ra-
dius r = 1µm immersed in ultrapure water which acts as
a thermal bath. The experiment is performed at a room
temperature of 27± 0.5◦C at which the dynamic viscosity
of water is η = (8.52 ∓ 0.10) × 10−4 Pa s. The motion of
the particle is confined by an optical trap which is created
by tightly focusing a Nd:YAG laser beam (λ = 1064 nm)
by means of a high numerical aperture objective (63×, NA
= 1.4). The trap stiffness is fixed at a constant value of
k = 5.4 pN/µm. The particle is kept at h ≈ 10µm above
the lower cell surface to avoid hydrodynamic interactions
with the walls. Figure 1(a) sketches the configuration of
the bead in the optical trap. An external random force is
applied to the particle by modulating the position of the
trap x0(t) using an acousto-optic deflector, along a fixed
direction x on the plane perpendicular to the beam prop-
agation (+z). The modulation corresponds to a Gaussian
Ornstein-Uhlenbeck noise of mean ⟨x0(t)⟩ = 0 and covari-
ance ⟨x0(s)x0(t)⟩ = A exp(−|t − s|/τ0). The correlation
time of the modulation is set to τ0 = 25ms whereas the
value of its amplitude A is tuned to control the driving
intensity. We determine the particle barycenter (x, y) by
image analysis using a high speed camera at a sampling
rate of 1 kHz with an accuracy better than 10 nm. See
ref. [20] for more details about the experimental appara-
tus. The attractive force exerted by the optical trap on
the bead at time t along x is given by −k(x(t) − x0(t)).
Hence, for the experimentally accessible timescales the dy-
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Fig. 2: (a) Dependence of the parameter α on the standard de-
viation of the Gaussian exponentially correlated external force
f0 acting on the colloidal particle. (b) Probability density func-
tions of the work wτ for α = 0.20; (c) α = 3.89; and (d)
α = 10.77. The symbols correspond to integration times τ = 5
ms (◦), 55 ms (2), 105 ms (3), 155 ms (▹), 205 ms(◃) and 255
ms (∗). The solid black lines in (b) and (c) are Gaussian fits.

namics of the coordinate x is described by the overdamped
Langevin equation

γẋ = −kx+ ζT + f0. (2)

In eq. (2) γ = 6πrη is the viscous drag coefficient, ζT
is a Gaussian white noise (⟨ζT ⟩ = 0, ⟨ζT (s)ζT (t)⟩ =
2kBTγδ(t− s)) which mimics the collisions of the thermal
bath particles with the colloidal bead and f0(t) = kx0(t)
plays the role of the external stochastic force. The stan-
dard deviation δf0 of f0 is chosen as the main control pa-
rameter of the system. Besides the correlation time τ0 of
f0 there is a second characteristic timescale in the dynam-
ics of eq. (2): the viscous relaxation time in the optical
trap τγ = γ/k = 3ms < τ0. In order to quantify the
relative strength of the external force with respect to the
thermal fluctuations, we introduce a dimensionless param-
eter which measures the distance from equilibrium

α =
⟨x2⟩
⟨x2⟩eq

− 1, (3)

where ⟨x2⟩ is the variance of x in the presence of f0 > 0
whereas ⟨x2⟩eq is the corresponding variance at equilib-
rium (f0 = 0). The dependence of α on δf0 is quadratic, as
shown in fig. 2(a). This quadratic dependence is a conse-
quence of the linear response of the system to the external
forcing described by the linear Langevin eq. (2).

The work done by the external random force on the
colloidal particle (in kBT units) is

wτ =
1

kBT

∫ t+τ

t

ẋ(t′)f0(t
′)dt′. (4)
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Fig. 3: Asymmetry function of the PDF of the work
done by the external force on the colloidal bead com-
puted at τ = 10τ0 for different values of the parame-
ter α: 0.20(◦), 0.51(2), 1.84(3), 3.89(◃), 6.69(▹), 10.77(∗). The
dashed line represents the prediction of the fluctuation theorem
ρ(w) = w. Inset: Expanded view for α ≥ 3.89.

Thus, by measuring simultaneously the time evolution of
the barycenter position of the particle and the driving
force we are able to compute directly the work injected
into the system by the driving. In figs. 2(b)-(d) we show
the probability density functions (PDF) of wτ for different
values of τ and α. We observe that for a fixed value of
α, the PDFs have asymmetric exponential tails at short
integration times and they become smoother as the value
of τ increases. For α = 0.20 they approach a Gaussian
profile (fig. 2(b)) whereas asymmetric non-Gaussian tails
remain for increasing values of α. As shown in figs. 2(c)-
(d), the asymmetry of these tails becomes very pronounced
for large α > 1 even for integration times as long as
τ = 250ms = 10τ0, where we have taken τ0 because it is
the largest correlation time of the dynamics. As pointed
out in [18], the deviations of the linear relation of eq. (1)
(with respect to wτ ) can occur for extreme values of the
work fluctuations located on these tails.
We define the asymmetry function of the PDF P as

ρ(w) = lim
τ
τc

→∞
ln

P (wτ = w)

P (wτ = −w)
, (5)

so that eq. (1) reads

ρ(w) = w. (6)

From the experimental PDFs of wτ we compute ρ(w) as
the logarithm in eq. (5) for integration times τ = 10τ0. We
checked that for this value the limit of eq. (5) has been
attained. Figure 3 shows the profile of the asymmetry
functions for different values of α. We notice that for
sufficiently small values (α = 0.20, 0.51 < 1), the FT given
by eq. (6) is verified by the experimental data. To our

knowledge, this is the first time that the FT holds for
a random force without introducing any prefactor in the
linear relation of eq. (6). It is important to point out
that any deviation from the linear relation of eq. (6) for
extreme fluctuations is unlikely since we probed values as
large as wτ/⟨wτ ⟩ ∼ 5. Indeed it is argued [12–14,18], that,
for strongly dissipative systems driven by a random force,
the deviations from FT may occur around wτ/⟨wτ ⟩ ∼ 1.
Furthermore in the present case the validity of the FT for
weak driving amplitudes α < 1 is consistent with the fact
that for integration times τ > 25 ms, the ratio ρ(w)/w
has converged to its asymptotic value 1 for all measurable
w. Note that this convergence to the FT prediction is
quite similar to that measured in system driven out of
equilibrium by deterministic forces [6–8]. For instance in
the case of a harmonic oscillator driven by a sinusoidal
external force the asymptotic value of ρ(w)/w is reached
for integration times larger than the forcing period [7].

In contrast, deviations from eq. (6) are expected to oc-
cur for 1 < α because the fluctuations of injected energy
produced by the external random force become larger than
those injected by the thermal bath. Indeed fig. 3 shows
that for values above α = 1.84, eq. (6) is not verified any
more but ρ becomes a nonlinear function of wτ . For small
values of wτ it is linear with a slope which decreases as the
driving amplitude increases whereas there is a crossover to
a slower dependence around wτ/⟨wτ ⟩ ∼ 1, a qualitatively
similar behavior to those reported in [13, 16–19]. We fin-
ish this section by emphasizing that we have clearly found
that for an experimental system whose dynamics corre-
spond to a first order Langevin equation subjected to both
thermal and external noises, the FT can be satisfied or not
depending on the relative strength of the external driving.
The details about how this deviations arise and the con-
vergence to generic work fluctuation relations will be given
further. We first analyze the experiment on the AFM.

AFM cantilever. – A second example of a system
for which thermal fluctuations are non-negligible in the
energy injection process at equilibrium is the dynamics of
the free end of a rectangular micro-cantilever used in AFM
measurements. The cantilever is a mechanical clamped-
free beam, which can be bended by an external force F and
is thermalized with the surrounding air. The experiment
is sketched in fig. 1(b).

We use conductive cantilevers from Nanoworld (PPP-
CONTPt). They exhibit a nominal rectangular geometry:
450µm long, 50µm wide and 2µm thick, with a 25 nm
PtIr5 conductive layer on both sides. The deflection is
measured with a home made interferometric deflection
sensor [21], inspired by the original design of Schonen-
berger [22] with a quadrature phase detection technique
[23]: the interference between the reference laser beam re-
flecting on the chip of the cantilever and the sensing beam
on the free end of the cantilever gives a direct measure-
ment of the deflection X. Our detection system has a
very low intrinsic noise, as low as 4 pm rms in the 100 kHz
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Fig. 4: (a) Dependence of the parameter α on the standard
deviation of the Gaussian white external force f0 acting on the
cantilever. (b) Probability density functions of the work wτ

for α = 0.19; (c) α = 3.03; and (d) α = 18.66. The symbols
correspond to integration times τ = 97 µs (◦), 1.074 µs (2),
2.051 ms (3), 3.027 ms (▹), 4.004 ms(◃) and 4.981 ms (∗). The
black dashed lines in (b)-(d) represent the exponential fits of
the corresponding tails.

bandwidth we are probing [21,24].
From the power spectrum of the deflection fluctuations

of the free end at equilibrium (F = 0) we verify that
the cantilever dynamics can be reasonably modeled as
a stochastic harmonic oscillator with viscous dissipation
[24, 25]. Hence, in the presence of the external force the
dynamics of the vertical coordinate X of the free end is
described by the second order Langevin equation

mẌ + γẊ = −kX + ζT + F, (7)

where m is the effective mass, γ the viscous drag co-
efficient, k the stiffness associated to the elastic force
on the cantilever and ζT models the thermal fluctua-
tions. m, γ and k can be calibrated at zero forcing us-
ing fluctuation dissipation theorem, relating the observed
power spectrum of X to the harmonic oscillator model:
in our experiment we measure m = 2.75× 10−11 kg, γ =
4.35× 10−8 kg/s and k = 8.05× 10−2 N/m. The ampli-
tude of the equilibrium thermal fluctuations of the tip po-
sition (i.e.

√
⟨x2⟩eq =

√
kBT/k ≃ 2 10−10m) is two orders

of magnitude larger then the detection noise (i.e. 4 pm
rms). The signal to noise ratio is even better when the
system is driven by an external force F . The characteristic
timescales of the deflection dynamics are the resonance pe-
riod of the harmonic oscillator τk = 2π

√
(m/k) = 116µs

and the viscous relaxation time τγ = m/γ = 632µs, which
is the longest correlation time.
When a voltage V is applied between the conductive

cantilever and a metallic surface brought close to the tip

(h ∼ 10µm apart), an electrostatic interaction is created.
The system behaves as a capacitor with stored energy
Ec =

1
2C(X)V 2, with C the capacitance of the cantilever-

tip/surface system. Hence, the interaction between the
cantilever and the opposite charged surface gives rise to
an attractive external force F = −∂XEc = −aV 2 on the
free end, with a = ∂XC/2. If we apply a static voltage
V , the force F can be deduced from the stationary solu-

tion of eq. (7): kX = −aV
2
, where X is the mean mea-

sured deflection. k being already calibrated, we validate
this quadratic dependence1 of forcing in V and measure
a = 1.49× 10−11 N/V2.

As the electrostatic force F is only attractive, its mean
value cannot be chosen to be 0. We thus generated a driv-
ing voltage V designed to create a Gaussian white noise
forcing f0 around an offset F : F = F + f0. The variance
δf0 of f0 is the main control parameter of the system. In
the absence of fluctuations ζT and f0, eq. (8) has the sta-
tionary solution X = F/k. This solution corresponds to
the mean position attained by the free end in the presence
of the zero mean fluctuating forces. Hence, we focus on
the dynamics of the fluctuations x = X − X around X
which are described by the equation

mẍ+ γẋ = −kx+ ζT + f0. (8)

Figure 4(a) shows the dependence between the param-
eter α defined in eq. (3) for the stochastic variable x and
the control parameter δf0. We find that this dependence
is quadatric verifying the linearity of the stochastic dy-
namics of the free end of the cantilever. On the other
hand, the work done by the external random force during
an integration time τ is computed from eq. (4). The cor-
responding PDFs are shown in figs. 4(b)-(d). Unlike the
colloidal particle, the PDFs do not converge to a Gaussian
distribution but to a profile with asymmetric exponential
tails even for the smallest driving amplitude (α = 0.19)
and for integration times as long as τ = 8τγ , as shown in
figs. 4(b)-(d). Surprisingly, when computing the asymme-
try function for α = 0.19 < 1 and τ = 4τγ the steady state
FT of eq. (6) is perfectly verified, as shown in fig. 5. Work
fluctuations as large as 2.5 times their mean value located
on the exponential tails are probed and hence deviations
from FT are unlikely for the same reasons discussed for
the case of the Brownian particle.

In fig. 5 wee see that for 1.21 ≤ α, the deviations from
eq. (6) appear as a nonlinear relation with a linear part for
small fluctuations whose slope decreases as α increases and
a crossover for larger fluctuations, qualitatively similar to
the behavior observed for the colloidal particle, as shown
clearly in the inset of fig. 5. In the following we discuss
the properties of these deviations as the energy injection
process becomes dominated by the external force.

1The quadratic dependance is valid only after taking care to com-
pensate for the contact potential between the tip and the sample,
which gives a small correction of the order of a few tens of mV.
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Fig. 5: Asymmetry function of the probability density func-
tion of the work done by the external force on the AFM can-
tilever computed at τ = 4τγ for different values of the pa-
rameter α: 0.19(◦), 1.21(2), 3.03(3), 6.18(◃), 9.22(▹), 12.77(∗),
15.46(×), 18.66(▽), 22.10(△). The dashed line corresponds to
the prediction of the fluctuation theorem ρ(w) = w. Inset:
Expanded view for α ≥ 9.22.

Fluctuation relations far from equilibrium. –
We address now the question of how the deviations from
eq. (6) arise as the external stochastic force drives the
system far from equilibrium. As shown previously, for
1 . α, the forcing amplitude is strong enough to destroy
the conditions for the validity of the FT for wτ . We note
that there are two well defined limit regimes depending
on the driving amplitude: one occuring at small values of
α for which the steady state FT is valid, and the limit
α ≫ 1 for which the the role of the thermal bath must be
negligible in the energy injection process, which must be
completely dominated by the external stochastic force. In
order to investigate whether the transition between these
two regimes is abrupt or not, we proceed by noting that for
the latter the stochastic force term ζT in eqs. (2) and (8)
will be negligible compared to f0. This implies that the
resulting statistical time-integrated properties of the cor-
responding non-equilibrium steady state will be invariant
under a normalization of the timescales and the tempera-
ture of the system. In particular, the resulting fluctuation
relations for wτ must lead to a master curve for the asym-
metry function in the far from equilibrium limit α ≫ 1.
The information about the transition of the fluctuation
relations to this regime is given by the convergence to the
master curve.
We introduce the normalized work w∗

τ as

w∗
τ =

τc
τ

wτ

1 + α
. (9)

The physical idea behind this normalization is that for
α ≫ 1, the thermal bath alone works as a heat reservoir for
viscous dissipation whereas its coupling with the external
forcing plays the role of a non-equilibrium thermal bath
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Fig. 6: (a) Asymmetry function of the PDF of the normalized
work done by the Gaussian Ornstein-Uhlenbeck force on the
colloidal particle for different values of the parameter α. (b)
Asymmetry function of the PDF of the normalized work done
by the Gaussian white force on the cantilever for different val-
ues of the parameter α. The thick solid line represents the
analytical expression given by eq. (11).

at an effective temperature k⟨x2⟩/kB = (1 + α)T ≈ αT .
The prefactor τc/τ is introduced in such a way that w∗

τ

represents the average normalized work done during the
largest correlation time of the system. Accordingly, the
asymmetry function must be redefined as

ρ∗(w∗) = lim
τ/τc→∞

τc
τ
ln

P (w∗
τ = w∗)

P (w∗
τ = −w∗)

. (10)

Figure. 6(a) shows the asymmetry function ρ∗ for the
normalized work w∗

τ on the colloidal particle at large val-
ues of α for which eq. (6) is violated. The timescale τc in
the computation of (9) and (10) is taken as the correla-
tion time (τ0 = 25 ms) of the Ornstein-Uhlenbeck forcing
of eq. (2). For comparison we also show the correspond-
ing curves at α = 0.20, 0.51 as blue circles and red squares
respectively, for which eq. (6) holds. The convergence to
a master curve is verified, which means that for a suf-
ficiently strong forcing the thermal bath acts only as a
passive reservoir for the energy dissipation without pro-
viding any important contribution to the energy injection
into the system. Evidently, the normalized asymmetry
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function for the values α that verify the FT lie far from
the master curve. We point out that the transition to
the limit α ≫ 1 is rather continuous since intermediate
regimes occur, as observed for α = 1.84. In this case nei-
ther the FT is satisfied as shown previously in fig. 3 nor
the master curve is attained since the strength of thermal
noise is still comparable to that of the external noise.
The results for the normalized asymmetry function of

the work done on the cantilever by the external force are
shown in fig. 6(b). The curve corresponding to the verifi-
cation of the FT for α = 0.19 is also plotted for compar-
ison. The convergence to a master curve is also checked
as the value of α increases. Indeed, when comparing our
normalized experimental curves with the analytic expres-
sion carried out by [13] for the asymmetry function of the
work distribution on a Brownian particle driven entirely
by a Gaussian white noise

ρ∗(w∗) =

{
4w∗ w∗ < 1/3

7
4w

∗ + 3
2 − 1

4w∗ w∗ ≥ 1/3
, (11)

we check that the assumption of the convergence of the
energy injection process into the cantilever to that of a
Langevin dynamics for a harmonic oscillator entirely dom-
inated by the external noise is valid. Finite α corrections
can be detected for large values of w∗

τ indicating that the
thermal bath still influences the energy injection into the
cantilever. This corrections seem to vanish as the system
is driven farther from equilibrium, as observed in fig. 6 for
α = 22.10.
Finally, we point out that the profile of the master curve

strongly depends on the kind of stochastic force: a Gaus-
sian Ornstein-Uhlenbeck process in the first example and a
Gaussian white noise in the second one. Non-Gaussian ex-
tensions of the external random force are expected to lead
to striking modification of the fluctuation relations in the
limit α ≫ 1, as recently investigated for an asymmetric
Poissonian shot noise [12].

Conclusions. – We have studied the FT for the work
fluctuations in two experimental systems in contact with a
thermal bath and driven out of equilibrium by a stochastic
force. The main result of our study is that the validity of
FT is controlled by the parameter α. For small α . 1 we
have shown that the validity of the steady state FT is a
very robust result regardless the details of the intrinsic dy-
namics of the system (first and second order Langevin dy-
namics) and the statistical properties of the forcing (white
and colored Gaussian noise). Indeed these specific features
vanish when the integration of wτ is performed for τ much
larger than the largest correlation time of the system.
In contrast for large α & 1, when the randomness of

the system becomes dominated by the external stochastic
forcing, we have shown that FT is violated. For α ≫ 1
the results at different driving amplitudes can be set on a
master curve by defining a suitable effective temperature
which is a function of α. We have shown that this master
curve is system dependent.

∗ ∗ ∗
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