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Chapter 1

Introduction

A mémoire d’habilitation à diriger les recherches appears to be a very open
concept: the only requirement of the manuscript is to situate the appli-
cant’s research in its area. It results in a vast variety of documents, ranging
from article collections to deep reviews of a domain. My own choice lays
somewhere in between these two options. I took this opportunity to con-
clude several unpublished works, and prepare a coherent manuscript of my
contributions to my main current playground: nano-mechanics. Each chap-
ter is independent of the others and can be read without referring to my
publications.

The introduction first summarizes the path that led me from aging of
glassy materials, my PhD subject, to micro and nanoscale mechanics. The
next three chapters detail my current interests: I first present the high
precision tool I have developed to conduct my researches, then two ap-
plications on the mechanical characterization of micro-cantilevers and the
study of carbon nanotubes in interaction with a substrate. The conclusion
finally underlines the promising perspectives of these works. The appendix
presents some points of details of the manuscript.

I shall thus start this introduction by giving a short chronological outlook
of my scientific path towards my current research interests1, before quickly
mentioning my implication in student’s supervision and teaching.

1To preserve a global coherence to this manuscript, some of my minor research interests
are not presented.

7



8 Exploring nano-mechanics through thermal fluctuations

Aging of glassy systems

I realized my PhD thesis in the Laboratoire de Physique - École Normale
Supérieure de Lyon (ENS Lyon), under the supervision of Sergio Ciliberto,
from 1997 to 2001. This work, entitled Viellissement des systèmes vitreux
et rapport fluctuation-dissipation2 [14], presents an experimental study of
aging in glassy materials. These systems, when quenched from a high tem-
perature equilibrium phase, are frozen in an unstable but very slowly evolv-
ing state. They are thus weakly out of equilibrium, and present as such
a challenge to physical modeling [48]. The aim of my thesis was to test
recent theoretical approaches of the subject: based on the analogy between
spin glasses and structural glasses, these approaches extend the fluctuation-
dissipation theorem (FDT) to these materials. It allows the definition of
an effective temperature Teff [35], measured with the fluctuation-dissipation
ratio of such a system.

Part of my research has been first dedicated to the study of memory
effects in a polymer (poly(methyl methacrylate) or PMMA) [8, 12]. Based
on experiments on spin glasses[73], we demonstrated a strong analogy on
fine effects in the behavior of these two different systems. Their common
properties could be theoretically described in the frame of a hierarchical
energy landscape. This analogy made PMMA a good candidate for a study
of the fluctuation dissipation ratio based on the measurement of electric
observables. It turned out not being possible to demonstrate any deviation
of the FDT to corroborate the pertinency of the theoretical approach: Teff

was simply equal to the thermal bath temperature.

However, using a colloidal glass of Laponite, we demonstrated a clear
deviation to the FDT on macroscopic electrical variables, in agreement with
recent theories on aging [9]. In order to check the intrinsic character of this
property, we proposed a second determination via a rheological study of this
material. An ultra-sensitive rheometer has been set up [10], and the effective
temperature was shown to depend on the observable [7]. This effect was not
anticipated, but is now demonstrated in various models of aging [118, 132].
In continuation to this PhD work, we showed that a strong deviation to the
FDT could also be observed in a polymeric glass (polycarbonate), and linked
this behavior to the intermittency of the electric noise in the samples [24].

2Aging of glassy systems and fluctuation-dissipation ratio
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Convection in Laponite

My post-doc took place in the Mechanics Department of the University of
Chile, in Santiago. In the Laboratorio de Estudios Avanzados en Fenomenos
Non Lineales, I collaborated with Rodrigo Hernandez on fluid mechanics
experiments that where already running in his young lab [137]. My main
topic was however to set up a new convection experiment, with the goal of
studying the coupling between aging and flow in a thermal driven motion.
Indeed, the recent theoretical framework for glassy systems suggests that
aging should be altered by a small energy injection in the system. It could
lead to a stationary weakly out of equilibrium state, with properties similar
to the aging regime for the effective temperature. Such a situation would be
far simpler to study as stationarity would allow time averages, much simpler
to conduct than the ensemble averages needed to test aging systems.

A convection experiment could be used for such purpose, as the flow
and associated shear are produced without any moving element, that would
unavoidably perturb the measurement of fluctuations. We thus built a new
setup to test this possibility, with the first aim to study the coupling between
aging and convective flow. Although we couldn’t reach a stationary state,
this coupling proved to be rich. Convection is obviously altered by the rising
viscosity of the material, with an initial turbulent heat transfer when the
viscosity is low, and a transition to conductive heat transfer at long times,
when the gel has formed and is too viscous to allow any flow. The opposite
coupling can also be observed: the characteristic time scale of aging is found
to depend on the roll pattern selected during the decay of convection. More
rolls, leading to a higher shear stress, are delaying the gel formation [13].

Towards nanoscale phenomena

Back in the ENS Lyon where I was hired as a CNRS researcher in 2003, we
were interested in studying aging of glassy systems at a smaller scale with
respect to my former macroscopic experiments. Our inspiration came from
the work of Israeloff and co-workers [131, 138], who used an atomic force
microscope (AFM) as a local probe of dielectric fluctuation at nanometric
scale. Getting closer to the pertinent spatial scale for glassy phenomenon
could open a vast variety of experimental tests for corresponding theories.
As the main goal was to precisely study fluctuations using an AFM, we
decided to build our own device. Indeed, one of the outcome of my PhD
work resulted in designing an outstanding differential interferometer [11],
which should outperform most current AFM setups in terms of precision of
the detection.
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I therefore started to design my own AFM in 2004, backed by Pier-
domenico Paolino, my first PhD student from 2005 to 2008. The adaptation
of the design of our quadrature phase interferometer to the requirement of
scanning force probes led to the exploration of a novel angle measurement
technique [103], and various refinements in the initial interferometer. The
first chapter of this manuscript describes in details the principle and ex-
perimental realization of our AFM, which features a very high resolution
in force. A comparison of the benefits and drawbacks of our setup with
respect to commercial devices as well as other high precision setups is con-
ducted. The operation as a standard scanning microscope is demonstrated,
and instrumental perspectives of this works are mentioned. Publications on
this part have been delayed up to now to allow possible patenting. How-
ever, such a valorization didn’t succeed (yet), and an instrumental article is
about to be submitted [106].

During this setup phase, we performed a number of tests by measuring
the deflexion of AFM cantilevers induced by thermal noise. This simple
test to check the precision of our interferometer turned into a full axis of
research, leading to most of the results of the PhD thesis of P. Paolino.
Indeed, an unexpected phenomenon has been identified in some spectrums,
namely a 1/f mechanical noise. We demonstrated that this behavior is the
result of a viscoelastic dissipation process linked to the optional metallic
coating of the cantilevers. Using the FDT and the Kramers-Kronig rela-
tions, we were able to characterize this damping mechanism and provide
a quantitative phenomenological description of it [104]. The description of
the noise spectrum around the resonance of the cantilever and at low fre-
quencies for uncoated cantilevers, was as well not adequately understood
within the classic simple harmonic oscillator approximation. This led us to
test in depth Sader’s dissipation model for viscous damping of the cantilever
by the surrounding atmosphere, eventually leading us to a wide frequency
validation of this approach, both on the noise measurement [6] and on the
mechanical response function [104].

In collaboration with Bruno Tiribilli, from the ISC-CNR3 in Firenze, we
also began to measure maps of fluctuations on the cantilever surface. This
procedure allows an easy access to the spatial shape of the normal modes of
vibration. The analysis of the experimental data leads to the measurement
of the mechanical properties of the cantilever (its spring constant) and of
its constituting material (Young’s and shear moduli) [107]. These results
are presented in the second chapter of this manuscript, together with the
analysis of the dissipation processes.

3Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche
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These results on the fluctuations of AFM cantilevers received a warm
welcome in the french AFM community, and triggered a new collabora-
tion with the team of Jean-Pierre Aimé and Sophie Marsaudon, from the
CPMOH 4 in Bordeaux. Indeed, they were already using thermal noise
as a probe of the mechanics of carbon nanotubes (CNT) on a commercial
AFM [23]. They saw in our superior resolution an adequate tool to test
the behavior of single wall nanotubes, much softer and more difficult to
tackle than multi-wall nanotubes. This new collaboration led to very nice
experiments on the peeling mechanics of CNT, and the corresponding ar-
ticle has recently been submitted. To fully interpret the measurements, I
also conducted a complete analytical study of the interaction between a
nanotube and a substrate with a model of absorbed Elastica. Those results
are described in the third and last chapter of this work.

As can be seen in this short introduction, the initial motivation to design
our own AFM (local fluctuations in aging systems) is still a perspective of
this work. Indeed, we crossed many puzzling and interesting phenomena
during our instrumental quest, and began some promising collaborations on
various topics in the micro and nano-mechanics area. The conclusion of this
manuscript present the tracks we intend to follow in the next years...

Teaching

Before entering the core of this document, let me finally mention briefly my
contribution to teaching in the ENS Lyon and my supervision activities.

I started teaching during my PhD in practical electronic training sessions
in the Préparation à l’Agrégation de Sciences Physique of the ENS Lyon
(master level, 64h a year for 3 years). I was not involved in formal teaching
during my post-doc nor during my first years as a CNRS researcher, but
recently signed up for a light annual implication (64h a year). I’m mainly
involved in practical sessions again, though I should be starting a more
formal course on instrumentation in 2011 and gave twice in 2009 a course
focused on AFM abroad (ECNU 5, Shanghai, China and USACH 6, Santiago,
Chile). Practical training corresponds to the way I like to interact with
students: it really allows a bidirectional communication, and it’s easier to
lead the students to handle the problems and find appropriate solutions by
themselves.

4Centre de Physique Moléculaire et Optique Herztienne
5East China Normal University
6Universidad de Santiago de Chile
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Since my thesis, I’ve been involved in the supervision or co-supervision
of various internships:

• Manuel Vial (fifth year engineer student in mechanics, Universidad de
Chile, 12 month in 2002): Modulation of the wake of a flat plate.

• Mathieu Gibert (Maîtrise de physique ENS Lyon, 3 months in 2002):
Convection in Laponite.

• Agnius Meškaukas (Erasmus Lithuanian student, Maîtrise de Physique
Université Lyon 1, 3 months in 2004): Macroscopic dielectric measure-
ments on hydration water.

• Marc Pannunzio (second year in DUT Mesure Physique Annecy, 3
months in 2006): Temperature regulation of the sample holder in the
AFM setup.

• Julien Lopez (first year in Master Instrumentation, Université de Pro-
vence, 3 months in 2010): Imaging with quadrature phase interferom-
eter AFM.

I’ve also been involved in the supervision of the PhD thesis of Kun Zhang
(2005-2008) [150], a chinese student in joint supervision between the chem-
istry lab in the ENS Lyon and the ECNU in Shanghai. K. Zhang realized
his thesis on mesoporous silica, and performed some macroscopic dielectric
measurements of hydration water in these materials in the physics lab of the
ENS Lyon. Back in China after his PhD, he is now an assistant professor
in the ECNU.

Finally, I directed the PhD thesis of Pierdomenico Paolino [105], an
italian student who had graduated from the Università degli Studi di Napoli
Federico II. Between 2005 and 2008, P. Paolino took part in the design
of the AFM setup, and conducted his research on the thermal noise and
dissipation of micro-cantilevers. This manuscript owes a lot to his work, as
will be illustrated in the next pages. He is now in a post-doc position the
PPMD, ESCPI 7, in Paris.

7Laboratoire de Physico-chimie des Polymères et des Milieux Dispersés, École
Supérieure de Chimie et Physique Industrielle



Chapter 2

Quadrature phase

interferometer for AFM

measurement

Abstract

In this first chapter, we present our innovative atomic force microscope (AFM).
Its detection is based on a quadrature phase differential interferometer: we mea-
sure the optical path difference between a laser beam reflecting above the can-
tilever tip and a reference beam reflecting on the static base of the sensor. A de-
sign with very low environmental susceptibility and another allowing calibrated
measurements on a wide spectral range are described. Both enable a very high
resolution (down to 10−14 m/

√
Hz), illustrated by a thermal noise measurement

on an AFM cantilever. A quick review shows that our precision is equaling or
out-performing the best results reported in the literature, but for a much larger
deflexion range, up to a few µm.
The dual output of the interferometer implies a specific handling to interface
common scanning probe microscope controllers. We present the analog cir-
cuitries we have designed to tackle static (contact mode) and dynamic (tapping
mode) operations, with a thorough analysis of their characteristics. Imaging
of a simple calibration sample, demonstrating the relevance of our approach,
concludes this chapter.

13
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Eref

Etip

d C

Figure 2.1 – Measurement area: two parallel laser beams are focused on the
cantilever C, the reference one is reflected by the static base (electric field Eref)
and the sensing one by free end of the sensor (Etip). A deflexion d of the cantilever
increases the optical path difference by δL = 2d, and we access this information
through the interferences between the two beams.

2.1 Introduction

Since its invention by Binnig, Quate and Gerber [19] more than 20 years
ago, Atomic Force Microscopy (AFM) has turned into a mature technique
widely spread in many domains (material sciences, biology, nanotechnol-
ogy...). The detection scheme proposed in the original article was quickly
dropped for handier optical methods. In the early ages of AFM, interfer-
ometric setups have been investigated by several authors as an option to
measure the deflexion of the cantilever [42, 43, 98, 116, 117, 128]. The
introduction of the optical lever technique [97] however, much simpler to
implement and still very sensitive, limited those techniques to a few special-
ized application where optical access to the cantilever is restricted (cryogenic
experiments for instance) or the ultimate precision of the measurement is
important [66, 75, 93]. Our initial goal, aiming at studies of thermal fluc-
tuations at nanoscale, belong to this last category: lowering the detection
noise was the starting point of our instrumental development.

The main originality of our work is the use of quadrature phase interfer-
ometry in the context of AFM measurement. In 2002, we introduced this
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technique, an instrumental perspective of my PhD thesis [14], under the
appellation of complex contrast interferometry [11]. As our initial inspira-
tion came from an AFM detection set-up [128], it was natural to apply our
findings back to this area when we started to tackle nanoscale phenomena
in 2004. Along the track toward our current setup, we explored a possible
alternative with an interferometric measurement of angular deflexion [103].
It turned out not to be suited to the micrometer sized AFM cantilever, but
still present another nice introduction to quadrature phase interferometry
and its greatly extended measurement range.

We present in this chapter a few approaches we have explored in order
to build a very sensitive detection scheme. They are all based on differen-
tial interferometry [43, 128]: two beams are produced in the measurement
region of the AFM, the first being reflected on a static reference point of
the sensor, the second on the free end of the cantilever (illustration in figure
2.1). The optical path difference between those two 2 beams is thus directly
proportional to the deflexion d of the cantilever, and knowledge of the wave-
length gives a precise calibration of the measurement. The analysis of the
interfering beams is performed with a quadrature phase design, limiting as
much as possible any slow drift problems, and allowing a virtually infinite
defection range.

The chapter is organized as follows: A first section describes the various
configurations of the sensing area, and the quadrature phase interferometric
detection scheme common to our realizations. We then present thermal
noise measurements as an illustration of the high sensitivity of our approach,
before a comparison with other high resolution techniques. We describe in
a second part how to process the output of our interferometer to use it
in a common feedback loop used for imaging. A few preliminary images
acquired with our set-up in static and dynamic modes are presented before
concluding remarks.

2.2 Experimental setups

2.2.1 Interferometer: sensing area

Bi-calcite setup

We developed several strategies to produce the two beams in the measure-
ment region of the AFM. The first one is inspired by reference [128], where
a calcite prism is used. In our setup, as illustrated by Fig. 2.2, light passes
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Figure 2.2 – Measurement area: the incident beam (electric field E0) is focused
on the cantilever C by the lens L0. When passing through 2 calcite beam displacers
BD0 with orthogonal optical axes x and y, light is split into 2 parallel beams,
which are reflected by the base and free end of the sensor (fields Eref and Etip).
A deflexion d of the cantilever increases the optical path of the second beam by
δL = 2d. On the top view, blue arrows show the direction of polarization of each
beam.

through two calcite beam displacers1 after the focusing lens. The optical
axis of the prisms are set perpendicular to each other, hence each polariza-
tion of the incident beam is once the ordinary and once the extraordinary
ray. Both output beams are then equivalent : their optical path length
is equal through the prisms. This setup has 2 advantages : not only the
intrinsic optical path is the same on a flat cantilever (canceling the noise
due to wavelength fluctuation in the light source), but so does the shift in
the focus due to parallel plate. We usually associate two 1 mm thick cal-
cite beam displacers. Each one produces a 100µm shift of its extraordinary
ray, so the total separation is approximatively 140µm and adapted to can-
tilevers longer than this value. After reflection, the two beams are merged
back together by the birefringent components and can be studied in the
analysis area. The optical path difference δL is twice the deflexion d of the
cantilever:

δL = 2d (2.1)

1Calcite (CaCO3 crystal) is a birefringent material. With appropriate cutting, a
parallel plate of calcite spatially splits the two polarizations of light: the extraordinary
ray exits the prism parallel to the ordinary ray, with a lateral displacement of one tenth
the thickness of the plate (for normal incidence and visible wavelengths).
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Figure 2.3 – Double path technique: the incident ray (electric field E0) is focused
on the sensor by lens L0, and split in 2 (Eref and Etip) by the calcite prisms (BD0).
After reflection on the curved surface of the cantilever, both beams exit the lens L0

parallel but apart from each other. A perpendicular mirror send them back on their
original paths so that they eventually perfectly overlap after a second reflection on
the sensor. In practice, we use the 3 dimensions of space: the incident beam E0

is slightly off axis on the lens as seen on the front view, so that its reflections Eref

and Etip are shifted when exiting L0. A single mirror M can be used for both. In
this configuration, the optical path difference δL is 4 times the deflexion d.

One of the problem we had to deal with is the intrinsic curvature of some
cantilevers: when those are coated (to enhance reflectivity for instance), the
metallic layer may produce internal stresses which lead to a static curvature
of the sensor. Strategies to minimize this effect can be used (symmetric
coating for example), but the tolerance of common detection systems to
this defect is large since most only use a single reflection on the extremity
of the cantilever. In our case, the two light beams must overlap in order to
record interferences, and the bending of the reflective surface introduces a
spatial separation of the 2 polarizations. For instance, a small 2◦ curvature
(typical tolerance of commercially available sensors ) translate into a 2 mm
separation of the beams back to the 30mm focusing length. The contrast
in such a case can decrease to very small values, and depending on the
cantilevers we sometime need to address this problem.

When a force acting on the tip is deflecting the cantilever, the previ-
ous considerations on the intrinsic curvature applies as well to the induced
bending. However, a ±2◦ angular range for a 300µm long cantilever trans-
lates into a ±7µm deflexion range, much larger than the typical limit of
AFM setups.
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Double path setup

The simplest solution to deal with curvature limitation is to increase the
diameter of the laser beams so that even with such a large separation they
still overlap sufficiently to record sharp interferences. Indeed, we can reach
a fair contrast on bended cantilevers using a 7mm (instead of our common
2mm) beam, though handling clear apertures for such a large diameter is
difficult in our compact setup.

Another way to circumvent the problem is illustrated in Fig. 2.3. Af-
ter reflection on the curved surface, the 2 beams corresponding to the 2
polarizations of the birefringent component are parallel when emerging the
focusing lens. Indeed, both virtually come from the focal point but with
different angles. We place a flat mirror perpendicular to the beams at this
point: both are sent back on their original path, and overlap perfectly after
a second reflection on the cantilever. This setup also doubles the sensitivity
of the measurement: adding a second reflection on the sensor doubles the
optical path dependance on the deflexion of the cantilever. This configura-
tion can thus be interesting even for flat sensors. However, the tuning of
the apparatus is much more complex (the focal distance for instance should
be perfectly set as the double pass multiplies any error in this direction).
Moreover, another problem can be stressed for uncoated cantilevers: their
poorly reflecting surface being used twice, the intensity of the signal is low-
ered significantly and the overall gain in accuracy is much lower than 2.

Wollaston setup

A last strategy to create the two beams of the measurement area is illus-
trated in Fig. 2.4. It is very similar to that of ref. [43]. The initial beam
(field E0) first crosses a Wollaston beam splitter, which produces 2 rays of
orthogonal polarizations (Eref and Etip), with an α = 2◦ separation angle.
If the intersection point of these beams is placed at the focal point of the
focusing lens L0, the resulting beams are focused on the sensor, their optical
axes being parallel. Translation of the Wollaston prism along the optical
axis does not change the focalization points, but the angle of incidence of
the beam on the sensor. It can thus be used to correct for a static curvature
of the cantilever.

The distance between the 2 focalization points is given by the angular
separation of the prism α = 2◦ and the focal length f = 30mm, that is
1mm in our setup. This distance is always greater than the length of the
cantilever, so the reference beam is reflected on the chip holding the sensor
in this configuration. It is thus a little bit out of focus, the typical thickness
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Figure 2.4 – Wollaston measurement configuration: the incident ray (E0) is split
in its 2 orthogonal polarizations (Eref and Etip) by the Wollaston prism, then
focused on the sensor by lens L0. Tuning the position of birefringent component
along the optical axis (right), any small static curvature of the cantilever can
be compensated. After reflection, the beams are merged back together and can
be analyzed: the optical path difference is twice the deflexion. Due to increased
distance between the 2 beams (1 mm in our configuration), the reference (Eref) is
taken on the chip holding the cantilever.

E0E0

ErefEref EtipEtip

W

Figure 2.5 – Tuning the initial optical path difference : a translation of the
Wollaston prism W along the separation axis modifies the optical path of the two
polarized beam (Eref and Etip) inside the birefringent material. The small shift of
the splitting point of the beam has a negligible effect in our setup.
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of the chip being 0.4mm. Anyway, the reflecting surface is very large and
no light is lost, and the small divergence of the 2 beams we will eventually
analyze decreases only slightly the contrast of the interferences.

A benefit of this configuration is the possibility to tune the initial path
difference between the two beams [43]. Indeed, a translation of the Wollas-
ton prism along the axis of separation changes differently the optical path
of the ordinary and extraordinary rays in the birefringent element (see fig-
ure 2.5). For a the lateral displacement δx of our prism, we measure this
dependence to be δL/λ = δx/(10µm), where λ = 633nm is the wavelength
of the He-Ne laser we are using.

Comparison of setups

The three configurations of the measurement area, illustrated in Figs. 2.2
to 2.4, have their own advantages and drawbacks, and we chose for every
experiment the best compromise for our specific needs. The first setup (Fig.
2.2) is for example very stable with respect to external disturbances, the
2 beams sharing almost the same path except for the very last millimeters
before the cantilever, but it is restricted to flat rectangular cantilevers longer
(but ideally not too much) than 140µm. The double path arrangement
(Fig. 2.3) can be more sensitive and adapted to curved sensors, but is more
vulnerable to external vibrations and more complex to tune. The Wollaston
configuration (Fig. 2.4) is easy to align and adapted to cantilever of any
shape and length (V shaped for instance), but it is also more affected by
environmental perturbations and its contrast is not as sharp.

A further comparison of the Wollaston and Bi-calcite configurations,
based on thermal noise measurement, is conducted in part 2.2.3

2.2.2 Interferometer: analysis area

The three setups for the measurement area share the same principle: the
incident light is split in 2 with a birefringent component, and each ray is
focused on the sensor. After reflection, the beams are merged into a single
one and the optical path difference between its two polarizations is a linear
function of the deflexion of the cantilever. The analyzing area is thus the
same for all the measurement configurations. It is based the quadrature
phase technique we have developed [11, 103], as illustrated on Fig. 2.6: the
light is separated in two equivalent arms (indexed with subscript n = 1, 2)
with a non polarizing cube beam splitter, then focused on the photodetec-
tors by lenses Ln (focal length 25mm). To record interferences, the initial
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Figure 2.6 – Experimental setup: analysis area. The light coming from the
measurement area is split into two arms, indexed with subscript n = 1, 2. In each
one, a 5mm calcite prism (beam displacers BDn) oriented at 45◦ with respect to
the measurement birefringent component (BD0 or W) projects the polarizations
to have them interfere. The 2 beams emerging from BDn are focused by a plano
convex lens (Ln, f = 25mm) on the 2 segments of a 2 quadrant photodiode PDn to
record their intensities An, Bn. Those are used to reconstruct ϕ and thus measure
the deflexion d of the cantilever. In the second analyzing arm (n = 2), a quarter
wave plate (λ/4) is added in order to add ψ2 = −π/2 to the phase shift ϕ.

polarizations are projected by calcite beam displacers (BDn, 5 mm thick)
whose axes are at 45◦ with respect to the optical axes of the measurement
birefringent component (BD0 or W). The two beams emerging from each
calcite prism are 0.5mm distant, they are collected on the two segments of
a 2 quadrant photodiode (UDT Spot-2DMI). The only difference between
the two arms is the addition of a quarter-wave plate in the second arm,
tuned to subtract π/2 to the phase shift between the 2 polarizations.

For the following computation, we will use the configuration of Fig. 2.2,
but it can be easily extended to the other setups with minor changes. Let
us call x and y the unity vectors along the optical axes of the calcites BD0,
and E0 = E0(x + y) the electric field of the incident beam, tuned to be
linearly polarized at 45◦ with respect to x and y. The total field of the
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beams after reflection and recombination is Eref + Etip = E0(x + eiϕy),
with ϕ the phase shift between the 2 polarizations. Since the optical path
difference δL is twice the deflexion d of the cantilever (equation 2.1), ϕ is
simply

ϕ =
4π

λ
d (2.2)

where λ = 633nm is the wavelength of the He-Ne laser we use. The optical
axes of the analyzing calcite prisms BDn are oriented at 45◦ with respect
to BD0 (along x + y and x− y for BD2 for example), hence the intensities
of the projected beams on the 2 quadrants of the photodiodes are easily
computed as

An =
I0
4

(1 + cos(ϕ + ψn))

Bn =
I0
4

(1 − cos(ϕ + ψn)) (2.3)

where subscript n stand for the analyzing arm (n = 1, 2), I0 is the total
intensity corresponding to the incident light beam2, and ψ1 = 0 (first arm,
without quarter wave plate) or ψ2 = −π/2 (second arm, with quarter wave
plate). Using home made low noise analog conditioning electronics or post-
acquisition signal processing, we can measure for each arm the contrast
function of these two signals:

Cn =
An −Bn

An +Bn
= cos(ϕ+ ψn) (2.4)

This way, we get rid of fluctuations of laser intensity, and have a direct
measurement of the cosine of the total phase shift for each arm, ϕ+ ψn.

Let us rewrite eq. 2.4 as:

C = C1 + i C2 = cos(ϕ) + i sin(ϕ) = eiϕ (2.5)

Under this formulation, the advantage of using two analyzing arms instead
of one is obvious : it allows one to have a complete determination of ϕ
(modulo 2π). In the (C1, C2) plane, a measurement will lay on the unit cir-
cle, its polar angle being the optical phase shift ϕ. The sensitivity to detect
small variations in the deflexion of the cantilever appears this way to be

2I0 is the electrical intensity defined by I0 = SP , where P is the incident beam power
(in W ) and S is the responsivity of the photodiodes (in A/W). The 1/4 factor in the
equations accounts for the beam-splitting process (2 final beams in both analyzing arms).
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independent of the static deflexion and the intrinsic optical path difference:
∣∣∣∣
dC

dd

∣∣∣∣ =
4π

λ
(2.6)

No tuning of the zero is necessary. The use of crossed polarizations for the
two interfering beams is a key point of this method, since it allows a post
processing of the phase difference (with the quarter-wave plate) to produce
the quadrature phase signals.

Eventually, to measure the deflexion d of the cantilever, all what we
need to do is to acquire the two contrast C1 and C2, and reconstruct d with
standard digital data processing tools: ϕ = 4πd/λ can be computed as

ϕ = arg(C) = arctan(C2/C1) (2.7)

Unwrapping of the phase ϕ to avoid discontinuities every 2π can be neces-
sary for large amplitudes of deflexion. This can easily be performed as long
as the sampling frequency fs is sufficient: the distance between successive
points should be smaller than π, which translates of into fs > 4ḋ/λ (where
ḋ is the time derivative of d).

In the experimental realization, the unavoidable imperfections of optical
components and of their alignment will lead the complex contrast to lay in
reality on a tilted ellipse with axes smaller than one, instead of the unit
circle: we can generically write

C̃ = C̃1 + i C̃2 = C1 cos(ϕ) + c1 + i (C2 sin(ϕ+ ψ) + c2) (2.8)

where over tilde contrasts represent the measured values (by opposition to
the ideal values of equation 2.5), and Cn < 1 are the contrast amplitudes
in each arm, cn the contrast offsets, and ψ a residual mismatch to perfect
quadrature [11]. These 5 parameters can easily be extracted from a cali-
bration of the interferometer: we excite a small amplitude oscillation of the
free cantilever with a piezo, and get the parameters from a generic fit of the
recorded ellipse (see figure 2.7). In the Wollaston configuration, we can also
produce the ellipse with a lateral driving of the birefringent prism, allowing
us to calibrate the system with no oscillation of the cantilever. The results
of these 2 methods in this case are in perfect agreement. Once this elliptic
fit done, raw measurements (C̃) can easily be post processed and projected
on the unit circle (C), to extract the actual deflexion [11].

Let us summarize the main points of our interferometric setup. The
input laser light is split into a reference beam, directed on the base of the
cantilever, and a sensing beam, focused on top of the tip of the sensor. The
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Figure 2.7 – Calibration of the complex contrast: we drive the cantilever close
to its first resonance with an amplitude of deflexion d of the order of the laser
wavelength λ. The experimental data follow an ellipse in the ( eC1, eC2) plane. Af-
ter a simple fit of this ellipse with equation 2.8, it is straightforward to project
the measurement point on the unit circle, and identify its polar angle with the
optical phase shift ϕ. Equation 2.2 eventually leads to a calibrated measurement
of deflexion d.

phase shift ϕ is a linear function of the deflexion d (equation 2.2). After re-
flection, the two rays of crossed polarization are recombined and processed
with a quadrature phase technique: two output signals C̃1 and C̃2 are pro-
duced, with C̃1 ∼ cosϕ, and C̃2 ∼ sinϕ (equation 2.8). Post-processing of
these signals leads to a precise, calibrated and virtually unbounded value
of the deflexion d. Figure 2.8 illustrate our experimental realization by a
photograph of the setup with superposed optical scheme.

2.2.3 Performances of our experimental realization

In this section, we will present the main performances in terms of stability
and precision of the two main configurations (bi-calcite and Wollaston) pre-
sented in section 2.2. The double-path technique, due to its complexity of
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Figure 2.8 – Photograph of our experimental realization of the quadrature phase
interferometer for AFM measurement with superposed optical scheme. The laser
light is fed into the setup with an optical fiber (blue cord on the right of the image).
In the background, an oscilloscope in XY mode displays the elliptic trace of the
outputs during the procedure of calibration of the complex contrast.
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Figure 2.9 – Long term stability of the interferometric measurement: after cal-
ibration, an acquisition of the deflexion of a cantilever at rest is performed. For
both the bi-calcite and the Wollaston configuration, the drift after several hours is
at most 3 nm.

tuning, has mainly been used to deal with curved cantilevers, and was not
systematically characterized.

Long term stability

We present in figure 2.9 the evolution over several hours of the deflexion
measured on a cantilever at rest, far from any sample. Slow environmental
changes (temperature drift...) have little influence on the measurement:
the deflexion is stable within a ±1.5nm fluctuation range, for both sensing
strategies. This long term stability is excellent: for most applications, there
is no need for frequent calibrations of the interferometer.

Thermal noise measurement

This section on the thermal noise of a cantilever is just a quick illustration
of the high precision of our interferometric measurement of the deflexion,
an extensive study on this topic is presented in chapter 3.

We use our setup to record the equilibrium fluctuations of a cantilever
at rest, far from any sample. Thermal noise acts as a white noise random
forcing, exciting all resonant modes of the microscopic mechanical beam:
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Figure 2.10 – Power spectrum density of deflexion measured in the Wollaston
and bi-calcite configurations of a golden coated cantilever and on a rigid mirror
(background noise). The raw data plotted here demonstrate the high precision
of the interferometer: the background noise is as small as 10−14 m/

√
Hz for the

bi-calcite set-up, on a wide frequency range. This is only 20% higher than the un-
avoidable shot noise due to the photodiodes, and a small increase can be noticed at
low and high frequencies due to higher conditioning electronics noise. In the Wol-
laston configuration, the base line noise is slightly higher at 1.4 × 10−14 m/

√
Hz

(again within 20% of the shot noise limit), and degrades faster at low frequency:
the setup is more sensitive to external perturbations as the reference and sensing
laser beams are separated on a longer distance. In both configuration however, the
thermal noise of the cantilever is clearly visible, with 5 perfectly defined flexural
modes in this 1MHz frequency range. The 1/f like behavior at low frequency, 2
orders of magnitude larger than the background noise, is studied in part 3.3.2.
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as shown on figure 2.10, the first 5 structural resonances are visible on the
Power Spectrum Density (PSD) Sd in the 1 MHz range in frequency ex-
plored here. The data was acquired on a gold coated cantilever Budget Sen-
sors Cont-GB (data sheet in appendix D.1) in air far from any sample. The
cleanness of the curves demonstrates the sensitivity of the detection method,
down to low frequencies. The instrument noise for the bi-calcite configura-
tion, recorded by replacing the cantilever by a rigid mirror while keeping
intensities on the photodiodes unchanged, decreases from 10−13 m/

√
Hz at

1Hz down to 10−14 m/
√

Hz for frequencies f above 100Hz, before raising
gently again above 300 kHz. The main contribution to this floor noise is
the unavoidable shot noise due to the photodiodes. We can estimate this
contribution from the light intensities recorded at each photodetector: the
performance is close to optimal conditions, only 20% above the shot noise
limit for a laser power around 100µW per sensing beam. On top of this
white noise, the conditioning electronic noise is added (raising the noise at
low and high frequency), and some environmental vibration can be seen
(bump in the 10Hz region).

The Wollaston configuration is more sensitive to external perturbations,
especially at low frequency where its background noise is not as low. Many
more vibrations peaks can be noted below 1 kHz. However, the mechani-
cal noise intrinsic to the cantilever is still almost everywhere much higher
than this detection limit at low frequency. For f in the 1 kHz − 300kHz
range, the background fluctuations reach again the shot noise limit, at
1.4 × 10−14 m/

√
Hz.

We note a discrepancy between the two measurement methods: the am-
plitude of the spectrums are not equal, with a factor depending on the mode
considered. Indeed, as the cantilever is 450µm long, we have to correct the
output of the bi-calcite configuration: the spots are only 140µm distant, so
the actual deflexion is not equal to the interferometer output. The multi-
plicative factor to consider is mode dependent: as illustrated on figure 2.11,
the coefficient is about 2 for the first mode, but can be smaller than one
for higher order modes. We therefore correct the power spectrums of fig-
ure 2.10 for the bi-calcite configuration considering those factors (we switch
between coefficient at half way between resonance frequencies). The final
curve presented in figure 2.12 matches closely the measurement with the
Wollaston setup, except when the fluctuations are close to the background
noise (between resonances).

This mode dependent correction is anyway a complex procedure, which
has to be tuned for every specific geometry. The background noise, in abso-
lute better for bi-calcite configuration, can eventually get worse than that
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Figure 2.11 – In the bi-calcite configuration, the distance between the two laser
spots is smaller than the length of the cantilever, thus the measured deflexion does
not correspond to the actual value. The correction to consider is mode dependent:
according to the position of the spots with respect to the nodes and antinodes of
the spatial shape, it can be smaller or larger than one. Using an Euler Bernoulli
model for the mechanical beam, we estimate the coefficient noted on the figure for
the measured amplitude normalized to the deflexion of the free end for the 5 first
modes.

of the Wollaston configuration. Moreover, in between resonances, where the
noise of the modes are of equivalent amplitude, further assumptions would
be required to extract information from the measured fluctuation. Finally,
the study of torsional modes is difficult with this setup as it requires a
perfect alignment between the cantilever and the two laser spots. On fig-
ure 2.10 for instance, a peak of small amplitude can be noticed just before
the third flexural mode resonance, only in the bi-calcite configuration: we
couldn’t perfectly center both sensing beams, and the first torsional mode
is visible on the spectrum. Unless the cantilever length is close to the laser
spots distance, the bi-calcite configuration is thus not adapted to the si-
multaneous study of several modes, nor to the absolute characterization of
the cantilever noise. However, its excellent performance at low frequency is
ideal to study the low frequency behavior of thermal fluctuations, and this
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configuration will be preferred over the Wollaston one in the study of the
viscoelasticity of cantilever presented in part 3.3.2.
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Figure 2.12 – Power spectrum density of deflexion measured in the Wollaston
and bi-calcite configurations of a golden coated cantilever and on a rigid mirror
(background noise). The spectrums measured in the bi-calcite configuration have
been corrected to take into account the real position of the laser beams on the can-
tilever: since the cantilever is longer (450 µm) than the beam separation (140 µm),
the reference point is not static. A mode dependent correction has been considered.
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2.2.4 Comparison with other devices

To conclude this section on our deflexion measurement setup, we compare
its performance to that of commercial AFMs and other interferometric de-
tection systems in the literature.

Most commercial AFMs today use an optical lever configuration [97]: a
laser beam is focused on the cantilever, and the reflected light is collected
on a 4 quadrants photodiode. A deflexion changes the position of the spot
on the detector, thus the relative intensities of each segment proportion-
ally to the slope of the illuminated part of the cantilever. This method is
very simple to implement, and achieves a high precision: using dedicated
cantilever geometries, it can even be as sensitive as an interferometric ap-
proach [62, 112]. However, for common geometries and commercially avail-
able cantilevers, the shot-noise limit of the optical lever technique is around
ten time higher than our interferometric approach3: the background noise
for the cantilever of figure 2.10 is at best 10−13 m/

√
Hz. Moreover, the

electronic and environmental noise are most of the time not as low as in
our experiment, making low frequency measurements of thermal noise im-
possible with commercial devices. Lastly, a calibration step is required to
convert the output of the photosensor into the actual deflexion of the can-
tilever: during a contact with a hard surface, the sample is moved vertically
of a known distance, leading to the calibration constant. This step can be
undesirable, to prevent any alteration of the tip during the hard contact for
instance, and can be avoided with interferometric approaches. Moreover,
this calibration procedure is accurate only for static deflexions, and the cor-
rection to consider depends non trivially on the mode considered at higher
frequency [126].

We present in figure 2.13 a comparison of noise measurements with our
setup (Wollaston configuration) and three commercial devices, on the same
cantilever. A mode dependent multiplicative factor has been applied to the
three spectrums acquired on commercial apparatuses, so that the amplitude
of each resonance matches our calibrated measurement. The background
noise of the three detection systems is dominant everywhere except at the
resonances, and is at least 10 time worse (in m/

√
Hz units) than in our

interferometer, though the laser spot intensity is 10 times higher (around
1.1mW in the 3 devices). Low frequency information on the mechanical
thermal noise is not accessible:

3A notable exception is the set-up developed by Fukuma [54], who reached
5 × 10−15 m/

√
Hz accuracy thanks to a careful overall design and a high 2mW laser

power.
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• for the 2 Veeco devices, the electronic 1/f noise is dominant. The
spectrum below 1 kHz is not accessible in the Nanoscope V due to
software limitation. It was acquired using a Signal Access Module
and independent acquisition cards on the Nanoscope IIIa.

• for the Asylum AFM, the low frequency noise is processed with a
high pass filter, cutting the electronic 1/f noise but also any physical
information about the system.

Let us stress anyway that the high sensitivity of 4 quadrant detectors is more
than sufficient for imaging purposes. Its simplicity drove its election in most
commercial systems. With the applications we present in this work, we will
demonstrate anyway that the higher resolution and intrinsic calibration of
our approach leads to original results.

Before the optical lever technique became dominant, a bloom of various
approaches to read the cantilever deflexion followed the invention of the
AFM by Binnig, Quate and Gerber in 1986 [19]. Interferometric methods
were and still are the most sensitive methods, and exist nowadays as home
built systems in a few laboratories. We will focus only on homodyne inter-
ferometers, since heterodyne setups are limited to dynamic operation and
cannot access the static information which is of interest for the applications
we present in this work. They can be categorized into two main groups:

• Fabry-Pérot like interferometers. In its most simple realization, the
fiber interferometer, the resonant cavity is composed by the cantilever
and the cleaved end of an optical fiber [116, 117]. The finesse of the
cavity in this case is close to 1, as multiple reflections are killed by
the low reflectivity of the fiber end and the divergence of the optical
beam reflected by the cantilever. The output of the interferometer is
then a sinusoidal function of the deflexion. Background noise down to
5 × 10−14 m/

√
Hz have been reported [117] for this arrangement for

incident light power around 100µW. To increase the finesse of the
interferometer and thus its sensitivity, a reflective coating covering
the fiber end has been proposed in references [93, 98, 101, 108]. A
drawback of this design is the coupling between deflexion and light
intensity in the cavity: photothermal and radiation pressure bending
the cantilever are function of the light intensity which is linked to
the deflexion. This can result into a self oscillating as well as a self
cooling cantilever [95, 139], eventually complicating the data analysis.
Hoogenboom and coworkers [65, 66], in a convergent geometry where
the cantilever is at the focal point of a concave semi-reflecting lens,
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Figure 2.13 – Power spectrum density of deflexion measured in the Wollaston
configuration and on 3 commercial devices. The same golden coated cantilever is
used, except for the background noise of our setup which is acquired on a rigid
mirror. The spectrums measured with commercial devices have been corrected to
convert the angular measurement into a deflexion measurement. The correction is
mode dependent, and tuned so that the amplitude of each resonance matches the
calibrated spectrum.
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reached a finesse of 20. The output is in this case highly non linear, but
for deflexion much smaller than the wavelength around the optimum
of sensitivity, a background noise of 10−15 m/

√
Hz at high frequency

(1 MHz and higher) can be reached for an incident light power of
1 mW. The noise at lower frequencies (less than 250 kHz) is however
at best comparable to the performance of our system.

• Differential interferometers. These interferometers [1, 37, 43, 59, 128]
have inspired this work. They use birefringent elements to split an
incident light into two beams of crossed polarization which are both
focused on the cantilever (or on a reference mirror strongly connected
to it [37, 59]). Those systems have shot noise limited performances,
and as such are as good as our realization: the baseline for the back-
ground noise reached in these experiments is around 10−14 m/

√
Hz for

comparable incident light power.

Our experimental device, described in details in this chapter, thus rea-
ches one of the best precision one can hope for only 100µW incident light
power of the cantilever. It presents moreover a significant advantage over
every other configuration: the deflexion range for which this performance
is available is very wide, up to a few µm. The convergent Fabry-Pérot
configuration [65] for example, reaching the best absolute performance, im-
plies a cavity finesse of 20, limiting the linear deflexion range to 20nm at
best. With other interferometer design, the typical range available is smaller
than λ/4, thus around 100 nm. High precision optical lever set-ups [54] also
present a limitation around 100 nm for their linear deflexion range (and
require an additional calibration step, as already mentioned).

To conclude this section, let us summarize the main properties of our
interferometric measurement of AFM cantilever deflexion:

• A very high resolution, down to 10−14 m/
√

Hz, on a very wide spectral
range, equaling or out-performing the best results reported in the
literature for equivalent light power, especially at low frequency.

• A huge deflexion range, up to several µm, much larger than any other
high precision systems.

• An intrinsically calibrated measurement, thanks to the interferometric
approach.

• A very stable sensor, with less than 3 nm drift over 24 h.
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2.3 Imaging with quadrature phase detection

The quadrature phase interferometric approach described in the previous
section is fine as long as we are interested in the deflexion itself, to measure
force-distance curves for instance. The situation can be far more tricky if
we want to include the deflexion signal in an analog retroaction loop to
perform basic AFM tasks like imaging in constant force (contact) mode or
in dynamic (tapping) mode. Indeed, we have two signals C̃n (n = 1, 2)
whose sensitivity dC̃n/dd can be very different according to the position of
the working point on the unit circle. Choosing only one of these two as the
retroaction signal would imply an optical tuning of the zero (to ensure best
sensitivity) and limited drift tolerance of this working point. We present
here a strategy to produce an optimal analog deflexion signal without tuning
one of the contrasts to zero.

The basic idea is to use equation 2.5 for small variations of ϕ around
ϕ0: writing ϕ = ϕ0 + δϕ and Cn = C0

n + δCn, we have

δC1 + i δC2 = iδϕeiϕ0 = iδϕ(C0
1 + i C0

2 ) (2.9)

hence, since in this ideal case |C0
1 + i C0

2 | = |eiϕ0 | = 1,

δϕ = C0
1δC2 − C0

2δC1 (2.10)

= C0
1C2 − C0

2C1 (2.11)

This last equation can be implemented with analog electronics, as it
only implies basic operations (multiplications and subtraction). In the ex-
perimental realization, we have to take care about the various imperfections
quantified with parameters Cn, cn and ψ in equation 2.8. The first step is to
adjust the small offsets cn to zero, using simple offsetting analog electronics:
with a realtime fitting algorithm of the ellipse during calibration, we take
care to tune the optics as centered as possible, and eventually correct the
slight remaining error with the electronics. The residual offset can be made
smaller than 1%. Eq. 2.8 then reduces to

C̃ = C̃1 + i C̃2 = C1 cos(ϕ) + iC2 sin(ϕ+ ψ) (2.12)

Although very similar, the next steps are slightly different if we use a static
(DC) or dynamic (AC) mode. We will first present the approach preserving
the DC information, then describe the strategy to deal with AC signals.
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2.3.1 Contact mode

In contact mode, we need to define the reference position of the cantilever,
for example when the deflexion corresponds to the constant force we choose
for imaging. We first perform a force curve, choose the working point and
set the sample position to reach this deflexion set-point. We then trigger a
numeric “sample and hold” device that freezes the contrasts to their values
C̃0

n in this reference state. Inspired by equation 2.11, we can further compute
the following quantity with analog electronics:

UDC = C̃0
1 C̃2 − C̃1C̃

0
2 (2.13)

Using the expressions of C̃n (eq. 2.12) and simple trigonometric calculations,
it is straightforward to show that

UDC = C1C2 cos(ψ) sin(ϕ− ϕ0) (2.14)

where ϕ0 is the optical phase corresponding to the reference point C̃0
n. The

signal UDC is finally a simple sine function of the deflexion of the cantilever,
and can directly be used in an analog retroaction loop to image a sample
in contact mode. As long as the deflexion of the cantilever (with respect to
the set-point) is small compared to the wavelength, the sensitivity is always
optimal with this technique, whatever the value of ϕ0.

The analog circuitry implementing equation 2.13 in our experiment has
been realized by F. Ropars from the electronic shop of our laboratory, it
is based mainly on component AD734 for division (calculation of contrasts
C̃n) and multiplications (calculation of UDC). We present in figure 2.14
UDC measured as a function of the input deflexion, for various values of
ϕ0. Although the complete curves are a bit different with respect to their
maxima and minima, the central part is independent on the working point:
the slope is 34mV/nm with only a 6% variation when ϕ0 explores the whole
circle. UDC is thus a good signal to feed the retroaction loop in contact
mode, as long as the deflexion is kept close to the reference value.

The main advantage of this electronic tuning of the zero, compared to
an optical tuning, is obviously its simplicity: a simple reset of the sample
and hold output, remotely triggered. Moreover, except for the Wollaston
configuration [43], optical tuning would require additional optical compo-
nents and actuators, adding complexity and potential noise/drift sources to
the setup.

It should be noted however that this strategy does not prevent an impor-
tant issue of AFM imaging in contact with interferometric sensors: fringe
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Figure 2.14 – Retroaction signal in static mode: UDC, implementing equation
2.13 with analog electronics, is measured as function of the input deflexion. The
different curves correspond to seven different values of ϕ0 exploring the whole
0 − 2π interval. The central part of the curves, where d ≪ λ, is independent of
the working point.

hopping. Indeed, UDC is a sinusoidal function of the deflexion d, so any set-
point is only defined modulo λ/4π. If during a scan the deflexion d presents
a large excursion (steep topography for instance), the retroaction loop may
reach another stable point. This fringe hopping mechanism results in artifi-
cial steps in the topography image, and in non-constant force imaging. The
problem is not present with classic 4 quadrants detectors, as their output is
connected to the monotonous error function [103].

An analog circuitry has been recently designed to address this issue in
our setup, using the quadrature phase information to produce an adequate
retroaction signal. The basic idea is to use one of the contrast as the retroac-
tion signal, but to saturate this signal to its maximum or minimum value
when the measurement point leaves the half circle where it should stay. This
is done using the electronic scheme of figure 2.15. The first ingredient is
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Figure 2.15 – Alternative retroaction signal in static mode: US is equal to eC1

when the quadrature decoder/counter output is zero, and keeps the latest value of
eC1 otherwise. Comparison of contrasts eC1, eC2 to 0 provides the logical inputs InA

and InB of the counter. The 8 bit counter value is accessible through the D0 to
D7 logical outputs, and compared to 0 with cascading logical OR gates to create
logical line DS : DS is low if the counter output is 0, high otherwise. DS drives the
switch of the sample and hold circuit producing US from eC1. Reset of the counter
can be performed with a manual switch.

a quadrature decoder/counter, a common circuitry used with optical chop-
pers associated with rotating objects: a first logical signal is used to count
the number of turns, a second one in quadrature to know the direction of
the movement. We use a simple comparison to 0 of the measured contrasts
C̃1 and C̃2 as the two inputs to this circuit, and read on its binary output
the number of half turns on our measurement circle since last reset of the
counter. We process this 8 bit parallel binary output to compare it to 0
with logical OR gates: output logical signal DS is low when the half turns
count is zero, high otherwise. DS drives the switch of an analog sample
and hold circuit. The final output, US is equal to C̃1 when DS is low, but
freezes to its last value when the counter is incremented or decremented.
As a preliminary proof of validity of this strategy, we report in figure 2.16
the measurement of US with our experimental realization, when cycling the
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Figure 2.16 – Alternative retroaction signal in static mode: US is equal to eC1

around the deflexion set-point, and saturates to the maximum (minimum) value

of eC1 for too large (too small) deflexions d. The top graphics displays the logical
values of the inputs InA and InB of the quadrature decoder/counter (L and H
stand for low and high logical levels), the counter value, and DS , its comparison
to 0 .
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deflexion d over 350nm. The observed behavior is very similar to that of
the output of the position sensor of commercial AFMs, and can be used
directly with classic controllers.

In this alternative method to produce the retroaction signal for imaging,
we basically use one of the contrast only as the retroaction signal, the second
being used only to saturate this signal if the deflexion is too far for the set-
point. This implies an optical tuning of the zero, which we were able to avoid
using the first strategy leading to UDC . In order to keep the best of both
worlds, we should have US = UDC around the set point, and a saturation
of US when UDC reaches its first maximum or minimum. This requires a
signal in quadrature with UDC , that is ∝ cos(ϕ − ϕ0). We could construct
this signal using the relation cos(ϕ − ϕ0) = C0

1C1 + C0
2C2. However this

relation is less robust to imperfections of the interferometer than equation
2.13 defining UDC : if C1 6= C2 and ψ 6= 0, the relation is not valid if we
simply replace the ideal Cn by their measured equivalents C̃n. We therefore
didn’t spend energy in this direction, and rely on the optical tuning of the
zero when we use US. Moreover, scanning probe microscopy controllers tend
nowadays to be more and more “all digital”, with an early digitization of the
deflexion signal and a full digital retroaction loop to drive the sample vertical
positioning while scanning. The next logical evolution of our quadrature
phase interferometer will certainly follow this path, to take full advantage
of the high precision and extended deflexion range of our optical system.

2.3.2 Dynamic mode

The approach adapted to dynamic modes is very similar to the one leading
to UDC , except that the reference position of the cantilever is now given by
a low pass filtration of the contrasts, that will remove fast components in
the signal (thus the oscillation of the cantilever). Let us denote by 〈. . .〉 the
filtration process, and write the optical phase as ϕ = 〈ϕ〉 + δϕ, with δϕ its
oscillating part. As long as δϕ ≪ 1, it can easily be shown that eq. 2.11
still holds replacing contrasts and phase by their the low pass filtered values
C0

n = 〈Cn〉 and ϕ0 = 〈ϕ〉. We thus define UAC by

UAC =
〈
C̃1

〉
C̃2 − C̃1

〈
C̃2

〉
(2.15)

Using the expressions of C̃n (eq. 2.12) and a computation similar to the
static case, we immediately get

UAC = C1C2 cos(ψ) δϕ (2.16)
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Figure 2.17 – Retroaction signal in dynamic mode: the rms value of UAC , im-
plementing equation 2.15 with analog electronics, is measured as function of ϕ0

(exploring the whole 0− 2π interval) and of the amplitude of oscillation (δd is the
peak-peak value of the deflexion). In (a), the polar plot highlights the independence
of this signal on ϕ0: for a given value of the amplitude of oscillation δd < 30 nm,
the rms value of UAC is constant within a standard deviation of maximum 3%.
An instability is visible at higher forcing. In (b), we demonstrate for 8 different
values of ϕ0 (every π/4) that the rms value of UAC is linear in δd, at least in the
initial part of the curve. The saturation present for δd > 30 nm is attributed to a
slew rate limitation in the analog computation of the contrasts eC1 and eC2. The
measurement has been performed on a cantilever driven at its resonance frequency
around 250 kHz.



42 Exploring nano-mechanics through thermal fluctuations

Again, UAC can directly be used in replacement of standard 4 quadrants
deflexion signal in dynamic mode operation. A lock-in detection at the driv-
ing frequency is used to extract the root mean square (rms) value of UAC ,
providing a low frequency signal that is used in the same retroaction loop
that is used in contact mode. Sensitivity will always be optimal, whatever
the value of ϕ0, and is insensitive to any drift of the working point: the low
pass filtering will simply follow slow variations of ϕ0.

In appendix A.1, a more general computation shows that it is also pos-
sible to deal with oscillation amplitudes which are not small compared to
the wavelength with a few precautions. Our setup is thus perfectly adapted
to imaging in dynamic mode, with no specific restrictions due to the inter-
ferometric approach.

The analog circuitry implementing equation 2.15 in our experiment is
equivalent to the one designed for DC operation, except that the reference
position of the cantilever is obtained by analog low pass filtering (first order
filter, cutoff frequency at 1Hz) instead of the numeric sample and hold.
To illustrate the performance of this device, we drive a cantilever at its
resonance frequency (around 250kHz) and measure the rms value of UAC as
a function of the amplitude of oscillation of the cantilever δd, for different
working points on the measurement circle. The results are presented in
figure 2.17: UAC is indeed proportional to δd, the slope being constant with
less than a 3% standard deviation when ϕ0 describes the whole circle.

For oscillations δd larger than 30 nm peak to peak, a saturation of UAC

is observed. We identified this problem to arise from a slew rate limita-
tion of the component AD734 used in the division to compute the contrast
C̃n. We first observed that the problem is not present at lower frequen-
cies. Moreover, if we slightly degrade the performance of the interferometer
by lowering the diameters C1 and C1 of the experimental ellipse, we shift
the saturation of UAC to larger driving. As a last clue to link saturation to
slew rate limitation, figure 2.17(b) demonstrates that the saturation is more
pronounced along the horizontal and vertical direction of ϕ0 than along the
diagonals. Indeed, along the diagonals each contrast is

√
2 smaller than the

maximum contrasts obtained along the horizontal and vertical directions,
delaying apparition of slew rate limitations.

2.3.3 Retroaction loop and sample scanning

In our experimental realization, the retroaction signals UDC and UAC are
used as direct replacement for the common 4 quadrants photodiode output
in a conventional scanning probe microscope (SPM) arrangement. We use
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Figure 2.18 – (15µm×15µm) topography image of a calibration sample Budget
Sensors HS-20MG acquired in contact mode. A “smart” flatten filter has been
applied to remove the mean slope of each line of the image. The color scale, along
with the normalized histogram (PDF) of the topography is shown on the right, and
in the bottom graph we plot a profile corresponding to the dashed line in the image.
The geometric pattern of the sample (square holes, 20 nm deep, on a 10µm pitch
grid) demonstrates the perfect calibration of the piezo translation platform. The
rms roughness on each sample plane is around 2 nm.
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Figure 2.19 – (9µm × 9µm) topography image of a CD-R (recordable compact
disk) sample acquired in contact mode. The mean plane on the sample has been
subtracted to the raw image. The color scale, along with the normalized histogram
(PDF) of the topography is shown on the right, and in the bottom graph we plot
a profile corresponding the dashed line in the image. The artificial step, about
315 nm high, corresponds to an interference fringe hop during the scan.
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a SPM controller SPMagic from Elbatech, which drives a piezo translation
stage (P-527.3 from PI – Physik Instrumente) supporting the sample. This
positioning platform can be operated in closed loop, allowing 1 nm accurate
horizontal displacement within a 200µm range, and 0.1 nm precision on the
20µm vertical range.

When designing the AFM head, we also worked carefully to allow a wide
range of operating conditions: the environment can be controlled (vacuum
down to 10−5 mbar, controlled gas atmosphere), the temperature of the sam-
ple can be regulated with 10−2 K stability in 200K to 450K range, allowing
fast temperature changes (quenches for polymer studies for instance). Mea-
surements in liquid environment are also possible in an open cell with a
glass window covering a droplet of solvent.

2.3.4 First images

Imaging has been tested only very recently in our instrument, and we present
here images of a calibration sample that has been used to validate our ap-
proach. In general, imaging quality in AFM is not limited by the precision
of the deflexion sensor, but is dependent on many parameters, including the
performance of the retroaction loop, the precision of the scanner, the ade-
quacy of the probe, the experience of the operator, etc. Since many elements
of our setup are made of standard commercial tools, we do not expect to
reach better than average capability for standard imaging modes. The only
potential benefit of the interferometer in this case is its calibrated output,
that could be used afterwards to correct for tracking imperfections of the
retroaction loop: in contact mode, the calibrated error image (difference
between the actual deflexion and set-point) can be combined with the to-
pography image (vertical extension of the piezoelectric scanner). We would
simply need to acquire the 2 contrasts as auxiliary signals while imaging,
and process then afterwards to compute the calibrated deflexion. However,
this possibility has not been implemented yet, and we present here just
classic topography images in contact and dynamic mode.

Contact mode

We display in figure 2.18 a 15µm × 15µm topography image of a calibra-
tion sample Budget Sensors HS-20MG (data sheet in appendix D.4), in a
region presenting square holes in a 20 nm thick SiO2 layer covering a silicon
substrate. The squares are laid on a 10µm pitch grid. This (256 pixel)2

image was acquired with a NanoWorld Pointprobe CONTPt tip, in contact
mode, using a 0.5Hz scan speed. A “smart” flatten filter has been applied
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to remove the mean slope of the sample: a linear fit on the top plane of
the sample is subtracted from each line along the fast axis. The physical
parameters we can read on this scan are in perfect agreement with the man-
ufacturer specifications. Using the histogram of height, we measure a rms
roughness of the silicon and SiO2 surfaces of the sample around 2 nm, 104

smaller than the vertical range of our piezo translation platform.
As an illustration of the fringe hopping issue we mentioned in section

2.3.1, we present in figure 2.19 an image of a (9µm× 9µm) scan of a CD-R
(recordable compact disk) sample, where we clearly see an artificial step in
the topography. The amplitude of this step, around 315 nm, correspond to a
destabilization of the feedback loop during the scan and a jump to another
stable mean deflexion, λ/2 smaller. The input of the retroaction loop is
equivalent in the two parts of the image and matches the set-point, since
UDC is a periodic function of the deflexion. Although a flatten filter would
partially solve the problem by presenting a reasonable topography, the con-
stant force imaging condition would not be met and could be problematic
for soft samples. A careful tuning of the retroaction loop together with a
slow scan speed may be enough to avoid this issue, but we are currently
probing a new approach (contrast saturation) to get rid of this problem, as
described in paragraph 2.3.1.

Dynamic mode

We display in figure 2.20 a 10µm × 10µm topography image of a calibra-
tion sample Budget Sensors HS-20MG, in a region presenting SiO2 circular
pillars, 20nm high over a flat silicon substrate, on a 5µm pitch grid. This
(128pixel)2 image was acquired with a Veeco TESP tip, in tapping mode,
using a 0.3Hz scan speed, and a “smart” flatten filter has been applied to
remove the mean plane of the sample. The physical parameters we can read
on this scan are in perfect agreement with the manufacturer specifications.
The rms roughness of the silicon and SiO2 surfaces of the sample is mea-
sured from the histogram around 2 nm, a performance equivalent to that of
contact mode imaging.

2.4 Conclusions and perspectives

In this chapter, we have presented our experimental device: a home made
atomic force microscope whose detection is based on a quadrature phase
differential interferometer. Several strategies to sense the deflexion have
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Figure 2.20 – (10µm×10µm) topography image of a calibration sample Budget
Sensors HS-20MG acquired in tapping mode. A “smart” flatten filter has been
applied to remove the mean slope of each line of the image. The color scale, along
with the normalized histogram (PDF) of the topography is shown on the right, and
in the bottom graph we plot a profile corresponding to the dashed line in the image.
The geometric pattern of the sample (circular pillars, 20 nm high, on a 5µm pitch
grid) is perfectly reproduced.
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been described: the bi-calcite setup features a small environmental suscep-
tibility, and will be used for low frequency thermal noise studies, while the
Wollaston configuration allows calibrated measurements on a wide spectral
range. The quadrature phase design enables a very high resolution (down
to 10−14 m/

√
Hz), equaling or out-performing the best results reported in

the literature for a much larger deflexion range (up to a few µm). The dual
output of the interferometer implies a specific handling to interface common
scanning probe microscope controllers. We developed analog circuitries to
tackle static (contact mode) and dynamic (tapping mode) operations, and
we demonstrated their performance by imaging a simple calibration sample.

Though implementing imaging functionality has been an important mile-
stone to demonstrate the completeness of our device, our innovative setup
will be mostly useful for its high force resolution. We will study in the next
chapters some situations where the intrinsic thermal noise of the cantilever
is our main tool to explore the mechanical properties of micrometer and
nanometer sized objects.

As with any instrumental work, many open possibilities remain to keep
on improving our setup. As already mentioned, we envision for example a
full digital retroaction loop to drive the sample vertical positioning while
scanning: it would allow us to take full advantage of the high precision and
extended deflexion range of our optical system. We also plan in a short term
to add an additional sensor to our AFM: an interferometer to precisely mea-
sure the tip-sample distance. Indeed, as in most AFM setups, we currently
rely on the piezo translating the sample to infer this separation: a first ap-
proach till contact is performed to define the zero of the tip-sample distance,
then the piezo is retracted to the desired separation. This technique suf-
fers however from slow environmental drifts (temperature, pressure) which
degrades its long time accuracy, a critical point in some of the studies we
are planning. The current maximum drift is measured around 0.2 nm/s.
We thus need to measure independently the probe-surface distance, and if
needed use this information as a retroaction signal to drive the sample po-
sition and keep the distance at the desired value. For this, we will build a
second differential interferometer with performances similar to the one used
for deflexion measurement. It will provide our experimental setup another
unique feature with respect to commercial devices, and could open many
research tracks beyond our current project.
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Thermal noise and

dissipation of cantilevers
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Abstract

In this chapter, we first present a simple theoretical framework to describe the
mechanical response function and the thermal noise of a micro-cantilever in a
viscous fluid. We use Sader’s approach to describe the effect of the surrounding
fluid (added mass and viscous drag), and the fluctuation dissipation theorem for
each flexural mode of the system to derive a general expression for the power
spectrum density of fluctuations. Equivalently, we demonstrate using Kramers-
Kronig relation that we can reconstruct the mechanical response function of the
cantilever from a thermal noise spectrum.
We then measure the mechanical thermal noise of AFM cantilevers. Using an
interferometric setup, we obtain a resolution down to 10−14 m/

√
Hz on a wide

spectral range (3 Hz to 105 Hz). The low frequency behavior depends dramat-
ically on the presence of a reflective coating: almost flat spectra for uncoated
cantilevers versus 1/f like trend for coated ones. We show that this effect arise
from a viscoelastic response associated with the coating. We also demonstrate
the validity of Sader’s model for viscous damping on the full frequency range.
Finally, we present measurements of the spatial repartition of fluctuations. These
thermal noise maps are compared with Euler-Bernoulli’s description of the flex-
ural modes, and Saint-Venant’s of the torsional modes. The cantilever stiffness
can be precisely measured from this approach, as well as the elastic coefficients
E (Young’s modulus) and S (shear modulus) of its constituting material. The
correct description of the dispersion relation for torsional modes leads to the
consideration of a refined model to account for observations at high mode num-
bers.

49
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3.1 Introduction

Cantilevers of micrometer size are nowadays present in many applications,
ranging from chemical and biological sensors [84] to scanning probe mi-
croscopy [96]. They are also ubiquitous as fundamental bricks of microelec-
tromechanical systems (MEMS). Through Atomic force microscopy (AFM),
they are currently used in a great variety of studies involving small forces
measurement [27], including unfolding of proteins [29, 52], probing the struc-
ture of biological membranes [53] and monitoring the mechanical response of
living cells [113, 125] as well as Micro-Electro-Mechanical Systems (MEMS)
and other nanotechnological devices [17, 84]. Functionality of MEMS or
cantilever based sensors relies on mechanical movements and deformation
of the microscopic mechanical beam. Their thermal fluctuations represent
one of the most important noise sources and finally determines the ultimate
sensitivity of the sensor [26, 45, 84, 87, 88, 124, 146] or operating condi-
tion of MEMS. This mechanical-thermal noise can also be important in the
study of macroscopic systems, and has been shown for instance to be a
relevant term in the sensitivity limitations of interferometric detectors for
gravitational waves [58, 76, 99, 115].

As shown by the fluctuation dissipation theorem (FTD) [28], these ther-
mally induced fluctuations are linked to the mechanical response function
of the system, and more specifically to the losses of energy occurring during
deformations. Many models have been proposed to account for the nu-
merous physical sources of dissipation: viscous damping in the surrounding
fluid [119], clamping losses [146], thermoelastic dissipation [147–149], etc.
The approach by Sader and co-workers [61, 119, 136] for instance provides
a thorough study of viscous dissipation, predicting a frequency dependent
damping coefficient. Focusing on structural damping, Saulson [124] pro-
posed a model of mechanical-thermal noise for a simple harmonic oscillator
with viscoelastic dissipation. In particular he showed that this mechanism
leads to a power spectrum density (PSD) of fluctuations presenting a 1/f
trend at low frequency. In general, a key difference between all these mod-
els is the frequency dependence of the noise or dissipation. It is however
a great challenge to measure thermal noise or small damping on a wide
range of frequency, and very few experiments [58, 76, 99, 145] have succeed
so far in directly measuring fluctuations out of resonances, notably at low
frequencies.

The thermal noise of micro-cantilevers, though presenting a limit to their
operation, can also be used as a tool to explore their mechanical properties.
A common procedure to calibrate the stiffness of AFM cantilevers, based
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on thermal fluctuations [69], is for example proposed in most commercial
devices: the equipartition theorem states that the energy stored in the
spring is in average equal to the thermal energy, thus

1

2
k
〈
d2
〉

=
1

2
kBT (3.1)

where k is the spring constant to calibrate,
〈
d2
〉

the mean quadratic deflex-
ion, kB the Boltzmann constant and T the temperature. This calibration
step is required if one wants to exploit the great accuracy in measuring the
cantilever deflexion offered by AFM and convert this measurement in units
of force. In principle, one could rely on the geometrical dimension of the
probe and tabulated mechanical properties of its material to compute k,
but in practice this is not possible. Indeed, the cantilever thickness lays in
the sub micrometer to a few micrometers range, leading to a high incerti-
tude on its actual value. Moreover, description of the system from its bulk
mechanical properties only may start to loose some validity at this scale,
where surface effects cannot be neglected anymore [34, 38, 88, 122]. Finally,
commonly used coatings of cantilevers increase even more the complexity
of their theoretical description. Thermal fluctuations supply therefore a
useful insight to characterize experimentally those systems, provided the
acquisition device is precise enough to perform clean noise measurements.

In this chapter, we perform direct measurements of the mechanical-
thermal noise of micro-cantilevers with our high resolution interferometer.
A main advantage of this setup is that it offers, thanks to its sensitivity,
the possibility to resolve not only the resonances of the PSD as in the stan-
dard AFM optical lever technique, but the whole spectrum up to the second
mode. Moreover, its calibrated output allows quantitative measurements.
We extract from the thermal noise analysis valuable information about the
dissipation processes, both from the surrounding fluid and from structural
damping. We also demonstrate how we can perform a precise character-
ization of the mechanical properties of the cantilever and its constituting
material.

The chapter is organized as follows: in a first section, we present a gen-
eral theoretical framework to study the thermal noise of a cantilever, and
some useful tools. The microscopic beam is modeled with an Euler-Bernoulli
description, and Sader’s approach is introduced for viscous dissipation. Us-
ing FDT and Kramers-Kronig relations, we demonstrate how to compare
theoretical models and experimental data in terms of both noise spectra and
mechanical response. In a second part, we focus on dissipative processes.
We first validate Sader’s model for viscous damping on a wide spectral
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range. We then present a thorough examination of viscoelasticity in gold
coated cantilevers, providing a quantitative phenomenological description of
this effect. In a last part, we tackle the characterization of the mechanical
properties of cantilevers from a mapping of the thermal noise on its surface.
This analysis validate the description of the system in terms of its normal
modes of oscillation, and lead to a quantitative evaluation of its stiffness
and elastic moduli.

3.2 Theoretical description of cantilevers’ fluc-

tuations and dissipation

3.2.1 From mechanical response to thermal noise: FDT

and Sader’s model

Simple Harmonic Oscillator

In a first approximation, the AFM cantilever can be modeled by a damped
spring-mass system. The displacement d of the punctual mass in the model
will correspond to the deflexion of the cantilever, the spring constant k to
the response of the sensor to the external force F acting on its tip, the mass
m to the inertia of the mechanical beam, and the damping coefficient γ to
the dissipation processes due to the surrounding atmosphere. This Simple
Harmonic Oscillator (SHO) responds to the equation of motion:

md̈ = −kd− γḋ+ F (3.2)

where dotted variables are derivated with respect to time t. In Fourier’s
space this equation is used to define the mechanical response function GSHO

as:

GSHO(ω) =
F (ω)

d(ω)
= k

[
1 − ω2

ω2
0

+ i
ω

Qω0

]
(3.3)

where we introduced the resonant pulsation ω0 =
√
k/m, the quality factor

Q = mω0/γ, and ω = 2πf is the pulsation corresponding to frequency f .
The force F and the displacement d are coupled by the Hamiltonian H

of the system. Indeed, the infinitesimal work of F when the displacement
changes by δd is δW = Fδd, thus for a reversible transformation, dH =
δW = Fδd, hence

∂H
∂d

= F (3.4)
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This last equation shows that d and F are coupled variables by the hamilto-
nian of the system. We can thus apply the Fluctuation Dissipation Theorem
(FDT) [28, 39]: the Power Spectrum Density1 (PSD) SSHO

d of thermal fluc-
tuations of d is

SSHO
d (f) = −4kBT

ω
Im

[
1

GSHO(ω)

]
=

4kBT

kω0

1/Q

(1 − u2)
2

+ (u/Q)2
(3.5)

where kB is the Boltzmann constant, T the temperature of the system,
u = ω/ω0 is the reduced frequency, and Im(.) is the imaginary part of its
argument.

The use the fluctuation dissipation theorem thus allows us to predict the
expected thermal noise from the mechanical model of the oscillator. We plot
in figure 3.2 an example of response function and associated spectrum for a
SHO model. The real part of the response is a parabola centered on f = 0,
the value at the origin being the spring constant k, and the parabolic shape
the signature of the inertial cutoff. The imaginary part is simply linear in
frequency: dissipation is proportional to velocity, and thus frequency. The
PSD computed from the FDT presents a characteristic Lorentzian shape,
peaked at the resonance frequency f0 = ω0/2π. The quality factor Q can be
inferred from to the width of the resonance at half height, while the stiffness
k can be computed from the integral of the curve: from the equi-repartition
theorem we have

∫
∞

0
SSHO

d (f)df =
〈
d2
〉

= kBT/k.

Beyond SHO: the Sader model

This SHO model gathers the main points of the physics of the AFM can-
tilever, as long as we are only interested in its behavior around the first
resonance. However, we need a more realistic description of the system to
depict its various modes of oscillation, or to predict the mechanical behavior
from the physical parameters (geometry, material) of the cantilever. For this
spatially extended system, the application of the FDT is not trivial: the vari-
able coupled to our observable (the deflexion of the cantilever free extremity)
is not obvious, nor is the description of the coupling with the fluid. The
first step is to describe the cantilever as a clamped-free beam in an Euler-
Bernoulli framework [82]. This leads to characterize the system behavior
in terms of normal modes, the amplitude of each mode being governed by

1In this document we will use one sided power spectrum density functions of frequency
f , such that

˙

d2(x)
¸

=
R

∞

0
Sd(f)df , for easier comparison to experiments, whereas re-

sponse functions G will be given as a function of the pulsation ω.
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an harmonic oscillator equation [26]. The next ingredient to add is dissipa-
tion. In many cases, AFM are operated in a fluid environment (air or water
for instance) which is the main source of dissipation: the viscosity of the
medium will broaden the structural resonances. An added mass effect due
to the fluid moving along with the cantilever can also shift their frequencies,
especially in liquid environments. A few theoretical models have been pro-
posed to account for these effects [4, 46, 50, 61, 91, 109, 110, 119, 120, 136],
and validated experimentally [4, 25, 32, 50, 55, 91, 120] on the basis of the
dependence of the quality factor on the surrounding fluid and the mode
number (and thus the frequency).

Among the predictions of these approaches, we are interested here in
the power spectrum of thermal noise induced fluctuations. We will focus
only on the most complete analytical approach, by Sader and coworkers [61,
119, 136]. In reference [6], we derive a generic formula for the thermal noise
using the fluctuation dissipation theorem for each mode, extending the work
of Paul and Cross [109] in a simpler framework than Dorignac et al. [46].
This careful analysis is indeed incorrect in the original work of Sader and
coworkers, as noted by Paul and Cross [109], Dorignac et al. [46] and Sader et
al. themselves (see reference 44 of [61]). We refer the reader to reference [6]
for the complete demonstration, and limit this paragraph to the main points
of interest.

The rectangular cantilever is described in an Euler Bernoulli framework:
its length l is supposed to be much larger than its width w, which itself is
much larger than its thickness h. We will limit ourself in this study to the
flexural modes of the cantilever: the displacement field is supposed to be
only perpendicular to its main plane (along axis z of Fig.3.1) and uniform
across its width. These deformations can thus be described by the deflexion
d(x, t), x being the spatial coordinate along the beam, and t the time. The
equation of motion is:

k

3
l3
∂4d(x, t)

∂x4
+
m

l

∂2d(x, t)

∂t2
= fext(x, t) + fhydro(x, t) (3.6)

or equivalently in Fourier’s space:

k

3
l3

d4d(x|ω)

dx4
− m

l
ω2d(x|ω) = fext(x|ω) + fhydro(x|ω) (3.7)

where k and m are the cantilever static stiffness and mass, and fext and
fhydro are the external and hydrodynamic forces per unit length. If those
forces are zero, the solutions to this equation are the normal modes φn(x)
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Figure 3.1 – Schematics of the cantilever. In the Euler Bernoulli approach, the
cantilever bending is modeled by a vertical deflexion d(x, t) of its neutral axis,
where x is the spatial coordinate along the beam length and t the time. The can-
tilever thickness h is supposed to be much smaller than its witdh w, itself much
smaller than the length l.

matching the boundary conditions of a clamped-free beam:

φn(x) = (cosαn
x

l
− coshαn

x

l
) +

cosαn + coshαn

sinαn + sinhαn
(sinαn

x

l
− sinhαn

x

l
)

(3.8)
where the normalized spatial wave numbers α1 = 1.875, α2 = 4.694, . . . ,
αn = (n− 1/2)π are the roots of 1+cosαn coshαn = 0. The normal modes
form an orthonormal basis of functions of x on [0− 1]. Figure 2.11 gives an
illustration of the shape of these structural resonances. The pulsations ωn

of these normal modes are ruled by the dispersion equations:

mω2
n =

α4
n

3
k = kn (3.9)

In Sader’s original model [119], the fluid motion is supposed to be bi-
dimensional (in (y, z) planes): a segment dx of height h and width w at a
position x along the cantilever is treated as if it had an infinite length along
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x. fhydro(x|ω) is thus vertical, and depends on d(x|ω) only:

fhydro(x|ω) =
m

l
ω2τ(ω)d(x|ω) =

m

l
ω2 [τr(ω) + iτi(ω)] d(x|ω) (3.10)

where τ = τr + iτi is the hydrodynamic function of a rectangular cantilever
(to a geometric multiplicative factor). An explicit formula for this function
is given in Sader’s original work [119], and can be used to compute τ(ω)
for any specific cantilever dimension. To solve the differential equation
3.7 linking the deflexion d to the external force fext, we project those two
quantities on the basis of normal modes φn:

d(x|ω) =
1√
l

∞∑

n=1

βn(ω)φn(x) (3.11)

fext(x|ω) =
1√
l

∞∑

n=1

ηn(ω)φn(x) (3.12)

This decomposition is also valid in time space, where the amplitude βn(t)
and forcing ηn(t) of each mode are simply the inverse Fourier transform of
βn(ω) and ηn(ω). Those two variables are coupled by the Hamiltonian H of
the system. Indeed, let us compute the infinitesimal work δW of fext when
the deflexion changes by δd:

δW =

∫ l

0

dxfext(x, t)δd(x, t) (3.13)

=

∞∑

n=1

ηn(t)δβn(t) (3.14)

For a reversible transformation dH = δW , hence

∂H
∂βn

= ηn (3.15)

This last equation demontrates that the amplitude βn and the forcing
ηn of each mode are coupled variables, we can thus apply the FDT. Let us
first compute the mechanical reponse function Gn of mode n by projecting
equation 3.7 on the basis of normal modes φn:

(
k

3
α4

n −mω2 [1 + τ(ω)]

)
βn(ω) = ηn(ω) (3.16)
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therefore

Gn(ω) =
ηn(ω)

βn(ω)
(3.17)

=
k

3
α4

n −mω2 [1 + τr(ω)] − imω2τi(ω) (3.18)

= kn −meff(ω)ω2 − iγeff(ω)ω (3.19)

Each normal mode is thus equivalent to an oscillator of stiffness kn, mass
meff(ω) = m [1 + τr(ω)] (cantilever mass plus additive inertial term account-
ing for the fluid moving along with it), and damping coefficient γeff(ω) =
mωτi(ω). Using the FDT, power spectrum density Sβn of its amplitude
fluctuations reads:

Sβn(f) =
4kBT

ω
Im(

1

Gn(ω)
) (3.20)

= 4kBT
γeff(ω)

(kn −meff(ω)ω2)2 + (γeff(ω)ω)2
(3.21)

For reasonably shaped cantilevers, meff(ω) and γeff(ω) are slow varying
function of the frequency, each mode is thus around the resonance almost
equivalent to an harmonic oscillator of stiffness kn, massmeff(ωn) and damp-
ing coefficient γeff(ωn). However, the response and thermal noise spectrum
show some deviations to the SHO model at low and high frequency, as
illustrated in figure 3.2.

In Sader’s model, dissipation is homogeneous along the cantilever, so the
thermal noises acting on different modes are uncorrelated. The fluctuation
of the deflexion measured at coordinate x is thus the sum of the contribution
of each mode:

Sd(x, f) =
1

l

∞∑

n=1

Sβn(f)|φn(x)|2 (3.22)

We eventually have a complete model of the mechanical response of the
cantilever in Fourier’s space, and a description of its thermal fluctuations
from the FDT applied to each normal mode. In section 3.3, we present some
experimental results validating this approach.

3.2.2 From fluctuations to mechanical response: FDT

and Kramers Kronig relations

Comparing the thermal noise spectrum of a measurement and a mechanical
model is interesting as it can validate the pertinency of the model, but it
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Figure 3.2 – Mechanical response function (G, top) and thermal noise spectrum
(Sd, bottom) versus frequency f for two different models of a cantilever. Sader’s
model for the first normal mode of a 250µm long, 35µm wide and 4µm thick
silicon cantilever in water is used as an example. A fit of this curve with the
spectrum of a simple harmonic oscillator (SHO) is superposed. f is normalized to
the vacuum resonance frequency f1: the additional inertia due to the fluid moving
around the cantilever shifts the resonance to a lower frequency. The deviation
of Re(GSader) to the parabolic shape of the SHO model is a signature of the fre-
quency dependence of this added mass effect. The dissipation of Sader’s model
also presents a specific frequency dependence that departs from the linear behavior
of Im(GSHO). It results in a thermal noise slowly decreasing when f goes to 0,
instead of the plateau of the SHO model.
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would be even more interesting to reconstruct the response of the cantilever
directly from the experimental data. We explicit in this section how our high
precision enables this process. The first step is to realize that using FDT,
the power spectra we measure are in fact a direct access to the imaginary
part of G−1(ω) = d(ω)/F (ω):

Im[G−1(ω)] = −ωSd(f)

4kBT
(3.23)

The second step comes from G−1 being the linear response function of
deflexion d to an external force F in Fourier’s space. It thus obeys the
Kramers-Kronig relations [39]:

Re[G−1(ω)] =
1

π
PP

∫
∞

−∞

Im[G−1(Ω)]

Ω − ω
dΩ (3.24)

Im[G−1(ω)] = − 1

π
PP

∫
∞

−∞

Re[G−1(Ω)]

Ω − ω
dΩ (3.25)

where PP stands for the principal part of the integral. Using the first of
these two equations, the knowledge of Im[G−1(ω)] can lead to Re[G−1(ω)],
and thus to the full response function G. This approach is possible with our
experimental data as we measure the PSD of fluctuations on a very wide
spectral range, not limited to the resonance. Computing the integral rela-
tion 3.24 should therefore be possible. We detail in the following paragraphs
the various tricks we use to ensure the good precision of our reconstruction
algorithm.

Computing the integral

Relation 3.24 is hazardous to compute directly as the term inside the integral
present a divergence in Ω = ω (hence the principal part). However, inspired
by the work of Schnurr [127], we show that this divergence can be avoided
by a computation in the temporal space, using properties of the Hilbert
transform. The Hilbert Transform (HT) of a function g(ω) is defined by:

HT [g(ω)] =
1

π
PP

∫
∞

−∞

g(Ω)

Ω − ω
dΩ (3.26)

We are in particular interested by a specific property of the Hilbert trans-
form: for a function of complex value g(ω⋆) that is analytic (in at least
half the complex plane), the inverse Fourier transform FT−1 of the Hilbert
Transform obeys:

FT−1
[
HT [g(ω⋆)]

]
(t) =

(
− i sign(t)

)
· FT−1 [g(ω⋆)] (t) (3.27)
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where sign(t) function is −1 for t < 0, 1 for t > 0 and 0 for t = 0.

The first Kramers-Kronig relation (3.24) can be expressed using the
Hilbert transform:

Re
[
G−1(ω)

]
= HT

[
Im
[
G−1(ω)

]]
(3.28)

The idea is then to use twice the Fourier transform to reconstruct the real
part G−1(ω) :

FT−1
[
Re
[
G−1(ω)

] ]
(t) =

(
− i sign(t)

)
· FT−1

[
Im
[
G−1(ω)

] ]
(t) (3.29)

Parity properties of the response function implies FT−1
[
Im
[
G−1(ω)

] ]
is a

purely imaginary function, thus we can rewrite equation 3.29 in:

FT−1
[
Re
[
G−1(ω)

] ]
(t) = sign(t) · Im

[
FT−1

[
Im
[
G−1(ω)

] ]
(t)

]
(3.30)

= sign(t) ·G−1
i (t) (3.31)

where we introduce the notation G−1
i (t) for easier reading. All is left to do

then is to use a direct Fourier transform to compute the real part of G−1:

Re
[
G−1(ω)

]
= FT

[
sign(t) ·G−1

i (t)
]

(3.32)

The 3 steps algorithm corresponding to equations 3.23, 3.30 and 3.32 is
given in Appendix B.2, allowing us to reconstruct from the spectrum Sd(f)
the full mechanical response function G(ω) = 1/G−1(ω).

Handling finite spectral range

One of the common problem with Kramers-Kronig relations is the finite
spectral range we have access to: since the reconstruction process of Re(G−1)
is based on an integral relation, missing data at low and high frequency can
limit the precision of the reconstruction. In our case, the problem arises
from the high frequency part of the spectrum: the inertial cutoff for large f
lowers the thermal noise below the background noise of our interferometer,
where Sd is thus unknown.

To illustrate our demonstration, we will use a synthetic signal from a
model experiment. We use Sader’s model to compute the response function
and the thermal noise (both limited to the first mode) of a silicon can-
tilever of length l = 450µm, width w = 45µm and thickness h = 1.8µm,
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thermalized at T = 295K in air. We will then use this synthetic spectrum
SSader

d (f) and try to recover the initial response function GSader(ω) with the
Kramers-Kronig algorithm. The frequency range considered is limited to
50kHz, since at higher f the mechanical noise is below 1.4 × 10−14 m/

√
Hz,

taken as the background noise of the measurement. We plot in figure 3.3
this synthetic spectrum SSader

d and the dissipative part Im(GSader) of the
response function to be recovered.

If we apply the Kramers-Kronig algorithm directly to the PSD limited
to 50 kHz, we have a very bad estimation of the actual dissipation, as il-
lustrated in figure 3.3: the shape of the curve is completely different from
the initial response function. The usual strategy adopted in this case is
to use an ad hoc model to supplement the experimental data at high fre-
quency, and compute the response from this hybrid data. We choose here to
complement the data with a SHO model, tuned to have a similar spectrum
below 50 kHz and a reasonable extrapolation above. If we apply the re-
construction algorithm to this padded spectrum, we have better and better
accuracy when the padding reaches larger and larger frequency range. The
reconstructed response matches the original one within 3% if we expand
the frequency range by a factor 8 (and only 10% if we expand it by a factor
4). This method is however inelegant since it requires a huge amount of
artificial data to reach a reasonable accuracy.

Differential Kramers-Kronig approach

We propose here a nicer method without the need of expanding the fre-
quency range of the experimentally available spectrum. The idea is very
simple and based on the linearity of the Kramers-Kronig relations: if we
denote by KK the operations corresponding to the previously described al-
gorithm, that is

1

G(ω)
= KK(Sd(f)) (3.33)

then we may write

1

GSader(ω)
− 1

GSHO(ω)
= KK

(
SSader

d (f) − SSHO
d (f)

)
(3.34)

The nice outcome of this trick is that the input to consider for the Kramers-
Kronig algorithm is now zero outside the frequency range experimentally
available. Indeed, we extrapolated the original data with the SHO model
outside this range, where the 2 spectra are strictly the same. The contribu-
tion of this high frequency data to the integral relation is thus zero, whether
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Figure 3.3 – We create a synthetic thermal noise spectrum from the Sader model,
and limit it to a 50 kHz range. We use an ad hoc SHO model to compensate for
the missing high frequency data. The reconstructed response from the Kramers-
Kronig algorithm is not accurate unless a long extrapolation of the spectrum to
large frequencies is made, or a smart approach using the difference between the
experimental data and a reference spectrum is conducted. The error on the dissi-
pative part of the rescontructed mechanical response function is smaller than 3%
in this last case.
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or not it is considered. GSHO being known, equation 3.34 can easily be used
to estimate the response function GSader from the power spectrum SSader

d .
We plot in figure 3.3 the output of this strategy for the same synthetic
spectrum, and demonstrate the high precision of this approach without ex-
panding the frequency range at all. The accuracy is slightly better with this
strategy than with an extrapolation of the spectrum to 400kHz (8 times the
accessible range) !

3.2.3 Thermal noise analysis toolbox: summary

In order to study the mechanical behavior of a cantilever from its ther-
mal noise spectrum, we introduced in this section a few useful tools. The
keystone of the analysis is the Fluctuation-Dissipation Theorem (FDT), re-
lating the thermal noise spectrum to the dissipative part of the response.
We may adopt two different approaches to deal with experimental spectra.
The first one is to propose a model for the cantilever, and to check that
the inferred PSD matches the measurement data. A simple oscillator model
can be sufficient to describe one structural resonance, and a full model is
provided by Sader’s approach to deal with a large frequency range. The sec-
ond way to handle experimental PSD is to use Kramers-Kronig relations, as
soon as we access the spectrum on a wide spectral range. We have shown on
a synthetic spectrum that with a few numerical tricks, we were able to re-
construct the full response function with a very good accuracy. We will now
apply these approaches to measurements performed with our high precision
interferometer on various AFM cantilevers.

3.3 Dissipation processes at low frequency

In this section, we will focus mainly on the mechanical properties of contact
cantilevers around their first resonance and at lower frequencies. We will
first deal with raw silicon cantilevers in air, presenting a nice concordance
with Sader’s model for viscous dissipation. Some of the data presented can
also be found in reference [6]. In a second part, based on reference [104],
we will study golden coated cantilevers, and show that another dissipation
process has to be accounted for in such a case.
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Figure 3.4 – Power spectrum density (PSD) of deflexion of a Budget Sensors BS-
Cont cantilever. The thermal noise at the free end of the cantilever is measured
in a 1 kHz to 100 kHz range. We clearly see the two first flexural modes of the
mechanical beam, well above the background noise of the apparatus acquired on a
rigid mirror. The difference between the measurement and the background noise
spectra gives a full view of the behavior of the thermal fluctuations of the cantilever
in this frequency window.

3.3.1 Viscous dissipation

Power spectrum density of deflexion

Using our differential interferometer in the Wollaston configuration (to have
a perfectly calibrated measurement on the whole frequency range), we mea-
sure the PSD of thermal noise driven deflexion of the free end of a com-
mercial AFM cantilever, Budget Sensors BS-Cont (data sheet is appendix
D.2). We plot in figure 3.4 the measured PSD Smeas

d , and the background
noise of the interferometer Snoise. We clearly see in this spectrum the two
first modes of oscillation of the mechanical beam, around f1 = 14kHz and
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f2 = 87kHz, but we also have a lot of information out of these resonances as
Smeas

d is always strictly above Snoise. Since the actual mechanical thermal
noise Sd is uncorrelated from the apparatus noise, we can simply subtract
the latter to the measurement to estimate Sd:

Sd = Smeas
d − Snoise (3.35)

Although the resulting spectrum is a bit noisy between the 2 first reso-
nances (around 60 kHz), this trick allows us to fully resolve the mechanical
thermal noise in the 1 kHz to 100kHz range2, with a resolution better than
the background noise, down to 10−28 m2/Hz. The same measurement in a
commercial AFM would yield much less information, as it would be limited
to the resonances, and we would not have any information between them or
at low frequency.

The nominal dimensions of the cantilever are: length l = 450µm±10µm,
width w = 50µm ± 5µm, thickness h = 2µm ± 1µm. It is made of
monolithic silicon and is uncoated. In order to confront the experimen-
tal spectrum with Sader’s model, we use tabulated values for the viscosity
and the density of air, and for the density and Young’s modulus of Sil-
icon: ηair = 1.85 × 10−5 kg·m−1s−1, ρair = 1.19kg·m−3 (both at 25 ◦C),
ρSi = 2340kg·m−3 and ESi = 169GPa (for the <110> crystalline orien-
tation along the length of the AFM cantilever). The length and width of
the cantilever were checked with an optical microscope, and the thickness
is adjusted to match the first resonance frequency of the cantilever, which
eventually leads to l = 450µm, w = 48µm, h = 2.07µm.

The PSD computed from Sader’s model, plotted in figure 3.5, agrees per-
fectly with the measurement. Both resonances are accurately reproduced,
and low frequency and intermediate region are as well closely matched by
the model. We stress here that the only parameter we have adjusted in the
model is the thickness of the cantilever h, to match the actual frequencies
of resonance. The Sader approach to describe the effect of the embedding
fluid (air in our case) on the behavior of the cantilever turns out to be very
good on the whole frequency range that is probed here. For comparison
with a simpler model, we also fit both resonances with a SHO model and
add the resulting spectra to provide an estimation of the full thermal noise
spectrum. In figure 3.5, we see that the result is pertinent around the res-
onances, but departs from the measurement at low frequency and between

2The upper limit of the frequency range is due to physical limitation of our acquisition
card at the time of the experiment (our current bound is several MHz), while the lower
limit is chosen to avoid any low frequency environmental noise that may disturb the
Wollaston configuration.
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Figure 3.5 – PSD of mechanical thermal noise of a Budget Sensors BS-Cont
cantilever versus two different models: Sader’s and the sum of the spectra of SHO
fits for each resonance. The insets present zooms around the resonances. The
thickness of the cantilever is the sole adjustment parameter in Sader’s model,
which matches the measurement on the full frequency range that is explored in
this experiment.

the resonances. It lacks the frequency dependence of inertial and viscous
effects due to the fluid.

To emphasize the pertinency of the model for even higher order modes,
we report in figure 3.6 a measurement up to 500kHz on a similar cantilever,
except for a gold coating that enhances its reflectivity and thus lowers the
background noise. With Sader’s approach (slightly modified to take into
account the added mass due to the coating), we are able to closely match
the experimental spectrum on the 4 modes that are visible in this frequency
range.



3. Thermal noise and dissipation of cantilevers 67

 

 

Sader’s model SSader
d

cantilever noise Sd

background noise Snoise

raw measurement Smeas
d

P
S
D
S

d
(m

2
/
H

z)

Frequency f (kHz)

0 100 200 300 400 500

10−30

10−28

10−26

10−24

10−22

Figure 3.6 – Power spectrum density (PSD) of the thermal noise driven de-
flexion at the free end of a BudgetSensors BS-Cont-GD cantilever. In the wide
frequency range of this measurement, 4 flexural resonances are visible. Once the
background noise has been subtracted, Sader’s model does a very good job at re-
producing the whole spectrum, except for an additional peak that corresponds to a
resonant torsional mode.

Mechanical response

We now use the bi-calcite configuration to measure precisely the low fre-
quency spectrum of the thermal noise of the same AFM cantilever. This
allows us to apply the Kramers-Kronig algorithm to the PSD limited to the
first resonance, and reconstruct the mechanical response function G with
a few Hz resolution. We plot in figure 3.7 the result of this process. The
conservative part of the response function, Re(G), present the characteristic
parabolic shape of an harmonic oscillator: the additional inertia due to the
fluid is negligible in air. However, the dissipative part, Im(G), cannot be
simply modeled with a frequency independent damping term. Indeed, it
presents a non linear shape that is well described by Sader’s model. The
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Figure 3.7 – Mechanical response function of an uncoated AFM cantilever. GSi

is reconstructed from the thermal noise measurement with the Kramers-Kronig
algorithm. It is accurately described by Sader’s model, whereas a SHO approach
fails to reproduce the non-linear frequency dependence of the dissipative part of
the response. The log-log scale in the inset emphasize the pertinency of Sader’s
description down to low frequencies.
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log-log scale of the inset demonstrate the quality of the model down to low
frequencies.

The reconstruction of the response using the Kramers Kronig algorithm
leads to very interesting physical data: the mechanical behavior is easy to
interpret knowing the response function. For instance, experiments on this
simple silicon cantilever in air allow us to validate Sader’s model with a
great precision on a large frequency range, that is not limited to resonance
frequencies on the system. Our high sensitivity interferometer is a key tool
to enable this approach: the input measurement data is a wide frequency
range thermal noise spectrum, not limited by the instrument intrinsic noise.
We use this innovative approach to present in the next section an original
study of a low frequency dissipation process in coated cantilevers.

3.3.2 Viscoelastic dissipation

We published the results presented in this section in reference [104], and
refer the reader to this article for the complete presentation of our results.
We will present here the main findings, focusing on viscoelastic dissipation.

In chapter 2, we presented as an illustration of the high precision of
our interferometer the thermal noise spectrum of a golden coated cantilever
(figure 2.10). A striking difference between this measurement and that of
the previous part on raw silicon cantilevers is the low frequency behavior:
a slow decrease of noise for an uncoated beam versus a 1/f like increase
for a coated one. In figure 3.8, we plot the PSD of such a measurement
on a Budget Sensors Cont-GB (data sheet in appendix D.1), acquired with
our apparatus operating in the bi-calcite configuration to lower any external
disturbances at low frequency. We limit the displayed frequency range to
the first resonance only. The background noise of the interferometer is
far below the measured spectrum at low frequency. We carefully checked
that the low frequency trend was not due to any artifact linked to the
experimental process, namely the interaction of the sensing light with the
reflective coating:

• We measured the frequency response function χdI(f) of the deflexion
d to the light intensity I by modulating by a few percent the laser
power [130]. In standard measuring conditions, I is kept constant
but presents small fluctuations around its mean value, which will thus
trigger some motion of the cantilever. This light induced deflexion
noise Slight

d (f) can be estimated using the PSD SI of light intensity
and the response function χdI : S

light
d = |χdI |2SI . It is at least 3 orders

of magnitude smaller than the observed thermal noise.
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• On coated cantilevers, if we decrease the interferometer light intensity
by a factor of 10, the shot noise will rise, but will still be much lower
than the measured thermal noise of the cantilever at low frequency.
Except for the rise of the background noise, the PSD Sd(f) is not
affected by such a drastic change in the laser power, notably at low
frequency.

• We measured the thermal noise of some cantilevers which were coated
on one side only. Except for a lower background noise when measuring
on the coated surface (due to a higher reflectivity and thus a lower
shot noise), the PSD Sd(f) does not change when the cantilever is
turned upside down.

• The 1/f like behavior is reproducible with cantilevers from various
manufacturers and with various metallic coatings, although the stron-
ger effect is obtained with gold.

The 1/f like behavior of the thermal noise thus appears to be a robust
characteristic of coated cantilevers. We know from the FDT that this ex-
tra noise with respect to uncoated cantilevers points towards an additional
dissipation process in the mechanical response. To increase the relative
importance of this phenomenon, we performed a series of measurements
in vacuum: when dissipation due to the surrounding atmosphere vanishes,
damping comes only from internal processes in the cantilever. The thermal
noise spectrum in vacuum is superposed with the one in air on figure 3.8.
The resonance is much sharper in vacuum, corresponding to a 40 time in-
crease of the quality factor. The 1/f like trend is preserved and even more
visible close to the resonance thanks to the absence of dissipation in air.

We apply the Kramers Kronig algorithm to reconstruct the cantilever
mechanical response function Gair and Gvacuum from the measured spectra
Sair

d and Svacuum
d in air and vacuum environments. Figure 3.9 reports the

result of this process. The dissipative part of the response Im(Gvacuum)
is almost frequency independent: it decreases only by a factor 3 when the
frequency spans more than 3 decades. It can be fitted by a power law with a
small exponent: Im [Gvacuum(ω)] = Giω

α, with α = −0.11. At atmospheric
pressure, dissipation at low frequency is unchanged, but increases strongly
above 500Hz to recover a classic viscous profile, well described by Sader’s
model. The full shape of the curve is perfectly fitted by the sum of the power
law Giω

α and of the viscous contribution, even in the transition between the
two regimes.

To interpret this measurement, let us recall the expression of the ex-
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Figure 3.8 – Power Spectrum Density (PSD) of thermal noise induced fluctua-
tions for a golden coated cantilever at atmospheric pressure and in vacuum. The
raw measurements, plotted on the top graph, are well above the background noise of
the interferometer. In the bottom plot, this background noise has been subtracted
to estimate the actual mechanical thermal noise. The low frequency behavior is
exactly the same. This part of the spectrum doesn’t depend on the viscous damping
due to the surrounding atmosphere, and is therefore related to a dissipation in the
cantilever itself.
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pected mechanical response for the amplitude of the first flexural mode

G1(ω) = k1 −meff(ω)ω2 − iγeff(ω)ω (3.36)

In vacuum, meff(ω) = m and γeff(ω) = 0, therefore Im [Gvacuum(ω)] =
Im(k1). The simplest interpretation of the observation is thus to suppose
that the stiffness has a non zero imaginary (dissipative) part, that we di-
rectly measure with our technique. A complex Young’s modulus, frequency
independent, is commonly used to describe dissipation in solids [78, 124,
140], with a loss angle3 that is usually very small for metals (of order 10−3

or less). We measure here arg(Gvacuum) ∼ 5 × 10−4. However, our wide fre-
quency range allows us to refine the model and observe the small frequency
dependance of Im(k1) = Giω

α.
We know from Kramers-Kronig relations that if k1 has an imaginary

part, it has to be frequency dependent. The power law dependence observed
for the imaginary part leads to the full knowledge of the real part as well,
with no adjustable parameters (except the static spring constant κ1): from
Kramers-Kronig relations, we compute

k1(ω) = κ1 − κJ

(
i
ω

ω0

)α

(3.37)

where κJ is real. The detailed derivation is given is appendix B.1. In di-
electric measurements, such a frequency dependence has been introduced by
Jonscher [74] and is used to describe a pseudo-conductivity (divergence of
the dissipative part of the dielectric constant as ǫ′′ ∝ ωα with −1 < α < 0,
pure conductivity corresponding to α = −1). The two parameters describ-
ing the frequency behavior are extracted from the fit on the imaginary part
of the vacuum measurement Im [Gvacuum(ω)]: for this particular cantilever,
we measure κJ = 7 × 10−4 N·m−1 and α = −0.11.

The zoom at low frequency in the inset of Fig. 3.9 shows an unexpected
behavior of Re(G) as f goes to 0: instead of the constant trend predicted
by the SHO or Sader’s models, it presents a maximum and a steep decrease
(of small amplitude though). At low frequency inertial effects are negligi-
ble, thus the real part of G is directly the real part of the spring constant:
Re(G(ω)) ≃ Re(k1(ω)) = κ1 − κJ cos(απ/2)(ω/ω0)

α. κJ and α are al-
ready fixed by the fit on the imaginary part of the reconstructed function
Im(G(ω)), hence we do not need to introduce any new adjustable parame-
ters to closely match the observations on the real part as illustrated in the
inset of Figure 3.9.

3The loss angle or loss tangent is defined by the argument of the complex Young’s
modulus.
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Figure 3.9 – Reconstructed mechanical response function of a golden coated can-
tilever in air and in vacuum. (a) Real part. The inset is a zoom around f = 0
(400 Hz wide and 10−3 N·m−1 high). (b) Imaginary part. The viscoelastic damp-
ing in the cantilever is evidenced by the vacuum measurement, and can be fitted
by a power law of frequency with a small exponent α = −0.11. The low frequency
behavior of Re(G) for the viscoelastic model is deduced from Kramers-Kronig re-
lations applied to the fit of Im(G), it matches well the experimental data. Sader’s
model describes accurately the dissipation in air for large f , and the sum of the
two damping processes matches the measurements in air on the whole frequency
window.
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3.3.3 Dissipation processes: summary

We have measured the power spectrum density (PSD) of thermal noise in-
duced deflexion of coated and uncoated micro-cantilevers at atmospheric
pressure and down to 10−5 mbar. Thanks to the sensitivity of our appara-
tus, we resolve the spectrum completely from very low frequencies to beyond
the resonance. The common simple harmonic oscillator model with viscous
damping is clearly inadequate to describe the off resonance fluctuations, es-
pecially of coated cantilevers. At low frequency, the thermal noise of those
shows a 1/f like trend, which can be seen as the signature of a viscoelas-
tic dissipation in the cantilever. To go further than simple observations,
we use the Fluctuation-Dissipation Theorem and the Kramers-Kronig rela-
tions to rebuild the complete response function of the cantilever from the
measured PSD. A simple power law is found to describe accurately the fre-
quency dependence of the viscoelastic dissipation, and a consistent model
can be proposed to fit tightly all the experimental data: beyond the simple
harmonic oscillator approximation, it includes Sader’s approach to describe
the coupling with the surrounding atmosphere and a mechanical Jonscher
like term to account for viscoelasticity.

Let us emphasize a important point here: the use of FDT and Kramers-
Kronig relations to rebuilt the mechanical response function of the system is
based on very general hypotheses (linear response, causality, thermal equi-
librium). Our measurements are thus free of any hypothesis on the dissi-
pation processes in the cantilever, and the viscoelastic model we eventually
propose is purely phenomenological. Although viscoelasticity or anelastic-
ity had already been used in several models to account for observations, it
has mostly been limited to the resonances of oscillators and to their quality
factors. Our experiment offers a complete determination of the viscoelastic
properties of a coated micro-cantilever, with quantitative measurement of
its amplitude and frequency dependence on a wide spectral range.

The use of thermal noise is a key point of our approach, since we don’t
need to determine exactly the transfer function of the external forcing
method which is usually necessary to measure a response function. We
get an excellent resolution with measurements of mechanical loss tangents
smaller than 10−3 . Even such a small dissipation has some consequences on
the operation of micro-cantilevers, notably when they are used in vacuum:
it gives an upper bound to the quality factor of the resonances. Even if we
don’t explain the physical origin of the viscoelasticity due to the coating, we
can quantify it and our measurements should be useful in the perspective of
testing models of internal friction, eventually leading to improved coating
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procedures and better performance of cantilever based sensors. Our method
would also be suited to study other type of coatings, such as those implied
in chemical or biological sensors, alone or linked to target molecules.

3.4 Beyond first flexural mode: thermal noise

mapping

When translating laterally the focusing lens L0 of the interferometer, we
change the position of both reference and sensing laser beams over the
sensor. In the Wollaston configuration of the interferometer, the reference
laser beam is reflected by the chip holding the cantilever. This reference
mirror is very large, we can therefore safely explore the cantilever surface
without bothering about the reference beam precise position. At each point
on the cantilever, we are thus able to calibrate our interferometer and then
acquire a thermal noise spectrum. It results in a calibrated measurement of
deflexion fluctuations both in space and frequency, that we can confront to
the Euler-Bernoulli predictions.

We first performed a manual scan close to the main axis of a cantilever,
to compare the thermal noise spatial and spectral distribution to the ex-
pected behavior of the normal modes. This work, conducted in association
with Bruno Tiribilli (invited professor by the ENS Lyon in 2008), has been
published in reference [107]. It can be used as a base to precisely measure
the spring constant of a cantilever. After automating the translation of the
focusing lens L0, we were recently able to map the thermal noise over the
full surface of the sensor, and will present in a second part the first outcome
of these experiments.

3.4.1 Flexural modes and stiffness calibration

We use a contact cantilever from Budget Sensors with gold coating (Cont-
GB, data sheet in appendix D.1), and record 30 calibrated noise spectra,
every 15µm along the 450µm long mechanical beam. The background
noise is as low as 3 × 10−28 m2/Hz in the frequency range from 1 kHz to
800kHz. The focused beam size on the cantilever is around 10µm, ensuring
a good spatial resolution along the cantilever length. At every position x
we measure the deflexion d(x, t) produced by the thermal excitation of the
cantilever and we evaluate the PSD Sd(x, f). The complete set of results
is reported in figure 3.10 as a 3D representation. The first four oscillation
modes can be clearly seen with their respective number of nodes. Two
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Figure 3.10 – Power Spectrum Density (PSD) Sd(x, f) of thermal noise induced
deflexion as a function of frequency f and position x along the cantilever. The
first 4 normal modes are clearly visible, with a vanishing amplitude toward the
clamped extremity of the mechanical beam and the nodes of each mode. Another
vibration peak with no nodes is also visible close to the third mode, it is attributed
to the first mode in torsion.

further peaks can be noted, the first at about 220kHz and a second, of
smaller amplitude, at 790 kHz, that we attribute to the first and second
torsional modes.

For a quantitative characterization of the shape of the modes we de-
termine the rms amplitude of each resonance

〈
d2

n(x)
〉

as a function of the
position x, by integrating the PSD in a convenient frequency interval 2∆f
around each peak:

〈
d2

n(x)
〉

=

∫ fn+∆f

fn−∆f

Sd(x, f)df (3.38)

This quantity is computed directly from the experimental spectra, without
any fitting process of the resonances. We anyway take care to subtract the
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Figure 3.11 – Amplitude of thermal noise for the first 4 flexural modes along the
cantilever. Errors bars correspond to the equivalent noise of the detection system
in the bandwidth chosen around each resonance (a very conservative estimation of
uncertainty). The simultaneous fit (red curves) of the 4 resonances with the normal
modes shapes is excellent and leads to a precise measurement of the stiffness of
the cantilever. The common calibration method for the spring constant considers
only the value of d2

1(l), the circled point in the upper graph.

contribution of the background noise of the interferometer. We also com-
pensate for the finite integration range in frequency. This last correction
is done by supposing that the ratio of the noise in the considered interval
to the total noise is equal to that of an equivalent simple harmonic oscilla-
tor [105]. Experimental data computed this way is plotted on figure 3.11.
Error bars correspond to the equivalent noise of the detection system in the
bandwidth chosen around each resonance (a very conservative estimation of
uncertainty).
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According to equation 3.22, we should have

〈
d2

n(x)
〉

=
〈
β2

n

〉 1

l
|φn (x)|2 (3.39)

where βn and φn are respectively the amplitude and spatial shape of mode
n, and l the length of the cantilever. Using the equipartition theorem for
each mode of stiffness kn = α4

nk/3, we know that
〈
β2

n

〉
= kBT/kn, we thus

should have
√
〈d2

n(x)〉 =

√
3

α4
n

kBT

kl
|φn (x)| (3.40)

where αn are the spatial eigenvalues of the Euler-Bernoulli clamped-free
beam (see equation 3.8). We fit the data with this functional form using 3
adjustable parameters: the clamping position (origin of x), the length l and
the static spring constant k of the cantilever. We realize the fit on the rms
amplitude simultaneously on the 4 modes. The red curves in figure 3.11
represent the result of this adjustment, in good agreement for all modes.
The best fit values are: l = (450 ± 5)µm and k = (0.376 ± 0.015)N/m.
These length and stiffness are compatible with the values provided by the
manufacturer (l = (450 ± 10)µm and k from 0.07N/m to 0.4N/m).

It is worth noting that the accuracy of our instrument provides a pre-
cise measurement of the thermal noise driven deflexion along the cantilever
length and allows to verify the Euler-Bernoulli model for the micro-lever.
Furthermore this multi-mode approach provides a more reliable way to esti-
mate the spring constant of a cantilever with respect to the standard thermal
noise calibration method [26], which is limited to the integral of the first
mode only and just at the cantilever free end (circled point in Fig. 3.11).
Actually a precise measurement of stiffness could be obtained from the first
3 modes only, the presence of the nodes providing a favorable constraint to
the fitting process. Moreover, the use of the interferometric set-up allows
one to avoid the calibration of the segmented photodiode response as in the
classical optical lever readout scheme: this step implies a contact between
the AFM tip and a hard sample which is translated of a known amount,
a process that may be undesirable to preserve the probe’s sharpness or its
coating. Our calibration method leaves only a small 4% uncertainty on
the spring constant value for the cantilever used here (confidence interval
corresponding to one standard deviation estimated during the linear least
square fitting process).

Using the integration step around resonance (equation 3.38), we hide any
information concerning the dissipation of each mode. In reference [107], we
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also compute the quality factor of each resonance, and compare the data
with the prediction of Sader’s model. A good agreement is reached for the
first three resonances, but at the highest frequency a deviation is observed:
dissipation is lower than foreseen by Sader’s model. This behavior was
already observed by Maali and co-workers [91]. This deviation is expected
since the original Sader model neglects the 3D nature of the fluid flowing
around the cantilever, an effect increasing with the mode number [119]. In
an extended model by Sader and co-workers [136], such a correction is also
observed in the same direction as in our observation. We refer the reader
to reference [107] for further details.

3.4.2 Thermal noise maps to measure elastic moduli

In order to explore torsional modes as well as longitudinal modes, we choose
a larger cantilever to enhance the relative lateral precision of the measure-
ment. We use two NanoWorld Arrow TL cantilevers, one with and one
without gold coating. Their nominal geometry is: length l = 500µm, width
w = 100µm and height h = 1µm, and for the coated one, top side layers of
5 nm of titanium and of 30 nm of gold (manufacturer datasheet in appendix
D.3). The surface of the cantilever is scanned by a 16µm wide sensing
beam4, with 3µm lateral and 5µm longitudinal steps. At each position, we
calibrate the interferometer (using a lateral driving of the Wollaston prism),
then record a power spectrum density of thermal noise up to 1MHz. Up
to 16 mechanical resonances can be noticed in this spectrum for the raw
cantilever, and 14 for the gold coated one (see example on figure 3.12). Fol-
lowing the procedure of previous part, we integrate the PSD around each
resonance to access its rms amplitude

〈
d2

n(x, y)
〉
. We take care to subtract

the contribution of the background noise and to account for the finite inte-
gration range. We plot the resulting map of thermal noise for the resonances
in figure 3.13 for the raw cantilever, and in figure 3.14 for the coated one.
We easily identify 8 flexural modes and 6 torsional modes from theses maps,
plus two high frequency resonances of more complex spatial shape for the
raw lever. The high precision of the interferometer allows once again to
access extremely small fluctuations, with rms amplitudes of only a few pm.

We will use theses measurements to extract the mechanical properties
of the cantilever, namely its Young’s modulus E and shear modulus S. Our
thermal noise maps are very similar to results obtained from vibrometry
experiments, where one drives the system at its resonance frequencies and
measure the deformation field. The small difference is that we access only

4The 1/e2 radius of the gaussian beam is 8 nm
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Figure 3.12 – Power spectrum density of thermal noise induced fluctuations on
a NanoWorld Arrow TL-Au cantilever. This measurement corresponds to the
sensing position indicated by a blue cross on the cantilever sketch. We notice 8
flexural (f1 to f8) and 6 torsional (t1 to t6) mechanical resonances that we study
as a function of the spatial position on the cantilever.

the rms value of the deflexion with thermal noise. Anyway, we can conduct
an analysis of the dispersion relations linking the spatial wavelengths to
the resonance frequencies, as is usually done in vibrometry to infer the
mechanical properties of the cantilever.

Measuring E through flexural modes

Let us first focus on the flexural modes, the noise of which is described in the
Euler-Bernoulli framework by equation 3.39. Fitting the spatial shape of the
noise with eigenmodes φn(x), we extract the spatial wave number κn = αn/l
for each mode. Due to the triangular end of the cantilever, the boundary
condition at the free extremity of the cantilever is more complex than in
the classic case of a rectangular cantilever. This leads to an effective length
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Figure 3.13 – Thermal noise mapping on a 100µm × 500µm raw silicon can-
tilever. We extract from the PSD measured at each point the rms amplitude of 16
different modes, and plot those using a color coded amplitude map (color bar on
top of the figure). The resonant frequency and full scale amplitude is given below
each map. We easily identify 8 flexural modes and 6 torsional modes from theses
maps, plus two high frequency resonances of more complex spatial shape.
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Figure 3.14 – Thermal noise mapping on a 100µm×500µm golden coated silicon
cantilever. We extract from the PSD measured at each point the rms amplitude of
14 different modes, and plot those using a color coded amplitude map (color bar on
top of the figure). The resonant frequency and full scale amplitude is given below
each map. We easily identify 8 flexural modes and 6 torsional modes from theses
maps. The highest order flexural mode measured show evidence of a non uniform
deflexion across the width close to the triangular free end of the cantilever.
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leff(n) that is slightly mode dependent: using independent fits for each
resonance, leff(n) is found to grow from 455µm to 490µm while the mode
number n rises from 1 to 8. The spatial wave number κn (or equivalently the
effective length leff(n)) is linked to the resonance frequency by the dispersion
relation (equation 3.9), that we rewrite here as a function of the cantilever
geometrical and physical parameters:

mω2
n = kn (3.41)

ρω2
n = E

h2

12
κ4

n (3.42)

with ρ the density of the cantilever. This dispersion relation is valid on
the rectangular section of the cantilever, and thus does not suffer from the
ill known boundary condition at the triangular end. The wave number κn

is measured from a fit on this rectangular part only and is therefore ro-
bust to this boundary condition issue (except for the first mode which has
no nodes). Using tabulated value of density for silicon (or an adequately
weighted average of material density for the coated cantilever), and mea-
sured values of κn and ωn, this relation enables measurement of E, provided
the cantilever thickness h is known.

Our measurement provides an extra information with respect to classic
vibrometry: the amplitude of the modes. Indeed, the coupling between the
driving force and the deflexion of the cantilever is unknown in vibrometry,
thus the amplitude is not relevant. Driving is just tuned for oscillations to
be in the useful range of the device. In contrast, thermal noise driving leads
to predictable mode amplitudes thanks to the FDT. Let us rewrite equation
3.39 using the normalization of the eigenmode φn:

1

wl

∫∫
dxdy

〈
d2

n(x, y)
〉

=
〈
β2

n

〉
=
kBT

kn
(3.43)

This quantity can easily be evaluated from our measurement data, leading
to an experimental measurement of the stiffness kn of each flexural mode.
The resonances frequencies being precisely known, the relation mω2

n = kn

directly leads to the measurement of m, the oscillator mass. This evalu-
ation leads to a slightly mode dependent effective mass meff(n), in con-
trast to prediction of the Euler-Bernouilli model. The contribution of the
fluid, evaluated with Sader’s model, cannot account for this observation.
We interpret this as an effect of the ill defined boundary condition at
the triangular end, and that the effective length leff(n) should be consid-
ered: meff(n) = ρleff(n)wh. The width w of the cantilever can be mea-
sured with a good precision using an optical microscope, thus the thickness
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h can be inferred from the thermal noise amplitude: we finally measure
h = (0.78 ± 0.03)µm for the raw cantilever, and h = (1.08 ± 0.06)µm for
the coated one (mean value and incertitude correspond to the mean and
standard deviation of the first 6 resonances). Using this value of h and dis-
persion relation 3.42, we eventually reach an estimation of Young’s modulus
E of our cantilevers, that we plot in figure 3.17. Within the experimental
incertitude, E is not frequency dependent and its value is E = (168±7)GPa
(raw cantilever) or E = (169 ± 11)GPa (coated cantilever). These results
are in perfect agreement with the tabulated value of 169GPa for Si <110>,
the crystalline orientation along the length of AFM cantilever.

Measuring S through torsional modes

We now study the torsional modes, using a very similar approach. The
torsion of the cantilever can be described by the angular deflexion θ(x)
of the cantilever around its longitudinal axis, the deflexion simply being
d(x, y, t) = yθ(x, t). In the classic theory attributed to Saint-Venant [40],
the equation of motion is [82, 89]:

I
∂2θ(x, t)

∂t2
+ Cl2

∂2θ(x, t)

∂x2
= l (Mext(x, t) + Mhydro(x, t)) (3.44)

where I = mw2/12 is the inertial moment of the beam, C = Swh3/3l its
torsional stiffness (S is the shear modulus), and Mext and Mhydro are the
external and hydrodynamic twisting moments per unit length. All moments
are defined around the longitudinal axis. The expression of I and C are
given in the limit h ≪ w. If right hand side term of equation 3.44 is zero,
the solutions are the sinusoidal normal modes φt

n(x) matching the boundary
conditions of a clamped-free beam:

φt
n(x) = κt

nl sin
(
κt

nx
)

(3.45)

where the wave number κt
n of mode n is κt

n = (2n− 1)π/2l. The pulsations
ωt

n of these normal modes are ruled by the dispersion equations:

Iωt
n

2
= C

(
κt

nl
)2

= Cn (3.46)

ρw2ωt
n

2
= 4Sh2

(
κt

n

)2
(3.47)

From the measured thermal noise maps of torsional modes
〈
dn(x, y)2

〉
,

we first compute the torsion noise
〈
θn(x)2

〉
from a fit of the slope along y,

for each mode n and each longitudinal position x. This first step is illus-
trated in figure 3.15. Then, fitting the spatial shape of the torsion noise



3. Thermal noise and dissipation of cantilevers 85

rm
s

d
efl

ex
io

n
p

〈d
3
(x
,y

)2
〉(

p
m

)

transversal position y (µm)

−50 −25 0 25 50
0

1

2

3

4

5

6

Figure 3.15 – From the thermal noise maps of torsional modes, we extract at each
position x along the cantilever the torsion rms noise

˙
θn(x)2

¸
from a fit of the slope

along the transversal coordinate y. We illustrate this process in this figure with 5
transversal cuts of the map of a third mode (the colored dashed curves correspond
to the transversal lines plotted on the top thermal noise map), superposed with the
linear fits leading to the slope (thin black lines).

with eigenmodes φt
n(x), we extract the spatial wave number κt

n for each
mode. This second step, illustrated in figure 3.16, validates Saint-Venant’s
mode shape for torsional modes: the sine function of the modes φt

n(x) per-
fectly matches the experimental data, except at the triangular end of the
cantilever. Again, the boundary condition at the free extremity of the can-
tilever is more complex than in the classic case of a rectangular cantilever,
leading to an effective length lteff(n) that is slightly mode dependent: using
independent fits for each resonance, lteff(n) is found to grow from 415µm
to 435µm while the mode number n rises from 1 to 6. The dispersion re-
lation 3.47 is valid on the rectangular section of the cantilever, and thus
does not suffer from the ill known boundary condition at the triangular
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Figure 3.16 – Amplitude of thermal noise for the first 6 torsional modes along
the raw silicon cantilever. Fits with Saint-Venant’s prediction for the mode shape
φt

n(x) (red) match closely the experimental data (blue) in the rectangular part of
the cantilever (x < 410µm), and only depart from it at the triangular extremity.
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end. The wave number κt
n is measured with a fit on this rectangular part

only (x < 410µm) and is therefore robust to this boundary condition issue
(except for the first mode which has no nodes). Using the tabulated value
of density for silicon, and the measured values of κt

n and ωt
n, this relation

enables the measurement of the shear modulus S, provided the cantilever
thickness to width ratio h/w is known.

Just as for the flexural modes, the amplitude of torsional modes provides
an additional information about the system. Let us decompose θ(x, t) and
Mext(x, t) on the basis of the normal modes:

θ(x, t) =
1√
l

∞∑

n=1

βt
n(ω)φt

n(x) (3.48)

Mext(x, t) =
1√
l

∞∑

n=1

ηt
n(ω)φt

n(x) (3.49)

It can easily be shown that the amplitude βt
n and the forcing ηt

n are cou-
pled variables by the Hamiltonian of the system, and that the equipartition
theorem leads to the following expression of the rms thermal noise in θ:

〈
θ(x)2

〉
=

1

l

∞∑

n=1

〈
βt

n
2
〉
|φt

n(x)|2 (3.50)

with 〈
βt

n
2
〉

=
kBT

Cn
(3.51)

We combine those two equations using normalization of torsional modes φt
n:

1

l

∫ l

0

dx
〈
θn(x)2

〉
=
kBT

Cn
(3.52)

This quantity can easily be evaluated from our measurement data, lead-
ing to an experimental measurement of the torsional rigidity Cn of each
torsional mode. The resonances frequencies being precisely known, the re-
lation Iω2

n = Cn directly leads to the measurement of I, the inertial moment
of the oscillator. We use the effective length lteff(n) inferred from the wave
number and the width w measured with an optical microscope to evaluate
again the thickness h from the torsional noise amplitude: we finally mea-
sure h = (0.87 ± 0.04)µm for the raw cantilever, and h = (1.19 ± 0.14)µm
for the coated one (mean value and standard deviation on the first 6 tor-
sional modes). These values are in reasonable agreement with the flexural
evaluation.
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We have demonstrated that thermal noise maps can be used to determine
2 geometrical parameters of the cantilever: from the wavelength of the
modes we access its length l (a mode dependent effective length in the case
of our triangular ended cantilever), and from the amplitude of the thermal
noise we access its thickness h. Using cross information from flexural and
torsional modes we may even evaluate the width w of the cantilever. Indeed
with the flexural noise amplitude we measure the mass m of the cantilever,
while the torsional mode noise leads to its inertial moment I = mw2/12.
The ratio I/m thus directly gives the width w. We estimate with this
method w = (100 ± 4)µm for both levers, is perfect agreement with the
measurement with the optical microscope. We eventually use the following
width and thickness to estimate the elastic moduli: w = 97µm, h = 0.8µm
(raw cantilever), w = 98µm, h = 1.08µm (coated cantilever).

Using those geometrical values and dispersion relation 3.47, we finally
reach an estimation of the shear modulus of our cantilevers, that we plot
in figure 3.17. S presents a strong frequency dependence, in contrast to
Young’s modulus behavior. The tabulated value for silicon to consider for
the torsion of our cantilever is Sxy = 51GPa (with x and y corresponding
to the <110> to <1-10> crystallographic axes of the crystal) [90, 143].
The lowest frequency measurements of S are in good agreement with this
value, but the curves strongly departs from it at higher frequency. Note
that even if the width and thickness were wrongly evaluated, the increase
of S by a factor 2 would still be present. This behavior is unexpected in
the classic model we have used for the analysis. The effect of the air around
the cantilever can be evaluated from Sader’s model for torsional modes [60],
and cannot account for the observations. It would furthermore lead to a
decrease of the resonances frequencies, when we observe the contrary: for
a given wavelength, the system is stiffer than expected (higher S), thus
vibrate at a higher frequency.

The failure of Saint-Venant’s classic theory at high mode numbers for
rods of rectangular cross-section has already been observed in macroscopic
experiments, and a refine theory has been proposed by Barr [3]. It accounts
both for the normal stresses and inertial forces in the axial direction that
are neglected is the classic description. According to this refined theory, the
equation of motion for a thin cantilever is

µ2 ∂
4θ

∂x4
−
(
ρ

S
+
µ2ρ

E

)
∂4θ

∂x2∂t2
− 12

Eh2w2

[
4Sh2 ∂

2θ

∂x2
− ρw2 ∂

2θ

∂t2

]
+
ρ2

ES

∂4θ

∂t4
= 0

(3.53)
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Figure 3.17 – Young’s modulus E and shear modulus S as a function of fre-
quency. These quantity are evaluated through dispersion relations corresponding
to flexural and torsional modes respectively, on two different cantilevers. Saint-
Venant’s classic model for torsional modes leads to an awkward frequency depen-
dent shear modulus: its predictions should be limited to the first mode only. Using
a refined model [3], the flat frequency dependence of S is recovered, and leads to a
reliable measurement of the shear modulus.

which leads to the relation dispersion

µ2κ4 −
(
ρ

S
+
µ2ρ

E

)
κ2ω2 +

12

Eh2w2

[
4Sh2κ2 − ρw2ω2

]
+
ρ2

ES
ω4 = 0 (3.54)

where µ2 is a dimensionless adjustable parameter tuning the phase velocity
of torsional waves in the limit of large wavenumber κ. Choosing for this
limit the Rayleigh wave velocity, Barr provides an implicit value for µ2 as a
function of Poisson’s ratio ν in reference [3]: µ2 . 1. The classic dispersion
relation 3.47 corresponds to the term between brackets in this last equation,
and is recovered at low wavenumber κ ≪ 1/w. Though Barr’s derivation
has been conducted for isotropic materials, the recent work of Ekel’Chik [49]
demonstrates that it is valid for an orthotropic crystal if a plane normal to
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cantilever axis is also a symmetry plane of the material. Equation 3.54 can
thus be applied to our experiment.

The refined dispersion equation 3.54 is a second order equation in S,
and can thus be solved easily. For each resonance, it leads to an expression
of S as a function of the wavenumber κt

n and the resonance pulsation ωt
n

(that are both measured), and of other known properties of the cantilever:
its density ρ, Young’s modulus E, width w and thickness h. µ2 is the only
remaining unknown parameter, but it is constrained to values close to 1 [3]
and has very little influence on the final estimation of S. We plot in figure
3.17 the final result of this evaluation (with µ2 = 0.95). The frequency
dependence of S has completely disappeared using Barr’s model, and its
value is S = (55 ± 3)GPa (raw cantilever) or S = (55 ± 2)GPa (coated
cantilever). These results are in very good agreement with the tabulated
value Sxy = 51GPa.

3.4.3 Thermal noise mapping: summary

We have measured the power spectrum density (PSD) of thermal noise in-
duced deflexion on the whole surface of micro-cantilevers. Thanks to the
sensitivity of our apparatus, we can identify many flexural and torsional
modes from this noise mapping technique. The spatial shape of the normal
mode corresponding to each resonance has been successfully compared to
Euler-Bernoulli’s prediction for flexural modes of a clamped-free beam, and
to Saint-Venant’s prediction for torsional modes. The amplitude of those
modes are linked to the cantilever stiffness and torsional rigidity, which
can be precisely estimated from these measurements. Finally, the disper-
sion relations linked to these modes are used to separate the mechanical
properties of the material (Young’s modulus E and shear modulus S) from
the geometrical parameters of the cantilever (length l, width w, thickness
h). The accurate description of torsional resonant frequencies led to the
consideration of a refined model for torsional modes.

The cantilevers probed in this section were made of silicon, and provide
an academic bench test for our measurement strategy. We could recover the
expected geometrical parameters of the cantilever and the elastic moduli of
the material with an excellent precision. The protocol may now be applied
to other systems where those parameters are not a priori known. It is ex-
pected for example that as the thickness of MEMS component reaches the
sub-micrometer scale, mechanical bulk properties could be altered by sur-
face effects (surface tension, defects, etc.) and require specific metrological
approaches for their characterization. Our tool can be of valuable interest
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in this area. It may also be useful to probe the influence of the environment:
functionalized cantilevers used as chemical or biological sensors, alone or in
presence of the target molecules, may be precisely characterized with our
approach.

3.5 Conclusion

In order to study the mechanical behavior of a cantilever from its fluc-
tuations, we first introduced in this chapter a few useful tools. The key-
stone of the analysis is the Fluctuation-Dissipation Theorem (FDT), relating
the thermal noise spectrum to the dissipative part of the response. Using
Kramers-Kronig relations, we showed that we can compare theoretical mod-
els and experimental data in terms of both noise spectra and mechanical
response. We applied this strategy to confront Sader’s model for viscous dis-
sipation with measurements on raw silicon cantilevers in air, demonstrating
an excellent agreement. When a gold coating is present on the cantilever,
the low frequency behavior is strongly modified, the thermal noise present-
ing a 1/f like trend. We demonstrated this behavior to be the signature
of a viscoelastic dissipation process in the cantilever. We were able to pro-
vide a quantitative phenomenological description of this effect : a simple
power law is found to describe accurately the frequency dependence of the
viscoelastic dissipation.

In a last section, we tackled the characterization of the mechanical prop-
erties of cantilevers from a mapping of the thermal noise on its surface.
This analysis validated the description of the system in terms of its nor-
mal modes of oscillations in an Euler-Bernoulli framework for flexion and in
Saint-Venant’s approach for torsion. The correct description of the disper-
sion relation for torsional modes however led to the introduction of Barr’s
refined model [3] to account for observations at high mode numbers. The
cantilever stiffness can be precisely measured from this approach, as well as
the elastic coefficients E (Young’s modulus) and S (shear modulus) of its
constituting material.

The low noise of our interferometer, as well as its intrinsic calibration,
are obviously central in these experiments : none of the results we presented
in this chapter could have been characterized with the classic optical lever
scheme of commercial AFMs. The access to the thermal noise spectrum
outside resonances is for instance a key point in the evaluation of the dissi-
pation processes. The use of thermal noise is in itself very important, since
we don’t need to determine exactly the transfer function of the external forc-
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ing method which is usually necessary to measure a response function. We
get an excellent resolution with measurement of dissipative to conservative
force ratio smaller than 10−3.

The characterization methods through thermal noise presented in this
chapter could be applied to all kind of cantilever based sensors or MEMS,
providing helpful insight on their mechanical behavior in various environ-
ment. Our interferometric setup could thus find a very useful place next to
the scarce tools for dynamic metrology at nanoscale.



Chapter 4

Adhesion of carbon

nanotubes

Collaboration with Julien Buchoux, Sophie Marsaudon
and Jean-Pierre Aimé, CPMOH Bordeaux

Abstract

In this chapter, we present peeling experiments of single wall carbon nan-
otubes (SWNT). Using our AFM, the nanotube is pushed almost perpendicularly
against a substrate of graphite or mica. We measure the quasi-static force as a
function of the compression, and we simultaneously estimate the dynamic stiff-
ness using a time frequency analysis of thermal noise during this process. The
most striking feature of these two observables is plateau curves for a large range
of compression, the values of which are substrate dependent.

We then introduce a simple framework to describe the observed behavior: the
nanotube is modeled as an Elastica interacting via a simple energy of adhe-
sion per unit length with the substrate. A natural length Ra is defined using
this approach, corresponding to the radius of curvature at the point where the
nanotube separate from the substrate when a non zero length is adsorbed. A
complete analytical resolution of this problem is proposed in the limit of nan-
otubes that are long with respect to Ra, backed by a numerical simulation for
intermediate situations.

The analysis of the experimental data within this simple framework naturally
leads to every quantity of interest in the problem: the force plateau is a direct
measurement of the energy of adhesion per unit length Ea on each substrate,
and we easily determine Ra from the dynamic stiffness plateau. Mechanical
properties of the nanotube itself (its bending stiffness EI) can be extracted
from those values. We finally compare our results and experimental protocol to
the few publications tackling the adsorption of carbon nanotubes.
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4.1 Introduction

Due to their unique mechanical and electrical properties, carbon nanotubes
(CNT) are foreseen as a major material in a huge range of applications, from
fillers in high-strength composites to components of nanoscale electronics
and mechanics [5, 22, 81]. They are also widely used as a bench system
to study fundamental physical phenomena on the mesoscopic scale, and
represent as such an archetype of nano-objects. Whatever exceptional their
properties may be, CNT need to interact with the rest of the world in
order to be useful. Thus beyond their own behavior, the physics of their
interactions should be of major interest too. Due to the stiff sp2-hybridized
in-plane bonds of the rolled graphene sheets composing the nanotubes, they
mainly interact through Van der Walls (VdW) forces with their environment.
In practical cases, they will easily stick on many surfaces, which can be a
problem if one wants to use them as shafts, pilars or any other suspended
mechanical structures [81]: if for some reason they get too close to a surface,
they will stick to it, and loose their functionality. On the contrary, one
may seek this strong interaction between the nanotube and the surface,
for instance to create a rigid clamping or a good electrical contact, or to
build up a bigger object (like a nanotube rope) that will retain the unique
mechanical properties of its basic bricks [79]. The efficiency of nanotubes or
nanoscale fibers as nanoreinforcements in polymer composites [2, 22, 68] is
undoubtedly driven by this surface interaction. Whether desirable or not, it
is thus of prime interest to measure and understand the adhesion of carbon
nanotubes, and more generally of nanowires and other nanoscopic objects.

Up to now, this phenomenon has been mostly probed by various smart
but indirect measurements. Hertel and coworkers [63, 64], for instance,
imaged by AFM the shape of crossed CNT adsorbed on a silicium sub-
strate. The profile of the top nanotube balances the deformation energy
and the surface energy lost in this configuration, providing an estimation
of the adhesion energy if the CNT mechanical properties are assumed. Kis
and coworkers [80] performed a direct measurement using an AFM tip to
pull the inner core of a telescopic multi wall CNT. Their experiment demon-
strated a friction free interaction between the concentric layers, and provides
an estimation of the adhesion for this very specific geometry and material.
Other experiments designed to measure the mechanical properties of CNT
use the adhesion to attach the object to be probed: Young modulus can
for example be measured by pushing a nanotube hanging over a hole in the
substrate [121]. The deformation data is analyzed under the hypothesis of a
double clamped mechanical beam, thus assuming a very strong adsorption
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of the nanotube on the surface on each side of the hole. In most experi-
ment, one usually access either intrinsic properties of the nanotubes, or its
interaction with its environment, using hypotheses on the other properties.
Direct measurement of force of interaction can solve this issue and provide
quantitative measurement of several properties in single experiments, as we
will demonstrate with this chapter.

Recently, peeling tests at nanoscale have emerged as a potentially pow-
erful technique to characterize adhesion properties of carbon nanotubes
or nanowires with various substrates. A few experiments have been con-
ducted [70, 71, 77, 134, 135, 144], along with theoretical/numerical mode-
ling [102, 123]. However, quantitative measurements have not yet been
easily achieved, and experimental data analysis relies of complex compar-
ison with numerical simulations. We propose here a simpler protocol to
perform peeling tests, which allows direct and quantitative characterization
of adhesion. In these experiments, performed in collaboration with Julien
Buchoux, Sophie Marsaudon and Jean-Pierre Aimé, a soft CNT is attached
to the tip of an AFM cantilever and simply pushed almost perpendicularly
on a surface. When the induced bending is strong enough, the VdW inter-
action causes part of the nanotube to be adsorbed on the substrate, and
the analysis of the force curve leads both to quantitative information on the
adhesion process and on the nanotube itself.

In this chapter, we first present the experimental protocol (nanotubes,
substrates, force and dynamic stiffness measurements) and the most signifi-
cant features of the measured force-compression curves. We then introduce
a simple framework to describe the observed behavior : the nanotube is
modeled as an Elastica interacting via a simple energy of adhesion per unit
length with the substrate. A complete analytical resolution of this problem
is proposed in the limit of long nanotubes, backed by a numerical simulation
for intermediate situations. A fine analysis of experimental data is then con-
ducted, before comparing our results and protocol to existing experiments.

4.2 Experiments

4.2.1 Carbon nanotube tip and substrate

The nanotube has been grown directly at the tip apex of an AFM probe,
as shown by the SEM (Scanning Electron Microscopy) image of figure 4.1.
The synthesis uses the Hot Filament assisted Chemical Vapor Deposition
(HFCVD) method [94], and has been performed by Anne-Marie Bonnot in
Grenoble, in collaboration with Sophie Marsaudon and Jean-Pierre Aimé in
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Figure 4.1 – Scanning electron micrograph of a single wall carbon nanotube grown
directly on a AFM tip (left). The CNT length is LCNT ≈ 2µm. In the experiments
(right sketch), it is pressed almost perpendicularly against a flat surface (θAFM =
15◦), and we record the AFM cantilever deflexion d as a function of the substrate
position zs, or equivalently, of the nanotube compression zc. The force F acting
on the nanotube is computed from the cantilever deflexion.

Bordeaux. The probes used in this experiment are contact silicon cantilevers
(MikroMasch CSC38), with nominal spring constant in the 10−2 N/m to
10−1 N/m range.

High resolution Transmission Electron Microscopy (TEM) observations
demonstrate the formation of predominantly single wall (SWNT) and dou-
ble walled carbon nanotubes. Diameters are mostly found to be between
(1.2 − 2.1) nm ± 0.3 nm [51]. Raman spectroscopy studies are also strong
indications of the excellent crystalline property and purity of the grown
CNT [41].

We probe the interaction of such nanotubes with 2 different substrates:
graphite and mica. Both samples are cleaved just before the experiments,
and are kept in a closed chamber during the measurement process. The
atmosphere is either air or dry nitrogen (with no noticeable difference), and
the experiments are performed at ambient temperature.
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4.2.2 Measurement protocol and data analysis

CNT compression

In the experiment, we press the CNT against a flat surface, and record
the deflexion d of the AFM cantilever as a function of the sample vertical
position zs. A key difference with existing peeling tests in the literature is
the orientation of the nanotube: here it is initially almost perpendicular to
the substrate, while other experiments use a parallel configuration [70, 71,
134, 135].

The experimental facility as been presented in chapter 2, but we will
briefly review its key characteristics for this experiment. The translation
of the substrate is performed with a piezo translation platform operated
in closed loop, featuring an accuracy of 0.3 nm rms. The measurement of
the deflexion d is performed with our home made interferometric deflexion
sensor. The intrinsic background noise of our detector is only 10−13 m/

√
Hz

for the cantilevers used in this experiment (see figure 4.3). Beyond this
very low noise, a key advantage of the technique is that it offers a calibrated
measurement of the deflexion, without conversion factor from Volt to meter
as in the standard optical lever technique common in AFM. zs and d being
both calibrated, we can therefore compute at any time the CNT compres-
sion zc = zs − d cos(θAFM). In this formula, cos(θAFM) accounts for the 15◦

inclination of the AFM cantilever with the substrate, and positive values
of d, zs are directed upward. We set the origin of zc at the last contact
point between the nanotube and the surface: for strong adhesion, this situ-
ation reasonably corresponds to a fully extended nanotube, thus to a zero
compression.

Static force measurement

We calibrate the spring constant k of the cantilever with a thermal noise
measurement far from the sample [26], as presented in chapter 3: the ther-
mal excitation operates like a random force (white noise) on the cantilever,
and we measure the resulting power spectrum density (PSD) of deflexion
fluctuation. As illustrated in figure 4.3, the PSD of the first resonance of
the cantilever is well described by a simple harmonic oscillator model. From
this fit, we determine the dynamic spring constant k1 of the first mode of the
cantilever: k1 = (84 ± 5).10−3 N/m. The static stiffness k is deduced from
the dynamic one k1 with a small correction coefficient computed for an Euler
Bernoulli description of the cantilever [26]: k = 0.97k1 = (81±5).10−3 N/m.
In quasi-static operation, supposing that the force acting on the nanotube
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is only vertical, it can be computed by F = −kd/ cos(θAFM).
All signal are acquired at 200kHz with high resolution acquisition cards

to determine the force compression curves F vs zc when cycling the CNT
against the substrate at low ramping speed (typically 500nm/s). Due to the
finite stiffness of the cantilever, a classic mechanical instability occurring
with attractive forces prevents continuous operation in equilibrium, and
part of the force compression curves F (zc) cannot be accessed during the
approach-retraction cycle. To exclude data that do not correspond to quasi-
static operation of the cantilever, we discard any point presenting a deflexion
speed ḋ greater than 3 standard deviations of its equilibrium fluctuations.

Dynamic stiffness

If the ramp is sufficiently slow, we stay long enough around any compression
zc to measure a spectrum of deflexion fluctuations driven by the thermal
noise. The force acting on the AFM tip is no longer due to the deflexion
of the cantilever alone, since the nanotube touching the surface has to be
considered as well. The mechanical oscillator (cantilever first mode) expe-
rience an effective stiffness k1 + kCNT, shifting its resonance frequency from
f0 to fCNT, as illustrated in the inset of figure 4.2. In first approximation,
the dynamic stiffness of the cantilever (around the resonance frequency of
the oscillator) can be computed by [23]

kCNT = k1

[(
fCNT

f0

)2

− 1

]
(4.1)

Taking into account the 15◦ inclination of the AFM cantilever with the
substrate, this formula is slightly modified into:

kCNT =
k1

cos2 θAFM

[(
fCNT

f0

)2

− 1

]
(4.2)

We perform a time-frequency analysis of the deflexion signal, to access
at each time to the PSD of the thermal noise driven deflexion. As long as
the quasi-static approximation is valid and the resonance has a high enough
quality factor, the maximum of the spectrum directly gives fCNT, so we
can use equation 4.2 to estimate kCNT. Figure 4.2 present a spectrogram
of the deflexion signal during an approach-retract cycle. Each spectrum
Sd(t, f) has been computed in a 5ms time window, corresponding to a
2.5 nm translation of the sample.
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Figure 4.2 – Time frequency analysis of the deflexion. Time trace of the substrate
position zs (a) and of the cantilever deflexion d (b) during an approach-retract
cycle. In the inset, a power spectrum density (PSD) of the deflexion signal is
shown before (yellow) and during (green) contact: thermal noise excites the first
resonance of the mechanical oscillator composed by the AFM cantilever and the
CNT connecting the surface and the AFM tip. The dynamic stiffness kCNT of the
nanotube can be computed from the observed frequency shift of the resonance. We
generalize this technique with a time frequency analysis: every 5ms, we compute
a PSD of the deflexion and plot the result in the color coded spectrogram (c). We
extract from this plot the time evolution of the resonance frequency, and thus of
the dynamic stiffness.
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Figure 4.3 – “Instantaneous” power spectrum density Sd(t, f), computed in a
5ms time window are much noisier than the averaged PSD presented in the inset
of figure 4.2 (yellow curve is averaged for 1 s). The resonance frequency of the
mechanical oscillator can however be computed using a frequency average weighted
by Sd(t, f) (equation 4.3), and match with a good precision the one deduced from
the fit on the average curve with a simple harmonic oscillator (SHO) model.

The spectrums in the inset of figure 4.2 have been averaged on a longer
time window (1 s), they present a smooth shape that is easy to fit with a
simple harmonic oscillator model. However, “instantaneous” spectrum are
much noisier, as illustrated in figure 4.3. Due to the short 5ms time window,
the frequency resolution is only 200Hz, and data is too noisy too be fitted
easily. However, the maximum of power spectrum density Sd(t, f) can be
measured with the following estimator:

fCNT(t) =

∫
∆f

fSd(t, f)df
∫
∆f

Sd(t, f)df
(4.3)

Where ∆f is an adequate frequency interval centered on fCNT (self adapt-
ing procedure). For example, using this estimator on a 1 s interval around
t = 3 s for the deflexion signal plotted in figure 4.2, we estimate fCNT−f0 =
(1610± 250)Hz (the incertitude corresponds to one standard deviation), to
be compared to fCNT − f0 = 1680Hz estimated with a fit of the average
power spectrum density on the same time interval. The thermal noise exci-
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Figure 4.4 – Force-compression curves for 2 different nanotubes on a substrate of
graphite. Three different cycles are plotted for first nanotube in (a) and two for the
second in (b), each corresponding to different landing positions on the substrate
and different ramping speeds żs from 0.5µm/s to 50µm/s. Although complex, the
response is very reproducible, hinting at a nanotube specific signature rather than
spurious effect such as stick-slip of the surface. Approach and retraction curves
present a strong hysteresis in some portions, and a perfect overlap in others. The
force is mostly attractive, with two types of behavior: diverging like events ending
with a jump, or plateaux around 0 and −1 nN.
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tation is clearly strong enough to determine the resonance frequency shift,
and thus kCNT.

4.2.3 Force and stiffness versus compression curves

In the experiments, the CNT is pushed against a flat surface, and we
measure the force-compression profile F (zc) of the nanotube during an
approach-retract cycle. We present the result of such measurements in fig-
ure 4.4 for a substrate of graphite and 2 different nanotubes. The shape
of the curve can be rather complex, but is very reproducible for a single
nanotube: it is independent on the landing position and on the ramping
speed, for żs varying on two orders of magnitude. A strong hysteresis be-
tween approach and retraction can be noticed, although a perfect overlap
of both force-compression profiles is retrieved in some part of the curves.
The interaction is everywhere attractive (F < 0) or marginally repulsive,
hinting at adhesion to be the most pertinent process to consider. Two types
of behavior can be distinguished: diverging like events ending with a jump,
or plateaux around 0 (mainly during approach) and −1 nN (mainly during
retraction). The signature of the second nanotube (figure 4.4-b) is easier
to read, since it presents only two “accidents” during retraction and large
force plateaux. We will therefore focus our analysis on this sample, but the
conclusions are applicable to others as well.

We present in figure 4.5 the force and dynamic stiffness versus com-
pression curves. The shape of kCNT is strongly connected to that of F :
diverging values of kCNT in parallel to force accidents, and plateaux around
zero and 0.3N/m in correspondence to the force plateaux. As previously
mentioned, this behavior is very robust and the measurement is reproducible
for different landing position of the substrate, ramping speeds, surrounding
atmosphere (air or dry nitrogen). The behavior is even robust if we change
the nature of the substrate, as illustrated in figure 4.6 for a surface of mica.
However, the values of the force and stiffness plateaux are lower than those
of graphite in this case. A direct comparison of force-compression curves
for the 2 different substrates is given in figure 4.7, which reports the results
of 80 compression cycles, half on mica and half on graphite, using different
ramping speeds.

To interpret those observations, let us simply model the nanotube by an
elastic line, incompressible along its axis. The shape of the force-compression
curves, with two similar patterns (force plateaux, jumps and divergences)
occurring reproducibly at about 300 nm distance for that specific nanotube,
suggests that it is not integer on its whole 2µm length. On other nanotubes,
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Figure 4.5 – Force F and dynamic stiffness kCNT of a nanotube as a function
of its compression on a graphite substrate. A strong hysteresis, due to adhesion,
can be noted between approach (blue) and retraction (red). Well defined plateaux
of force (around 0.98 nN) and stiffness (around 0.036 N/m) allow one to estimate
the energy of adhesion of the CNT on graphite (EHOPG

a = 0.98 nJ/m), as well as
the nanotube mechanical properties. The jumps and steep peaks of the curves are
signature of transitions between contact and adhesion shapes of various portions
of the nanotube, as suggested by the scenario of numbered sketches. Off scale data
for kCNT climb up to 1N/m.
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Figure 4.6 – Force F and dynamic stiffness kCNT of a nanotube as a function of
its compression on a mica substrate. The curves are very similar to those of figure
4.5 with a graphite surface, except for the vertical scale: the energy of adhesion is
estimated at Emica

a = 0.42 nJ/m, about half of that with graphite. Similarly, the
dynamic stiffness of a nanotube adsorbed on mica is one third of that on graphite:
kpeeling
CNT = 0.013 N/m.
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Figure 4.7 – Comparison of force-compression curves for graphite and mica: 40
independent measurements are plotted for each substrate, half with a ramping speed
żs = 0.5µm/s and half with żs = 5µm/s. The reproducibility of force plateaux is
excellent, and characteristic of the nature of the sample.

such as the one presented in figure 4.4-a, similar reproducible patterns can
be observed, with distances from few tens of nanometers up to 400 nm.
Spurious effects as stick-slip phenomenon can be discarded as the observed
behavior is independent on ramping speeds. The few peeling tests found
in the literature on other nanotubes also present similar discontinuities in
the force curves [70, 71, 133, 134, 144]. A sound hypothesis is that the
nanotube is composed of several ideal segments linked by defects presenting
higher flexibility (kink like defects for example). The equilibrium shape of
each segment can thus be described by the Elastica, as will be detailed in
part 4.3.

Let us denote by Ea the energy of adhesion per unit length of the nan-
otube on the substrate. As soon as part of the nanotube is adsorbed, the
systems tends to minimize its energy by maximizing the absorbed length.
However, this process increases the bending of the free standing part of the
nanotube and the associated curvature energy. The adsorbed length will
thus be a balance between adhesion and bending, leading to a given radius
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of curvature Ra at the contact point . If the free standing part of the nan-
otube is long compared to Ra, its shape does not change much when it is
being peeled from the substrate. The vertical displacement δz needed to
peel a small length δl is in first approximation δz ≃ δl. As we are pulling
with a force F , the work produced is Fδz while the energy released is −Eaδl,
leading to F ≃ −Ea: peeling the nanotube results in a flat force-compression
curve. This is indeed what is observed in our experiments, the value of the
plateaux giving direct access to the value of the energy of adhesion per unit
length: EHOPG

a ≃ 0.98 nJ/m for graphite substrate, and Emica
a ≃ 0.42 nJ/m

for mica. The complete analysis of this behavior will be presented in section
4.7.2.

Flat force-compression curves should lead to zero stiffness, since is im-
plies dF/dz = 0. However, it is clear on figures 4.5 and 4.6 that kCNT

does not vanish when the force presents a plateau. This dynamic stiffness
is measured in the ( 10 − 50) kHz range through thermal noise fluctuation.
The discrepancy between kCNT and dF/dz can be explained by the simple
assumption that adhesion is a slow process: in such a case, high frequency
thermal fluctuations will only probe the response of the free standing part
of the nanotube, the adsorbed length acting like a rigid clamping condition
at fast time scales. We will show in the next sections that the measured
value of this dynamic stiffness can be related to the mechanical properties
of the nanotube.

4.3 A tool to describe the shape of a carbon

nanotube: the Elastica

In this section, we will present a simple model to analyze experiments where
a carbon nanotube (CNT) is pushed (more or less) perpendicularly against
a substrate. This CNT is attached to an AFM tip, so that we can exper-
imentally measure the force versus distance dependance. The nanotube is
modeled by an elastic line, incompressible along its axis. We will restrict
our analysis to deformations in a single plane (ex, ez), as sketched in figure
4.8. The shape of the CNT is described by the coordinates x(s), z(s) of a
parametric curve, where s is the arc length abscissa along the line. At each
point, θ(s) is the angle between the local slope and the vertical (along ez)
direction. By convention, we will put the origin O of the coordinates at the
first extremity (s = 0) of the CNT (the one we are holding). The final point
of the CNT (s = L, where L is the length of the free standing part of the
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Figure 4.8 – The shape of the nanotube is described by the coordinates x(s), z(s)
of a parametric curve, where s is the arc length along the line. θ(s) is the angle
between the local slope and ez. M0 and ML are the bending moments applied at
the origin O and at the free end of the CNT, and F is the force applied at the
origin. The length L of the free standing part of the nanotube may be smaller than
its whole length LCNT, if part of it is adsorbed on the surface.

nanotube) has coordinates X and Z, with

X =

∫ L

0

sin θ ds (4.4)

Z =

∫ L

0

cos θ ds (4.5)

If some part of the nanotube is adsorbed on the surface, the length L of
this free standing part will be smaller than the total length of the nanotube
LCNT. Using these notations, the CNT compression zc used in the previous
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part is

zc = LCNT − Z (4.6)

To ease direct comparison with experimental results, we will use zc in the
figures, but will mainly use Z during calculation.

We will make the hypothesis that the CNT is not submitted to any
external forces along its length, except at its two extremities. In equilibrium,
these two forces will simply be opposite so that the total force acting on
the nanotube is zero. In fact, the same argument holds at any point along
the line, so that the force F of the upper part acting on the lower part
is a constant along the curve. Moreover, we will suppose that it is only
vertical1: F = Fez. F > 0 corresponds to a compression force on the
nanotube, previously measured as a repulsive force on the cantilever, while
F < 0 corresponds to a pulling force (attractive for the cantilever).

The bending moment M at each point along the line can be related to
its local curvature:

M = EI
dθ

ds
= EIθ′ (4.7)

where E is the Young’s modulus and I the quadratic moment of the CNT.
At equilibrium, the sum of the moments acting on an infinitesimal element
should be zero, which leads to the expression of the Elastica [82]:

EI
d2θ

ds2
= EIθ′′ = −F sin θ (4.8)

Note that this equation is analog to the equation of motion of a pendulum,
where s, F and EI play respectively the role of time, gravity and length
of the pendulum. F < 0 (pulling forces, equivalent to attractive forces of
previous part) corresponds to a gravity field directed towards θ = π, θ = 0
is thus an unstable equilibrium in this analogy. A solution to this equation
is a minimum of the energy of curvature of the line:

Ec =
1

2
EI

∫ L

0

(
dθ

ds

)2

ds (4.9)

Direct integration of equation 4.8 leads to a first invariant of the Elastica:

EI (θ′(s) − θ′0) + Fx(s) = 0 (4.10)

1The horizontal force Fxex acting on the line is zero if the contact of the nanotube
with the surface can freely slide, or if the holding point can freely move laterally
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This equation can also be read as the expression of the equilibrium of mo-
ments at the origin for the portion of the nanotube between 0 and s. Mul-
tiplying equation 4.8 by θ′ and integrating, one finds a second invariant in
s:

1

2
EIθ′(s)

2 − F cos θ(s) = Invariant (4.11)

The Elastica is a second order differential equation thus we need to
express two boundary conditions to solve it. F is in general also unknown,
but is fixed by the integral constraint (4.5) which fixes the distance between
the origin of the nanotube and the substrate. Classic boundary conditions
that can be found are θ fixed (clamped extremity) or θ′ = 0 (torque free
extremity). We will study briefly 2 cases of interest for our experiment:

• Absorbed nanotube: a strong interaction with the substrate tends
to adsorb the nanotube on the surface. In this case, the continuity
of the slope of the elastic line sets the slope of the curve for the last
point of the free standing part :

θL =
π

2
(4.12)

The length of this free standing part will then be tuned by an energy
balance between adsorption and curvature. The second boundary con-
dition, at the origin, will prove to be of low importance in the limit of
large Z, as soon as the nanotube is long enough. We will show that
it should be treated as torque free extremity:

θ′0 = 0 (4.13)

• Point contact: if the nanotube end is not adsorbed on the surface
(i.e. θL 6= π/2) and can freely slide, the origin cannot be treated as a
pivot point any more (or the equilibrium shape will just be a straight
line). In this case, a clamped origin is a sound hypothesis, while the
final point is simply free of any torque:

θ0 = θAFM (4.14)

θ′L = 0 (4.15)

θAFM is the angle imposed by the way the CNT is attached to the
AFM tip, and adding the effect of the classic 15◦ inclination of the
cantilever with respect to the surface. Reasonable values for θAFM

thus lie in the [0◦ − 30◦] range.
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A way to unify these two different boundary conditions at the origin would
be to consider a “weak” torque spring, for which we can write θ′0 = −κ(θ0 −
θAFM). If κ is small in some sense, we tend to the boundary condition of
first case (eq. 4.13), while in the other limit we tend to that of the second
case (eq. 4.14).

4.4 Absorbed nanotube

In this section, we compute the equilibrium force corresponding to an ad-
sorbed Elastica, and its equivalent vertical stiffness. The attraction force
can be modeled by a Van der Waals interaction between the nanotube and
the sample. However, this short range force drops to zero as soon as the
nanotube is a few nanometers away from the surface, a distance compara-
ble to its diameter. We already dropped any description of phenomenon at
this scale for the nanotube when modeling it as an elastic line, we therefore
study the limiting case where the interaction is restricted to pure contact
only. The adhesion is then simply described by Ea, the adsorption energy
per unit length. The substrate is also supposed to be infinitely stiff and not
to deform due to its interaction with the nanotube. The interested reader
may refer to [102, 123] for more complete approaches where the full Van der
Waals interaction is considered.

4.4.1 Force plateau

Let us start from the expression of total energy ECNT of the nanotube,
which is the sum of the curvature energy Ec(L) of its free standing part of
length L (described by eq. 4.9), and of the adhesion energy of its adsorbed
length:

ECNT = Ec(Z,L) − (LCNT − L)Ea (4.16)

where LCNT is the total length of the nanotube, and Ea its adsorption
energy per unit length. For a given distance Z between the origin and the
substrate, the free standing length L adjusts itself so as to minimize this
total energy, so that in equilibrium we have [100, 129]:

Ea = − ∂Ec

∂L

∣∣∣∣
Z

= −1

2
EI

∂

∂L

∫ L

0

(
dθ

ds

)2

ds =
1

2
EIθ′L

2 (4.17)

A derivation of this relation can be found in Appendix C.1. Let us define
the natural radius of curvature Ra corresponding to this balance between
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adsorption and curvature by:

1

R2
a

=
2Ea

EI
= θ′L

2 (4.18)

Injecting boundary condition θL = π/2 into equation 4.11, and substi-
tuting the value of θ′L just computed, one immediately gets

F cos θ = −Ea(1 −R2
aθ

′2) (4.19)

We will now demonstrate that F ≃ −Ea in the limit of large separation
with respect to the natural radius of curvature (Z ≫ Ra). We adapt the
calculation of the period of a pendulum to our problem, starting from last
equation: (

dθ

ds

)2

= θ′
2

=
1

R2
a

(
1 +

F

Ea
cos θ

)
(4.20)

hence

ds = Ra

(
1 +

F

Ea
cos θ

)
−1/2

dθ (4.21)

L =

∫ L

0

ds = Ra

∫ π/2

θ0

(
1 +

F

Ea
cos θ

)
−1/2

dθ (4.22)

L

Ra
6

∫ π/2

θ0

(
1 −

∣∣∣∣
F

Ea

∣∣∣∣
)

−1/2

dθ (4.23)

L

Ra
6
(π

2
− θ0

)(
1 −

∣∣∣∣
F

Ea

∣∣∣∣
)

−1/2

(4.24)

0 6 1 −
∣∣∣∣
F

Ea

∣∣∣∣ 6
[(π

2
− θ0

) Ra

L

]2
6

(
π
Ra

L

)2

(4.25)

We see that in the limit Ra ≪ Z < L, |F | converges to Ea. F being negative
(pulling force), we have

lim
Z/Ra→∞

F = −Ea (4.26)

When pulling the nanotube from the surface, as soon as its length is greater
than Ra, we have thus demonstrated that the force F should present a
plateau whose value is precisely −Ea, the energy of adhesion per unit length.
This result is robust to any reasonable boundary condition chosen at the
origin. We present in figures 4.9 and 4.10 a numerical integration of the
Elastica illustrating this behavior, for a ratio LCNT/Ra = 5: the force
plateau spans about half of the force-extension curve.
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Figure 4.9 – Numerical integration of CNT compression for L = 5Ra and
clamped origin in absorbed state. Fundamental and metastable states are respec-
tively drawn as thick and thin lines. Shape for point contact (a) and adsorbed
state (b). Force F (c) and dynamic stiffness kCNT (d) as a function of com-
pression. When cycling Z, the nanotube switches between straight shape (black),
weakly bended state (purple), and adsorbed state (green), presenting large force and
dynamic stiffness plateau except for the highest compressions, where F → +∞.
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4.4.2 Boundary condition at the origin

The effect of the boundary condition chosen at the origin in the limit of
small separation (L ≪ Ra) has a huge effect of the behavior of the force
F : we will now show that for a clamped origin (eq. 4.14), the force will go
to +∞ (diverging compression force), whereas if we choose a torque free
condition (eq. 4.13), F → −∞ (diverging pulling force).

Case 1: clamped origin

Let smax correspond to the coordinate of the maximum value of θ′, we
immediately get:

1

L
(θL − θ0) =

1

L

∫ L

0

θ′(s)ds 6 θ′(smax) (4.27)

From the expression of the second invariant of the Elastica (eq. 4.11) in
s = L and s = smax, we have:

1

2
EIθ′(smax)

2 − F cos θ(smax) =
1

2
EIθ′L

2
= Ea (4.28)

therefore,

F =
Ea

cos θ(smax)

(
R2

aθ
′(smax)

2 − 1
)

>
Ea

cos θ(smax)

(
R2

a

L2
(θL − θ0)

2

)

(4.29)
The limit as L tends to zero is thus

lim
L/Ra→0

F = +∞ (4.30)

Clamped boundary condition at the origin (eq. 4.14) thus leads to a diverg-
ing compression force in the limit of small separation, when L ≪ Ra. This
is easy to understand as linking the two different slopes at the extremities
on shorter and shorter length leads to a diverging curvature (θ′ ∝ 1/L)
and associated energy (Ec ∝ Lθ′2 ∝ 1/L). A numerical integration of the
Elastica corresponding to these boundary conditions is plotted in figure 4.9,
illustrating this divergence of the force at large compression.

Case 2: torque free origin

Let us express the first invariant of the Elastica (eq. 4.10) at s = L,
using a torque free hypothesis (θ′0 = 0) at the origin :

EIθ′L = 2EaRa = −FX (4.31)
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Figure 4.10 – Numerical integration of CNT compression for L = 5Ra and
torque free origin in absorbed state. Fundamental and metastable states are re-
spectively drawn as thick and thin lines. Shape for point contact (a) and adsorbed
state (b). Force F (c) and dynamic stiffness kCNT (d) as a function of com-
pression. When cycling Z, the nanotube switches between straight shape (black),
weakly bended state (purple), and adsorbed state (green), presenting large force and
dynamic stiffness plateau except for the highest compressions, where F → −∞.
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Since X 6 L, we immediately get

lim
L/Ra→0

F 6 lim
L/Ra→0

−2Ea
Ra

L
= −∞ (4.32)

Torque free boundary condition at the origin thus leads to a diverging at-
tractive force in the limit of small separation , when L≪ Ra.

Again, this can be simply understood using energy considerations: if
the nanotube is entirely adsorbed, freeing a length X from the surface only
implies a lift of Z ∝ X2/Ra (curvature Ra at the detachment point), re-
leasing an energy EaX . The work done during this operation is W = FZ,
hence F ∝ −EaRa/X . A numerical integration of the Elastica correspond-
ing to these boundary conditions is plotted in figure 4.10, illustrating this
divergence of the force at large compression.

Comparison to experiments

As seen in the previous part (figures 4.5 to 4.7), when the compression
of the nanotube is increased, the force in an adsorbed state tend to be
more attractive, and a “diverging like” attractive force is needed to lift an
adsorbed segment. This scenario is consistent with the second case studied
here: θ′0 = 0. We shall therefore adopt the hypothesis of a torque free origin
(eq. 4.13) in the analysis of the behavior of the adsorbed nanotube.

4.4.3 Loosing adhesion

In this paragraph, we compute the minimum nanotube compression zmin
c

for which the adsorbed state exists : when peeling the nanotube, the length
of the absorbed part LCNT−L will vanish at some point, and this branch of
solution will disappear. Following the conclusion of the previous paragraph,
we use boundary conditions (4.12) and (4.13) : torque free origin, adsorbed
end. We rewrite equation 4.22 to compute the quantity L− Z:

ds = Ra

(
1 +

F

Ea
cos θ

)
−1/2

dθ (4.33)

L− Z =

∫ L

0

(1 − cos θ)ds (4.34)

L− Z = Ra

∫ π/2

θ0

(1 − cos θ)

(
1 +

F

Ea
cos θ

)
−1/2

dθ (4.35)

The last adsorption point corresponds to the largest extension Z of the
nanotube in the adsorbed state, we thus work in the limit of Z ≫ Ra. We
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therefore have F ≃ −Ea, and equation 4.19 with boundary condition θ′0 = 0
leads to θ0 ≃ 0. Hence

L− Z ≃ Ra

∫ π/2

0

(1 − cos θ)1/2dθ = 2(
√

2 − 1)Ra (4.36)

The minimum compression occurs when L = LCNT, thus from the definition
of the nanotube compression zc (equation 4.6) we estimate

zmin
c = LCNT − Z ≈ 0.83Ra (4.37)

The minimum compression needed for the adsorbed state to exist is thus
just a little smaller than Ra. The compression for which we loose adhesion
during the experiment can thus be used to estimate directly Ra. In figure
4.10, we indeed check from the numerical integration of the Elastica in the
case LCNT = 5Ra that this transition occurs at zmin

c ≈ 0.85Ra, very close
to the prediction of equation 4.36, corresponding to the limit LCNT ≫ Ra.

4.4.4 Dynamic stiffness

We will now focus on the vertical stiffness of the CNT, using boundary
conditions (4.12) and (4.13) : torque free origin, adsorbed end, as in previous
paragraph. Let us rewrite the two invariants of the Elastica (eq. 4.10 and
4.11) for s = 0 and s = L:

EIθ′L = −FX (4.38)

1

2
EIθ′L

2
= −F cos θ0 (4.39)

Using the definition of Ra = 1/θ′L (eq. 4.18), we easily get from these
equations in the following relations for an adsorbed nanotube in equilibrium:

F = − Ea

cos θ0
(4.40)

X = 2Ra cos θ0 (4.41)

In the limit of large separations, we have shown in paragraph 4.4.1 that
the equilibrium force is independent of Z, thus the static stiffness is zero.
Nevertheless, if we suppose that the adhesion process is slow, at higher
frequency the nanotube behaves as if its length L is fixed and cannot be
adjusted to balance the adsorption. We will however stay in slow time scale
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with respect to the dynamics of the free standing part of the nanotube, such
that we still can use the Elastica to compute the dynamic stiffness kCNT:

kCNT = − ∂F

∂Z

∣∣∣∣
L

(4.42)

Note that if the adhesion process is not completely frozen at the time scale
we are probing, the measured stiffness will actually be somewhere between
the static and dynamic value.

Let us first derive by Z equations 4.38 and 4.39 :

EI
∂θ′L
∂Z

= kCNTX − F
∂X

∂Z
(4.43)

EIθ′L
∂θ′L
∂Z

= kCNT cos θ0 + F sin θ0
∂θ0
∂Z

(4.44)

Combining those two equations, we have

kCNT(X −Ra cos θ0) = F

(
∂X

∂Z
+Ra sin θ0

∂θ0
∂Z

)
(4.45)

We use relations 4.40 and 4.41 in the limit of large separation (implying
θ0 → 0) to rewrite this last equation as:

kpeeling
CNT = −Ea

Ra

∂X

∂Z

∣∣∣∣
L

(θ0 → 0) (4.46)

To evaluate the derivative ∂ZX |L, we combine equations 4.36 and 4.41 to
link X and Z in the limit θ0 → 0:

L− Z = 2(
√

2 − 1)Ra = (
√

2 − 1)X (4.47)

hence
∂X

∂Z

∣∣∣∣
L

(θ0 → 0) = −(1 +
√

2) (4.48)

which leads to

kpeeling
CNT = (1 +

√
2)
Ea

Ra
≈ 2.4

Ea

Ra
(4.49)

We have demonstrated that the dynamic stiffness should also present a
plateau at large separation, the value of which is directly linked to the
energy of adhesion and mechanical properties of the CNT. In figure 4.10,
we present a numerical integration of the Elastica in the case LCNT = 5Ra,
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demonstrating a quite flat peeling stiffness around 2.1Ea/Ra, close to the
value expected from equation 4.49 in the limit LCNT ≫ Ra.

This plateau can be used to compute the bending stiffness EI of the
nanotube:

EI = 2EaR
2
a = (6 + 4

√
2)

E3
a

(kpeeling
CNT )2

(4.50)

The quadratic moment I is a function on the nanotube geometry [82]:

I =
πD3

CNTtCNT

8
(4.51)

where DCNT is the nanotube diameter and tCNT the wall thickness (0.34 nm
for a single wall [81]). From the measurement of EI, we may either extract
the Young’s modulus E of the nanotube using a known geometry, or use
the accepted value E = 1TPa to infer its diameter.

4.5 Point contact state

If the nanotube is now modeled as an elastic line subject to the boundary
conditions of equations 4.14 and 4.15 (clamped origin, torque free end),
its description is a classic of Elastica textbooks [82]. We will just focus
here on two points of interest for our study: we will first show that the
repulsive force during compression of the nanotube is small compared to Ea

if L = LCNT ≫ Ra, and then study the maximum attractive force expected
during retraction.

4.5.1 Magnitude of the repulsive force

The repulsive force when pushing the nanotube on the surface can be shown
to be an increasing function of the compression zc. Its maximum Fmax is
thus reached for the maximum compression before switching to the adsorbed
state, that’s to say when the nanotube gets tangent to the surface: θL = π/2.
Using boundary condition (4.15) describing torque free point of contact of
the nanotube with the substrate, we also have θ′L = 0. The second invariant
of the Elastica (eq. 4.11) evaluated in s = L leads to:

1

2
EIθ′

2 − Fmax cos θ = 0 (4.52)

We now adapt again the calculation of the period of a pendulum to our
problem using the new boundary conditions. We are interested here in
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compression forces (F > 0), and will calculate the link between F and L:

(
dθ

ds

)2

=
2Fmax

EI
cos θ (4.53)

ds =

√
EI

2Fmax

dθ√
cos θ

(4.54)

L =

∫ L

0

ds =

√
EI

2Fmax

∫ π/2

θ0

dθ√
cos θ

(4.55)

Fmax =
EI

2L2

(∫ π/2

θ0

dθ√
cos θ

)2

(4.56)

Fmax 6
EI

2L2

(∫ π/2

−π/2

dθ√
cos θ

)2

(4.57)

Fmax 6 Ea
R2

a

L2

(
2
√

2K(1/2)
)2

≈ 13.7Ea
R2

a

L2
(4.58)

where K is the complete elliptic integral of the first kind. Note that this
upper bound is divided by two with the simple hypothesis that θ0 = θAFM >
0. Anyhow, we see that in the limit of a long nanotube with respect to Ra,
the maximum repulsive force is much smaller that Ea, the force scale of
the problem. Numerical integration of the Elastica presented in Figure 4.9
illustrates this point.

4.5.2 Switching to the adsorbed state

Using the expression of ds of equation 4.54, we can also compute the ratio
zmax

c /L for which this point contact state stops existing. This ratio is:

zmax
c

L
=
L− Z

L
= 1 −

∫ L

0

cos θds

/∫ L

0

ds (4.59)

zmax
c

L
= 1 −

∫ π/2

θ0

√
cos θdθ

/∫ π/2

θ0

1/
√

cos θdθ (4.60)

These integrals could be expressed in terms of elliptic integrals of the first
and second kind, but it is easier to understand the behavior of this ratio
zmax

c /L as a function of θ0 from its plot in figure 4.11. We see that the
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Figure 4.11 – Maximum compression zmax
c (normalized to nanotube length L) for

which the point contact state exists, as a function of the clamping angle θ0. This
curve is obtained from equation 4.60, expressing the ratio zc/L when the nanotube
becomes tangent to the surface at its the contact point.

greater is the clamping angle θ0, the longer can last the point contact state
when we press the nanotube against a substrate. For θ0 close to 0, this state
will stop existing for compression around half the nanotube length. This
behavior may be checked from the direct integration of the Elastica plotted
in figure 4.9, where we notice that the point contact state stops existing for
zc ≈ 0.59LCNT, as expected for a 15◦ clamping.

4.5.3 Breaking the last contact point

During retraction of the nanotube from the surface, one might be surprised
to encounter high forces just before the jump out of contact event. Those
forces are several times higher than the peeling plateau value, when a long
portion of the nanotube is absorbed, whereas this last contact is just at-
tributed to the extremity of the nanotube. We will anyway show that this
is to be expected from the adhesion energy.

The extremity in contact with the surface has a characteristic length
DCNT, the diameter of the nanotube, thus the expected binding energy is
EaDCNT. As long as the total curvature energy of the nanotube is smaller
than this value, the contact will remain stable.
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Let us now characterize the curvature energy when we are pulling the
nanotube away from the surface. Just before loosing contact, we measure
important attractive force (F < 0), suggesting that the nanotube is ex-
tended, thus almost perpendicular to the surface: 0 < θ < θ0. We suppose
that θ0 = θAFM is small, so that we can linearize the Elastica:

EIθ′′ = −Fθ (4.61)

The solution of this equation, given boundary conditions (4.14) and (4.15),
is

θ(s) = θ0

[
e−s/l +

e−L/l

cosh (L/l)
sinh(s/l)

]
(4.62)

where l =
√
−EI/F is the characteristic length of equation 4.61. The

second term of this equation can be dropped for large forces: F < −Ea

leads to l <
√

2Ra ≪ L. We now directly compute the energy of curvature
of the line from this asymptotic expression:

Ec =
EI

2

∫ L

0

θ′(s)2ds ≈ EI

2

∫ L

0

θ20
l2
e−2s/lds ≈ EIθ20

4l
(4.63)

The contact between the nanotube end and the substrate is stable as long
as Ec < EaDCNT, which translates into

F > F curvature
min = −Ea

8

θ40

D2
CNT

R2
a

(4.64)

In the limit of small clamping angle θ0 → 0, the contact point would be
stable up to diverging forces in this description. In such a case, we should
also consider the elastic energy Ee, due the deformation along the axis [82]:

Ee =
1

2

L

EπDCNTtCNT
F 2 (4.65)

Using the same stability criterium Ee < EaDCNT, she easily show that the
contact is stable as long as:

F > F elasticity
min = −Ea4

√
2R2

a

LDCNT
(4.66)

Let us compute the numerical values of these 2 stability limits. We
use for Ra and DCNT the results of the measurement described further
(table 4.1), for a nanotube over graphite: Ra = 59nm and DCNT = 3.7 nm.
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We use the full length visible in figure 4.1 for the nanotube length since
under tension every portion of the nanotube should contribute to the elastic
energy: L = 2µm. As for the clamping angle θ0, we will use the value
θAFM = 15◦, due to the angle between the substrate an the AFM cantilever.
We estimate:

F curvature
min /Ea ∼ −6.7 (4.67)

F elasticity
min /Ea ∼ −3.9 (4.68)

We see that in this case, the elastic energy will be the first to overcome the
binding energy of the nanotube end with the surface, and the computed
value for the maximum pulling force before rupture of the link is very close
to the observation (see figure 4.5).

4.6 Numerical integration of the Elastica

The Elastica is a non linear ordinary differential equation (ODE) of the
second order, and its solutions do not have a simple analytical expression
for most boundary conditions. It is therefore useful integrate it numerically,
to go beyond the limit cases treated with the analytical description. We
implemented this task using Matlab built-in ODE solver bvp4c (Matlab
script in Appendix C.2).

The control parameter in the experiment is the nanotube compression
zc, which appears as an integral constraint (equation 4.5) in the analyt-
ical formulation. F should be adjusted to fulfill this constraint. This is
clearly not an ideal control parameter for the simulation, so we adopt the
inverse strategy: we compute the family of solutions for an adequate range
of force F , then calculate the corresponding zc, and just switch the axes
when plotting the results.

The simulation for the point contact state is straightforward, since there
are no other adjustable parameters. The adsorbed case has an additional
step, since the length L of the free standing part of the nanotube has to
be tuned to balance adhesion and curvature energies. However, the usual
boundary conditions (θ fixed or θ′ = 0) are independent of the nanotube
length, so we normalize the simulated equation using: arc length ŝ = s/L,
compression ẑc = zc/L, force f̂ = FL2/EI, curvature energy êc = EcL/EI.
The normalized Elastica reads

d2θ

dŝ2
= −f̂ sin θ (4.69)
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From its numerical integration using the appropriate boundary conditions,
we obtain for each force f̂ the shape of the solution θ(ŝ), the correspond-
ing compression ẑc and curvature energy êc. For a given zc, the value of
the length L of the free standing part of the nanotube realizes the mini-
mum of the total energy ECNT (equation 4.16). Let us express ECNT using
normalized quantities:

ECNT = êc(ẑ)
EI

L
+ (L− LCNT)Ea (4.70)

= EIêc(ẑc)
ẑc

zc
+ Ea

zc

ẑc
− EaLCNT (4.71)

Using this formulation, we can easily find the value of ẑc corresponding to
the minimum of ECNT for a given zc.

To avoid any quantization effect, we do not limit this minimization to
the computed values of ẑc: for a given zc, we first find the minimum within
the computed values, then fit ECNT versus f̂ on a few values around this
minimum with a parabola. The lowest point of this fit leads to the adequate
value of f̂ , for which we integrate one more time the normalized Elastica.
Knowing zc, the resulting value of ẑc leads to that of L and every other
quantity of interest for the adsorbed state. The Matlab code corresponding
to this strategy can be found in Appendix C.2. Some illustrations of the
numerical integration of the Elastica are shown in figures 4.9, 4.10 and 4.12.

4.7 Analysis of experimental data

4.7.1 The global picture from the Elastica

Let us summarize the main points we have analytically demonstrated. We
use the Elastica to model the nanotube shape, and an adsorption energy
per unit length Ea to model the interaction with the substrate. The experi-
mental control parameter corresponds to the nanotube vertical compression
zc, and the system can switch between 3 different states:

• No contact

• Point contact — only the end of the nanotube is in contact with the
substrate.

• Adsorbed — A finite length of the nanotube is in contact with the
substrate.
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Figure 4.12 – Numerical inegration of CNT compression for L = 10Ra and
torque free origin in absorbed state. Fundamental and metastable states are re-
spectively drawn as thick and thin lines. Force F (a) and dynamic stiffness kCNT

(b) as a function of compression. When cycling Z, the nanotube switches between
straight shape (black), weakly bended state (purple), and adsorbed state (green),
presenting large force and dynamic stiffness plateau except for the highest compres-
sions, where F → −∞. All characteristic points of the curves can be computed
analytically in the limit L ≫ Ra, and are noted on the graphics. The highest
compression for which the point contact state exists is given by zmax

c (equation
4.60) and associated to an almost zero force (equation 4.58). The lowest com-
pression which the adsorbed state exist is given by zmin

c (equation 4.36), and ends
the force and stiffness plateaux of values Ea and kpeeling

CNT (equation 4.26 and 4.49,
respectively).
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The adsorbed state defines a natural scale of the problem: Ra, the radius of
curvature of the nanotube at the contact point with the substrate, resulting
from a balance between adsorption and curvature. The analysis has been
conducted in the limit of long nanotubes with respect to this length: Ra ≪
LCNT.

Our main findings are summarized in figure 4.12, where we present the
force and stiffness versus compression curves, numerically integrated for the
model of an elastic line with Ra = 0.1LCNT. During approach, the nan-
otube will first adopt a weakly bended shape, resulting in a repulsive force
that is small compared to Ea (see paragraph 4.5.1). As the compression is
increased, this state turns metastable, but may remain till the end of the
nanotube gets tangent to the substrate. The value of the compression zmax

c

at this point can be estimated with equation 4.60. For larger compression,
this branch of solution stops existing and part of the nanotube will be ab-
sorbed on the surface, on a force plateau close to the value of Ea (paragraph
4.4.1). As the suspension point is brought closer to the surface, the force
exhibit a divergence towards −∞ (paragraph 4.4.2, case 2).

During retraction, the adsorbed shape will remains stable or metastable
as long as the absorbed length is non zero, the force presenting the peeling
plateau expected when the free standing length is larger than Ra. The dy-
namic stiffness kCNT also presents a plateau, the value of which is linked to
the mechanical properties of the nanotube (paragraph 4.4.4). For a com-
pression zmin

c a bit smaller than Ra (equation 4.36), the absorbed state dis-
appear, the force jumps close to 0 as the nanotube recover a weakly bended
shape. Further retraction eventually leads to a fully extended nanotube
(perpendicular to the surface), probing high binding forces as the longitu-
dinal response start being solicited. The connection with the substrate will
finally break, for a force a few times larger than Ea (paragraph 4.5.3). The
phenomenology expected from this model is very close to the experimental
observations, as shown by the similarity between figures 4.10 and 4.5 or 4.6.

4.7.2 Extracting information from the measurements

Using this global picture from the Elastica, let us have a closer look at
the information we can extract from figures 4.5 to 4.7. We will restrict
the analysis to the first part of the curve, using the hypothesis that the
nanotube is composed of several ideal segments linked by defects presenting
high flexibility. The length of the portion under test is thus about 300 nm
long, the upper part of the nanotube (about 2µm long) acting mainly as
suspension point that can freely move laterally.
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A first point of interest in the force-compression curves is zmax
c , the

maximum compression before the transition to the adsorbed state. We
read on figure 4.5 to 4.7 zmax

c ≈ 230 nm, which leads to zmax
c /LCNT ≈ 0.8.

According to figure 4.11, this would correspond to a clamping angle of the
origin around 55◦. This is clearly much larger than what can be expected
from the TEM image of figure 4.1, and yet another hint that the segment
probed here is weakly connected to the upper part of the nanotube.

In part 4.2.3, we already associated the plateaux of the force-compression
curves with the adsorption energy per unit length, and estimated EHOPG

a ≃
0.98nJ/m for a graphite substrate, and Emica

a ≃ 0.42 nJ/m for mica (see
details in table 4.1). The peeling plateau for stiffness, as well, can be read
on figures 4.5 and 4.6, and used with equation 4.49 to infer the radius
of curvature at the adsorption point2: we estimate RHOPG

a ≃ 59nm for
a graphite substrate, and Rmica

a ≃ 72nm for mica. The ratio Ra/LCNT is
thus of order 1/5, corresponding to the numerical integration of the Elastica
of figure 4.10. Note that if the adhesion process is not completely frozen at
the frequency we are probing in our estimation of kCNT, the actual dynamic
stiffness would be larger (hence Ra smaller) than the value measured here.

Another way to estimate Ra is to measure the distance between the
last point before loosing adhesion and the fully extended nanotube: for
a ratio Ra/L = 0.2, zmin

c ≈ 0.85Ra. In fact, as the last adhesion point
is a metastable state (corresponding to a vanishing adsorbed length), the
estimation we get through this observation gives only an upper bound to
Ra. This leads to RHOPG

a . 90 nm and Rmica
a . 115nm, values that are

coherent with the estimation through the dynamic stiffness.
Using equation 4.50, we can compute from the previous estimations of

Ea and Ra the value of the bending stiffness EI. Assuming for the Young’s
modulus a value E = 1 × 1012 Pa [81], we can deduce from equation 4.51 the
diameter DCNT for the nanotube segment probed in this experiment. We
report in table 4.1 the estimations we get from measurements on graphite
and mica, leading to DCNT ∼ 3.5 nm. This size is close to the expected
diameter for our nanotubes.

4.7.3 Comparison to other techniques

As mentioned in the introduction of this chapter, although the adhesion of
carbon nanotube and other nano-objects is of great practical interest, very

2As seen on figure 4.10, a small correction has to be considered with respect to equation
4.49: the numerical pre-factor (1 +

√
2), valid in the limit Ra ≪ LCNT , is closer to 2.1

in the case Ra/LCNT = 0.2.
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Substrate HOPG mica

Ea (nJ/m) 0.98 ± 0.07 0.42 ± 0.04

kpeeling
CNT (N/m) 0.036 ± 0.007 0.013 ± 0.003

Ra (nm) 59 ± 10 72 ± 15

EI (10−24 Jm) 7.1 ± 2.5 4.5 ± 2.1

DCNT (nm) 3.7 ± 0.4 3.2 ± 0.5

Table 4.1 – Measured values for the adhesion energy per unit length Ea, dynamic

spring constant plateau kpeeling
CNT , radius of curvature at adhesion point Ra, bend-

ing modulus of the nanotube EI and estimated nanotube diameter DCNT for two
different substrates. Data correspond to mean values and standard deviations on
the plateau of force and stiffness for compression zc in the (80 − 220) nm range
for graphite, and (120 − 280) nm range for mica, for the measurements presented
in figures 4.5 and 4.6.

few experiments have been successful in providing quantitative information.
A few others using peeling protocols have also been very instructive about
the adhesion processes, but imply complex data analysis that prevents re-
liable access to quantitative characterization. We will first quickly review
other significative experiments we are aware of, then compare our results
and stress the difference of our technique with respect to other peeling tests.

4.7.4 Quick review of nanotube adhesion in the litera-

ture

Calculation based on a Lennard-Jones potential describing the graphite sys-
tem [56] have been extended by Girifalco and coworkers [57] to the case
of nanotube and C60 interactions, leading to the definition of a universal
graphitic potential. This theoretical approach evaluates the graphene/gra-
phene interaction to 0.33J/m2, and the energy of adhesion per unit length
between parallel nanotubes to Ea = (−0.406

√
DCNT/(nm) + 0.015) nJ/m.

For SWNT of diameterDCNT = 1.4 nm for example, the nanotube-nanotube
interaction is estimated to Ea = 0.45nJ/m.

Hertel and coworkers [63, 64], imaged by AFM the shape of crossed
CNT adsorbed on a H-passivated silicon (100) substrate. The top nan-
otube profile balances the increase of curvature energy and the loss of
surface energy in this configuration, providing an estimation of the adhe-
sion energy if the CNT mechanical properties are assumed. For multi-
wall nanotubes with diameters around 10 nm, the estimated adhesion en-
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ergy is Ea = (1.3 ± 0.5) nJ/m. Using molecular-mechanics calculations,
they also obtain an estimation for a rigid nanotube on graphite: Ea =
−0.085nJ/m + 0.14J/m2 × DCNT, in very good agreement with their ex-
perimental observation (although the substrate is different).

Benedict and coworkers [15], observed with TEM collapsed multi-wall
nanotubes (MWNT) [33]. The shape of the section of those objects is a
balance between the adhesion of the collapsed section and the curvature of
the edges. Their typical nanotube size is DCNT = (10 − 15) nm, formed by
6 to 8 walls. The magnitude of interlayer cohesive energy per unit surface
is evaluated around (0.15 − 0.24) J/m2.

Chen and coworkers [31] study the interaction between two separate car-
bon nanotubes that are bonded together by examining the geometry of the
point of connexion. Assuming the diameter of the two double wall nan-
otubes (4 nm) and their Young’s modulus, they estimated from the Y shape
analyzed within the Elastica framework a binding energy of 0.36nJ/m.

Kis and coworkers [80] performed a direct measurement using an AFM
tip to pull the inner core of a telescopic multi wall nanotubes (MWNT) [36],
with TEM visualisation. Their experiment demonstrated a friction free
interaction between the concentric layers, and provides an estimation of the
adhesion for this very specific geometry of concentric nanotubes. For a 5 nm
MWNT, they measure from the force plateau Ea = (2 − 3) nJ/m, leading
to an adsorption energy per unit surface of (0.14 − 0.2) J/m2.

Strus and coworkers [134, 135] performed peeling experiments on graphite
and polymer substrates. A MWNT is attached at the extremity of a tip-less
AFM cantilever, parallel to it. It is then pressed on the substrate, and easily
adsorbed since it is presented almost tangentially. The force curve during
approach and retraction present a characteristic signature for point contact
and adsorbed states, though the geometry (clamping angle at the origin al-
most parallel to the surface) makes this signature complex to interpret (see
Figure 4.13). Moreover, the snap-in instability of the cantilever itself hides
part of the peeling process. A global adhesion energy can be estimated from
the integral of the hysteresis of part of the force curve, but the length of
the nanotube that is implied is unknown. Using the full nanotube length,
they reach a lower bound for the adsorption energy per unit length, which
is Ea > 1.1 nJ/m for a MWNT of outer diameter DCNT = (40 ± 6) nm,
inner diameter (10± 2) nm, and a substrate of graphite [114]. They suggest
that the peeling method could be quantitative if one could also monitor the
length of nanotube in contact with the sample. The analysis is complicated
by several transitions between different adsorbed states, hinting at their
nanotubes also presenting some weak bending points, just like ours.
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Ishikawa and coworkers [70, 71] perform peeling experiments on graphite
with self sensing AFM cantilever inside a scanning electron microscope, in
an attempt to monitor simultaneously the peeling force and the shape of the
adsorbed nanotube. The nanotube clamping is similar to the experiment
of Strus and coworkers [134, 135], the force curve analysis thus suffers from
the same complexity. The total cycle energy, including peeling and energy
losses during the process (friction, curvature energy suddenly released on
conformational changes, etc.) is 1.2 × 10−14 J for a MWNT whose length
and diameter are LCNT = 3µm and DCNT = 30nm. If the whole length
is implied and energy losses are neglected, the energy of adhesion per unit
length is Ea = 4nJ/m.

Finally, Ke and coworkers [77], are peeling with a nano-manipulator
a bundle of a few SWNT from a larger free standing one. Using SEM
and TEM imaging, they interpret the shape of the delaminated bundle
with an Elastica description, leading to a measurement of Ea/EI for the
bundle. Assumption on EI from observations of the bundles of SWNT of
diameter DCNT = 1.3 nm leads to nanotube-nanotube interaction of Ea =
(0.13 − 0.16) nJ/m.

4.7.5 Comparison of peeling procedures

As can be seen from this quick review, our method leads to a value of
Ea in reasonable agreement with other protocols for quite similar systems.
The incertitude is however reduced by our approach, which is self sufficient:
there is no need from extra information implying other measurements, to
evaluate the mechanical properties of the nanotube or the geometry of the
contact with the substrate.

Other peeling experiments [70, 71, 134, 135] using AFM detection are
based on a parallel geometry : the clamping of the nanotube is almost
parallel to the surface (see Figure 4.13). The benefit of this approach is
that the adsorbed state is natural, and can be reached for any rigidity of
the nanotube. However, according to the authors, extracting quantitative
information from the force curve would require a simultaneous precise ob-
servation of the shape of the nanotube, which is a very complex task (even
more for SWNT). Moreover, friction may play a non negligible but hard to
characterize role in the peeling process.

In our approach, the clamping of the nanotube is close to being per-
pendicular to the surface. While at first glance it seems counterintuitive
to use such a configuration to measure absorption properties, it turns out
to ease the interpretation of the experimental data, as the force plateaux
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Figure 4.13 – Numerical integration of CNT compression for L = 5Ra and
clamped origin almost parallel to the substrate (15◦ inclination), corresponding to
peeling protocols of references [70, 71, 134, 135]. Shape for point contact and ad-
sorbed state are ploted in (a) and (b), while (c) presents the force F as a function
of compression. When cycling Z, the nanotube switches between straight shape
(black), weakly bended state (purple), and adsorbed state (green). Fundamental
and metastable states are respectively drawn as thick and thin lines. For the point
contact state, an adsorption energy corresponding to a contact length of Ra/13
has been considered to compute the metastability limits (see paragraph 4.5.3). No
obvious force plateau corresponding to Ea can be read on this force-compression
curve: for relatively short nanotubes, the quasi-horizontal clamping condition at
the origin is less efficient to access quantitative information than the quasi verti-
cal (see figure 4.9) or torque free clamping (see figure 4.10) corresponding to our
experiment.
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provide a direct reading of the energy of adsorption per unit length Ea.
The only requisite of our method is to have a nanotube longer than Ra, the
natural radius of curvature at the peeling point. In this limit, friction forces
have little impact on the measurements: the free standing part of the nan-
otube presents a weak horizontal rigidity, letting the horizontal force relax
to small values. In fact, we have demonstrated in section 4.4.1 that in the
limit LCNT ≪ Ra, the force plateaux should be present for any clamping
condition at the origin. A vertical or weak (torque free) clamping is however
helpful as it enlarges the compression range for which the plateau can be
observed. A good illustration of this point is given by comparison between
figures 4.9, 4.10 and 4.13, all corresponding to a numerical integration of
CNT compression for L = 5Ra but using different clamping conditions at
the origin. Peeling protocols should therefore benefit from adopting such
a configuration, either using appropriate clamping of CNT on a AFM can-
tilever tip, or adopting more specialized tools as nanotweezers [144].

4.8 Conclusions and perspectives

In this last section, let us first summarize the main points of this chapter:

• We perform a series of experiments where a single wall carbon nan-
otube is pushed almost perpendicularly against a substrate of graphite
or mica. We measure the quasi-static force as a function of the com-
pression, and we can also access the dynamic stiffness using an analysis
of thermal noise during this process. The most striking feature of these
two observables is a plateau curve for a large range of compression,
the values of which are substrate dependent.

• We use the Elastica to describe the shape of the nanotube, and a sim-
ple energy of adhesion per unit length Ea to describe the interaction
with the substrate. A natural length Ra is defined using this approach,
corresponding to the radius of curvature at the last point of the free
standing part of the nanotube when a non zero length is adsorbed on
the substrate. We analytically derive a complete description of the
expected behavior in the limit of long nanotubes with respect to Ra,
and numerically integrate the Elastica for intermediate lengths.

• The analysis of the experimental data within this simple framework
naturally leads to every quantity of interest in the problem (see table
4.1): the force plateau is a direct measurement of the energy of ad-
hesion per unit length Ea for each substrate, and we easily determine
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Ra from the dynamic stiffness plateau. Mechanical properties of the
nanotube itself (its bending stiffness EI) can be extracted from those
values, and prove to be independent of the substrate.

This method has thus proved to be a very valuable tool to characterize
both the nanotubes and their interaction with a substrate. It can easily be
applied to other materials or environmental conditions, to gather data of
interest for technological applications of nanotubes or nanowires. The key
point for the method to work is a weak rigidity with respect to adsorption:
the radius of curvature at the adsorption point should be small compared
to the length of the nanotube.

A number of questions still have to be addressed to have a complete un-
derstanding of the physical processes of adhesion: what is the characteristic
time scale of adhesion ? What are the associated dissipation processes ?
What can we learn with similar experiments about the friction of the nan-
otube on the substrate ? A number of experiments are already foreseen to
answer those questions, that will imply vertical and horizontal oscillations
of the sample to test the frequency response of the adsorbed nanotube.



Chapter 5

Conclusion

This mémoire presents my current research interests in micro and nano-
mechanics in a comprehensive manuscript. A first chapter describes our
atomic force microscope (AFM) and its innovative detection system that
has been designed and realized in our laboratory. Its quadrature phase
differential interferometer allows the measurement of the fluctuations of
micro-cantilevers with an outstanding resolution, and is used in the second
chapter to study their mechanical properties. Dissipation processes as well
as elastic response are precisely characterized through measurements of the
thermal noise of the system. In the last chapter, we study the mechani-
cal properties of carbon nanotubes (CNT) in interaction with a substrate.
These nano-peeling experiments proved to be very rich, with a quantitative
access to both the intrinsic mechanical properties of the CNT and to the
interaction potential with the surface. Before mentioning the perspectives
of this work, let me summarize the main results of each chapter.

The first chapter presents our experimental device: a home made atomic
force microscope whose detection is based on a quadrature phase differential
interferometer. Several strategies to sense the deflexion are described: the
bi-calcite setup features a small environmental susceptibility, and is used
for low frequency thermal noise studies, while the Wollaston configuration
allows calibrated measurements on a wide spectral range. The quadrature
phase design enables a very high resolution (down to 10−14 m/

√
Hz), equal-

ing or out-performing the best results reported in the literature for a much
larger deflexion range (up to a few µm). The dual output of the interferom-
eter implies a specific handling to interface common scanning probe micro-
scope controllers. We developed analog circuitries to tackle static (contact

133
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mode) and dynamic (tapping mode) operations, and we demonstrate their
performance by imaging a simple calibration sample.

The second chapter first introduces a few useful tools in order to study
the mechanical behavior of a cantilever from its fluctuations. The key-
stone of the analysis is the Fluctuation-Dissipation Theorem (FDT), relat-
ing the thermal noise spectrum to the dissipative part of the response. Using
Kramers-Kronig relations, we show that we can compare theoretical models
and experimental data both in terms of noise spectra and of mechanical
response. We apply this strategy to compare Sader’s model for viscous dis-
sipation with measurements on raw silicon cantilevers in air, demonstrating
an excellent agreement. When a gold coating is present on the cantilever,
the low frequency behavior is strongly modified, the thermal noise present-
ing a 1/f like trend. We demonstrate this behavior to be the signature of
a viscoelastic dissipation process in the cantilever. We provide a quanti-
tative phenomenological description of this effect : a simple power law is
found to describe accurately the frequency dependence of the viscoelastic
dissipation. In a last section, we characterize the mechanical properties of
cantilevers from a mapping of the thermal noise on their surface. This anal-
ysis validates the description of the system in term of its normal modes of
oscillations in an Euler-Bernoulli framework for flexion and in Saint-Venant
approach for torsion. The correct description of the dispersion relation for
torsional modes however lead to the introduction of Barr’s refined model to
account for the observations at high mode numbers. The cantilever stiff-
ness can be precisely measured from this approach, as well as the elastic
coefficients E (Young’s modulus) and S (shear modulus) of its constituting
material.

The last chapter presents peeling experiments on a single wall carbon
nanotube, attached to the cantilever tip. It is pushed almost perpendicu-
larly against a substrate of graphite or mica. We measure the quasi-static
force as a function of the compression, and we can also access the dynamic
stiffness using an analysis of the thermal noise during this process. The
most striking feature of these two observables is a plateau curve for a large
range of compression, the values of which are substrate dependent. We use
the Elastica to describe the shape of the nanotube, and a simple energy of
adhesion per unit length Ea to describe the interaction with the substrate.
A natural length Ra is defined using this approach, corresponding to the
radius of curvature at the last contact point when a non zero length on the
nanotube is adsorbed on the substrate. We analytically derive a complete
description of the expected behavior in the limit of long nanotubes with re-
spect to Ra, and numerically integrate the Elastica for intermediate lengths.



5. Conclusion 135

The analysis of the experimental data within this simple framework natu-
rally leads to every quantity of interest in the problem: the force plateau
is a direct measurement of the energy of adhesion per unit length Ea for
each substrate, and we can easily determine Ra from the dynamic stiffness
plateau. Mechanical properties of the nanotube itself (its bending stiffness
EI) can be extracted from those values, and prove to be independent of the
substrate.

The low noise of our interferometer, as well as its intrinsic calibration,
are obviously central in these various experiments : none of the results we
presented in this manuscript could have been characterized with the clas-
sic optical lever scheme of commercial AFMs. The access to the thermal
noise spectrum outside resonances is for instance a key point in the evalu-
ation of the dissipation processes of cantilevers. The use of thermal noise
is in itself a key point, since we don’t need to determine exactly the trans-
fer function of the external forcing method which is usually necessary to
measure a response function. In the presented research topics, it results in
an innovative approach to evaluate the mechanical behavior of the system.
Using the same geometries, this method could be applied to other materi-
als or environmental conditions, to gather data of interest for technological
applications of cantilever based sensors or nanotubes and nanowires. Our
interferometric setup could thus find a very useful place next to the scarce
tools for dynamic metrology at nanoscale.

Next...

Apart a natural continuation of the research interests mentioned along this
manuscript, one of the main project we have for the next years is the ex-
perimental study of adhesion at nanoscale. We will focus on two cases of
huge practical importance:

• Capillary forces, arising from the condensation of a liquid from its
undersaturated vapor in a confined geometry, present a considerable
interest both for fundamental physics and industrial applications [72]:
fundamentally, the study of capillary condensation provides an useful
test bench to investigate a number of major questions of statistical
physics, as the competition between surface and finite-size effects [18],
the role of disorder [21], or the hysteresis and slow nucleation dynamics
associated with any first order phase transition. As for applications,
forces associated with capillary bridges are deeply implied in a broad
range of phenomena, as the cohesion of divided matter [47, 67], the
creep of composite materials such as plaster, the fracture of mate-
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rials (rocks, concrete, glass. . . ) [85, 141], the storage and transport
in porous materials [86], the aging of mechanical contacts in tribol-
ogy [20, 44], or stiction (destruction by adhesion and friction) in micro
(or nano) electromechanical systems (MEMS or NEMS) [16, 83, 92].

• Van der Waals (VdW) forces, are undoubtedly a key point in under-
standing and controlling the behavior of nano-systems. Such devices
present indeed a high surface to volume ratio, so that surface effects
become more and more important as technology progresses towards
smaller and smaller systems. Carbone nanotubes for instance mainly
interact through VdW forces with their environment. To harness their
unique mechanical and electrical properties [5], understanding their in-
teraction with the rest of the world is certainly of prime importance.
The growing number of their (foreseen) applications, from fillers in
high-strength composites to components of nanoscale electronics and
mechanics [5, 81], or their generic use as a bench system to study fun-
damental physical phenomena on the mesoscopic scale make them a
piece of choice for the study of VdW interaction.

It is thus of prime interest to understand the physics of adhesion in these two
cases, both for fundamental and practical reasons. Direct measurements of
force-distance profiles between two interacting surfaces are a priori a very
powerful way to study these attractive forces, as they offer a direct access
to the potential energy of the interaction as well as quantitative values of
practical interest [72]. However, this approach has been severely impeded
by the intrinsic difficulty of accessing attractive forces by surface force mea-
surements techniques (typically Surface Force Apparatus or AFM), due to
a mechanical instability: the finite compliance of the force sensor is prob-
lematic in the lowest (and most interesting) range of distance. Very few
experiments [30, 80, 111, 142], restricted to special configurations, managed
to overcome this obstacle so far, and this project proposes an answer to this
experimental challenge.

Our innovative AFM, with its outstanding sensitivity can be used to
overcome the intrinsic difficulty of attractive force measurements: can-
tilevers much stiffer can be used, preventing the mechanical instability to
occur without sacrificing too much of the force resolution. The full force
versus distance curve can therefore be explored, and adhesion forces can be
directly characterized. For the first axis of this project, measurements of
capillary forces will be carried out in order to investigate several questions
of both fundamental and applied interest, more especially: the influence of
disorder on wetting and prewetting transitions, the mechanical properties of
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capillary bridges from nano-scale to microscale, and the slow nucleation dy-
namics of capillary bridges and the associated hysteresis phenomena. This
project will be conducted in collaboration with Audrey Steinberger, who
has been hired as a CNRS researcher in 2009 with a project focused on
capillary adhesion and fluctuations in confined phase transitions.

The second axis of the project, on Van der Waals forces, is in continua-
tion of our preliminary work on nanotube peeling. The procedure described
in chapter three will be extended to other nano-objects, like nanowires for
example. A number of questions still have to be addressed to have a com-
plete understanding of the physical processes of adhesion: what is the char-
acteristic time scale of adhesion ? What are the associated dissipation
processes ? What can we learn with similar experiments about the friction
of the nanotube on the substrate ? A number of experiments are already
foreseen to answer those questions; they will imply vertical and horizontal
oscillations of the sample to test the frequency response of the adsorbed
nanotube. Tianjun Li, recently graduated from the East China Normal
University (ECNU), is starting a PhD thesis in joint supervision between
the ENS Lyon and the ECNU on this topic, under the supervision of Zhuo
Sun and myself.

On a more technical level, some of the objectives mentioned above re-
quire an excellent control of the distance between the probe (AFM tip,
colloidal particle or nanotube) and the reference surface (substrate). As in
most AFM setups, we currently rely on the piezo translating the sample to
infer this separation. This technique suffers from slow environmental drifts
which degrades its long time accuracy. We thus need to measure indepen-
dently the probe-surface distance, and if needed use this information as a
retroaction signal to drive the sample position and keep the distance at
the desired value. For this, we will build a second differential interferometer
with performances similar to the one used for deflexion measurement. Felipe
Aguilar, recently graduated in the University of Santiago de Chile (USACH),
is starting a PhD thesis in joint supervision between the ENS Lyon and the
USACH around the further instrumental development of the AFM, under
the supervision of Francisco Melo and Myself. This topic should provide
our experimental setup other unique features with respect to commercial
devices, and could open many research tracks beyond our current projects.
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Appendices



Appendix A

Quadrature phase

interferometer

A.1 Dynamic mode with large oscillations

In this appendix, we deal with the case of oscillations that are not small
compared to the wavelength in dynamic mode. The link between the filtered
contrast C̃0

n = 〈Cn〉 and the filtered phase ϕ0 = 〈ϕ〉 is now not trivial.
Indeed, let us compute C̃0

1 from eq. 2.12:

C̃0
1 = 〈C1 cos(ϕ0 + δϕ)〉 (A.1)

= C1 〈cos(ϕ0) cos(δϕ) − sin(ϕ0) sin(δϕ)〉 (A.2)

= C1(cos(ϕ0) 〈cos(δϕ)〉 − sin(ϕ0) 〈sin(δϕ)〉) (A.3)

As well, C0
2 is given by

C̃0
2 = C2(sin(ϕ0 + ψ) 〈cos(δϕ)〉 + cos(ϕ0 + ψ) 〈sin(δϕ)〉) (A.4)

As soon as 〈sin(δϕ)〉 6= 0, which is the case when ϕ is anharmonic, we see
that the additional terms in the expressions of C̃0

n will proscribe the use of
eq. 2.12 to compute ϕ0.

Let us introduce M and α, both dependent on δϕ such that

Meiα =
〈
eiδϕ

〉
= 〈cos(δϕ)〉 + i 〈sin(δϕ)〉 (A.5)

α will reflect the anharmonicity of the oscillation. The contrasts Cn can
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now be rewritten as

C̃0
1 = C1M cos(ϕ0 + α) (A.6)

C̃0
2 = C2M cos(ϕ0 + ψ + α) (A.7)

Using this notation clearly demonstrate that the averaging process will bias
the estimation of the average optical phase ϕ0 by α. As well, UAC defined
by eq. 2.15 can be computed as:

UAC = MC1C2 cos(ψ) sin(δϕ− α) (A.8)

Again, as soon as 〈sin(δϕ)〉 6= 0, the relation between UAC and δϕ is non
trivial. If this quantity is still independent from the working point (the
value of ϕ0), it is hard to interpret simply when δϕ is not much smaller
than one. It may be used for imaging, but at the expense of a much harder
interpretation of the measured values when the interaction changes during
the scan.



Appendix B

Around Kramers Kronig

B.1 Jonscher like stiffness

Let k(ω) = Re[k(ω)] + i Im[G(ω)] be a response function in Fourier space.
Causality implies that k(ω) obeys the Kramers-Kronig relations :

Re[k(ω)] =
1

π
PP

∫
∞

−∞

Im[k(Ω)]

Ω − ω
dΩ (B.1)

Im[k(ω)] = − 1

π
PP

∫
∞

−∞

Re[k(Ω)]

Ω − ω
dΩ (B.2)

Following the experimental observation of the power law dependence of
Im [Gvacuum(ω)] = Im[k(ω)], we write

Im[k(ω)] = Kiω
α (B.3)

where Ki is a real constant. Relation B.1 implies for the real part:

Re[k(ω)] =
1

π
PP

∫
∞

−∞

KiΩ
α

Ω − ω
dΩ (B.4)

A change of variable with ̟ = Ω/ω leads to

Re[k(ω)] =

[
1

π
PP

∫
∞

−∞

Ki̟
α

̟ − 1
d̟

]
ωα (B.5)

= Krω
α (B.6)

where Kr is a real constant.
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The initial response function k(ω) is thus

k(ω) = (Kr + iKi)ω
α = Keiζωα (B.7)

Let us now evaluate the ratio Ki/Kr, or equivalently the argument ζ =
arctan(Ki/Kr). We will use that k(t) is a real function in time space. The
inverse Fourier transform of k(ω) reads

k(t) =
1

2π

∫ +∞

−∞

eiωtKeiζωαdω (B.8)

and its conjugated complex

k(t) =
1

2π

∫ +∞

−∞

e−iωtKe−iζωαdω (B.9)

=
1

2π

∫ +∞

−∞

eiωtKe−iζ(−ω)αdω (B.10)

k(t) being real translates into k(t) = k(t), hence

eiζ = e−iζ(−1)α (B.11)

ζ =
π

2
α (B.12)

We report this value in equation B.7 to get

k(ω) = K (iω)
α (B.13)

We have thus demonstrated that if k(ω) has an imaginary part presenting
a power law dependence in frequency described by equation B.3, then it
can be written in the form of equation B.13. The two real coefficient of
this equation are fixed by the initial law for Im[k(ω)]: the exponent α is
unchanged, and the prefactor is given by K = Ki/ sin(απ/2).
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B.2 Kramers-Kronig algorithm

function KK.m

function G=KK(sp,fs,T)

% G=KK(sp,fs,T)
%
% This program computes a response function starting from the noise power
% spectrum density, using Fluctuation-Dissipation Theorem (FDT) and Kramers
% Kronig (KK) relations.
%
% Input variables are :
% sp : power spectrum density (units U^2/Hz)
% fs : sampling frequency (Hz)
% T : temperature (K) (if omitted, the default value is 295K)
%
% Ouput variable is G : response function, (units U/q, where q is the unit
% of the conjugate variable of U)
%
% FDT reads : sp=4 kB T Im(G) / omega
% where kB is the Boltzmann constant and omega = 2 pi f is the pulsation
% corresponding to frequency f. The knowlegde of Sp thus leads to Im(G),
% and KK relations lead to Re(G).

if (nargin<3)
kT=1.38e-23*295;

else
kT=1.38e-23*T;

end

% number of point of input spectrum
npt=length(sp);

% round number of point to nearest power of 2
npt=2^floor(log2(npt));

% define frequency vector
f=(0:npt)/(npt)*fs/2;

% compute Im(G) from FDT
imG=sp/4/kT*2*pi.*f;

% define Im(G) for negative frequencies for FT
imG=[imG(1:npt+1) -imG(npt:-1:2)];

% compute inverse FT of Im(G) (Im(G) is an odd function, its FT is supposed
% to be purely imaginary, thus we take only the imaginary part of the result)
imG_t=imag(ifft(imG));

% we compute the direct FT of sign_t*imG_t (FT of an even function is
% supposed to be purely real, so we keep ony the real part)
sign_t=[0 ones(1,npt) -ones(1,npt-1)];
reG=real(fft(sign_t.*imG_t));

% limit the result to positive frequencies
G=reG(1:npt+1)+1i*imG(1:npt+1);

return
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Appendix C

Adsorbed Elastica

C.1 Balance between adhesion and adsorption

Let us prove the validity of equation 4.17 step by step:

Ea =
∂Ec

∂L
(C.1)

=
1

2
EI

∂

∂L

∫ L

0

(
∂θ(s, L)

∂s

)2

ds (C.2)

=
1

2
EIθ′L

2
+

1

2
EI

∫ L

0

∂

∂L

(
∂θ(s, L)

∂s

)2

ds (C.3)

=
1

2
EIθ′L

2
+ EI

∫ L

0

∂2θ(s, L)

∂L∂s

∂θ(s, L)

∂s
ds (C.4)

=
1

2
EIθ′L

2
+ EI

[
∂θ(s, L)

∂L

∂θ(s, L)

∂s

]L

0

− EI

∫ L

0

∂θ(s, L)

∂L

∂2θ(s, L)

∂s2
ds

(C.5)

Let us compute the boundary term first. In s = 0, the standard boundary
conditions (θ(0, L) constant or θ′(0, L) = 0) cancel this boundary term. In
s = L however, the boundary condition is sliding with L: θ(s = L,L) = π/2.
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We can therefore write:

dθ(L,L)

dL
= 0 =

∂θ

∂s

∣∣∣∣
L

(L,L) +
∂θ

∂L

∣∣∣∣
s

(L,L) (C.6)

∂θ

∂L

∣∣∣∣
s

(L,L) = − ∂θ

∂s

∣∣∣∣
L

(L,L) = −θ′L (C.7)

The boundary term is thus −EIθ′L
2. Then, using the Elastica, we can

rewrite equation C.5 as:

Ea = −1

2
EIθ′L

2
+

∫ L

0

∂θ(s, L)

∂L
F sin θ(s, L)ds (C.8)

= −1

2
EIθ′L

2 − F

∫ L

0

∂

∂L
cos θ(s, L)ds (C.9)

= −1

2
EIθ′L

2 − F

(
∂

∂L

∫ L

0

cos θ(s, L)ds− cos θL

)
(C.10)

= −1

2
EIθ′L

2 − F

(
∂Z

∂L
− cos θL

)
(C.11)

Z is fixed in the minimization of ECNT, and θL = π/2 for the adsorbed
nanotube, thus the second term of this equation is 0 and the validity of
equation 4.17 verified.

C.2 Numerical integration of the Elastica

The following Matlab code can be use to integrate numerically the Elastica
in the case of a torque free origin and an adsorbed end. It consists of two
different files :

• flambage.m: function to compute the shape and curvature energy for
given pulling force and boundary conditions

• elastica.m: script to compute the shape, total energy, force and
dynamic stiffness of an adsorbed Elastica for a set of origin/substrate
distances. Figure C.1 corresponds to the output of this script.
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C.2.1 function flambage.m

function [X,Z,Ec,sol]=flambage(F,theta0,thetaL,solinit)

% [X,Z,Ec,sol]=flambage(F,theta0,thetaL,solinit)
%
% Recherche la forme d’équilibre d’une tige de longueur 1 subissant une
% force F selon l’axe vertical. La raideur en torsion de la tige
% est unitaire : EI=1. theta0 et thetaL précisent les conditions aux
% limites à l’origine et au point final de la tige. S’ils sont définis, ils
% fixent l’angle avec la verticale, sinon la condition imposée est celle
% d’un couple nul. solinit est le paramètre de départ de l’optimisation
% (optionel).
%
% X et Z sont les coordonnées du point final. Ec est l’énergie de courbure
% de la tige, et sol contient la (ou les) fonction(s) optimisée(s).
%
% Remarque : Ec prend la valeur NaN si la valeur maximale de z est
% supérieure à Z (impossible pour une compression de la tige par un plan).

% En l’absence de solution initiale, on prend une fonction linéaire de
% l’abscisse curviligne
if (nargin<4||isempty(solinit))

if isempty(theta0)
solinit = bvpinit(linspace(0,1),[thetaL 0]);

else
solinit = bvpinit(linspace(0,1),[theta0 0]);

end
end

% Initialisation des variables de sortie
X=zeros(size(F));
Z=zeros(size(F));
Ec=zeros(size(F));

for idx=1:length(F)
% résolution de l’ODE compte tenu des conditions aux bords
sol(idx)=bvp4c(@(s,T) twoode(s,T,F(idx)),...

@(T_0,T_L) twobc(T_0,T_L,theta0,thetaL),...
solinit);

% calcul de la forme de la tige courbée paramétrée par l’abscisse
% curviligne s.
ds=1e-3;
s= 0:ds:1;
T = deval(sol(idx),s);
x=cumsum(sin(T(1,:)))*ds;
z=cumsum(cos(T(1,:)))*ds;

% variables de sortie
X(idx)=x(end);
Z(idx)=z(end);
Ec(idx)=sum(T(2,:).^2)*ds/2;
if max(z)>Z(idx)

Ec(idx)=NaN;
end

% On conserve la solution actuelle pour la prochaine résolution
% (convergence accélérée si la force F change peu)
solinit=sol(idx);
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end

% fonction à usage interne : définition de l’ODE du premier ordre
% équivalente à theta"=-F sin(theta) à l’aide de T=[theta theta’]
function dTds = twoode(~,T,F)
dTds = [ T(2)

-F*sin(T(1))];

% fonction à usage interne : définition des conditions aux bords
function res = twobc(T_0,T_L,theta0,thetaL)
if isempty(theta0)

% moment nul à l’origine : theta_0’=T_0(2)=0
idx0=2;
theta0=0;

else
% angle fixé à l’origine : theta_0=T_0(1)=theta0
idx0=1;

end
if isempty(thetaL)

% moment nul l’extrémité : theta_L’=T_L(2)=0
idxL=2;
thetaL=0;

else
% angle fixé à l’extrémité : theta_L=T_L(1)=thetaL
idxL=1;

end

res = [ T_0(idx0)-theta0
T_L(idxL)-thetaL];

C.2.2 script elastica.m

%% Forme d’équilibre d’une tige tractée - adsorbée

% On simule le décollage d’une tige d’une surface sur laquelle elle est
% adsorbée, en cherchant la relation entre la force appliquée, la longueur
% décollée de la tige, et la distance entre le point de traction et le plan
% d’adsorption.

% La raideur en torsion de la tige est unitaire, tout comme sa longeur :
EI=1;
L0=1;

% Rayon de courbure naturel au point de contact avec la surface
Ra=0.2*L0;

% Énergie d’adhésion de la tige
Ea=EI/2/Ra^2;

%% Solution générique tige appuyée encastrée

% On calcule un ensemble de courbes de flambage d’une tige unitaire
% subissant une force F verticale et un moment nul à l’origine, et
% formant un angle pi/2 à son autre extrémité.

% Plage d’exploration en force
F=-(0:0.003:1).^2*2*Ea;
[X,Z,Ec,sol]=flambage(F,[],pi/2);
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%% Forme d’équilibre d’une tige tractée - adsorbée

% On simule le décollage d’une tige d’une surface sur laquelle elle est
% adsorbée, en cherchant la relation entre la force appliquée, la longueur
% décollée de la tige, et la distance entre le point de traction et le plan
% d’adsorption.

figure

% distance entre le point de traction et le plan d’adsorption
H=(0.005:0.005:0.995)*L0;

% abscisse curviligne
ds=1e-3;
s=0:ds:1;

% variable de couleur pour le tracé des courbes
couleur=jet(100);

% Initialisation des variables :
E=zeros(size(H)); % énergie totale de la tige
L=zeros(size(H)); % longeur de tige adsorbée
Fz=zeros(size(H)); % force verticale
kdyn=zeros(size(H)); % raideur dynamique
deltakdyn=zeros(size(H)); % erreur sur l’estimation de la raideur

for idx=1:length(H)
% On laisse la longueur de la tige comme paramètre libre (mais
% inférieur à L0) et on cherche le minimum d’énergie entre la courbure
% de cette tige et l’adsorption de la partie restante sur la surface
[E(idx) idx2]=min(Ec.*Z/H(idx)+Ea*(H(idx)./Z-L0));
% Pour éviter les effets de quantisation dus aux nombre limité de
% valeur de F, on cherche à réaliser un fit parabolique autour de ce
% minimum en utilisant une dizaine de point
idxfit=max(1,idx2-5):min(length(F),idx2+5);
if (length(idxfit)>2)

P=polyfit(F(idxfit),...
Ec(idxfit).*Z(idxfit)/H(idx)+Ea*(H(idx)./Z(idxfit)-L0),2);

Ftmp=-P(2)/2/P(1);
else

Ftmp=F(idx2);
end
% On résoud à nouveau l’ODE en prenant la valeur adéquate de F, ainsi
% que de petite variations autour pour estimer la raideur dynamique
[Xtmp,Ztmp,Ectmp,soltmp]=flambage(Ftmp*[0.99 1 1.01],[],pi/2,sol(idx2));

% longeur de tige adsorbée
L(idx)=H(idx)./Ztmp(2);
% Si la solution existe
if (L(idx)<L0)

% Énergie totale de la tige
E(idx)=Ectmp(2)/L(idx)+Ea*(L(idx)-L0);
% Force de traction
Fz(idx)=Ftmp/L(idx)^2;
% raideur dynamique
kdyn(idx)=...

-0.01*Ftmp*(1/(Ztmp(2)-Ztmp(1))+1/(Ztmp(3)-Ztmp(2)))/2/L(idx)^3;
deltakdyn(idx)=...

0.01*Ftmp*(1/(Ztmp(2)-Ztmp(1))-1/(Ztmp(3)-Ztmp(2)))/2/L(idx)^3;
% solution de l’ODE



150 Exploring nano-mechanics through thermal fluctuations

soladh(idx)=soltmp(2);
ttp = deval(soladh(idx),s);
x=cumsum(sin(ttp(1,:)))*ds*L(idx);
z=cumsum(cos(ttp(1,:)))*ds*L(idx);
% tracé de la solution (1 courbe sur 10)
if (~mod(idx-1,10))

plot(x/Ra,z/Ra,’color’,couleur(ceil(z(end)*100),:))
hold on
plot((x(end)+[0 1-L(idx)])/Ra,[z(end) H(idx)]/Ra,...

’+-’,’color’,couleur(ceil(z(end)*100),:))
end

else
Fz(idx)=NaN;
E(idx)=NaN;
L(idx)=NaN;
kdyn(idx)=NaN;

end
pause(0.01)

end
axis([-0.1 5.1 -0.1 5.1])
axis square
set(gca,’ydir’,’reverse’)
xlabel(’x/Ra’)
ylabel(’z/Ra’)
grid

%% Énergie, force et raideur vs distance

figure

subplot(3,1,1)
plot(H/Ra,E/Ea)
xlabel(’H/Ra’)
ylabel(’E/Ea’)
grid

subplot(3,1,2)
plot(H/Ra,Fz/Ea)
xlabel(’H/Ra’)
ylabel(’F/Ea’)
axis([0 5 -6 0])
grid

subplot(3,1,3)
plot(H/Ra,kdyn/(Ea/Ra))
xlabel(’H/Ra’)
ylabel(’kdyn/(Ea/Ra)’)
axis([0 5 0 10])
grid
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Figure C.1 – Output of script elastica.m: shape of adsorbed Elastica for various
origin/substrate distances, and total energy, force and dynamic stiffness versus
distance.
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Appendix D

Datasheets of cantilevers

and calibration samples
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D.1 Budget Sensors Cont-GB cantilever

AFM probe Model: ContGB-G

! "#$%&'(!)'(*+, -'./+

-+,0.'.1!23+4*+.&# ! 56!789 ! :;<! =!789

203&+!>0.,1'.1 ! ?@A!B;C ! ?@?D!<!?@=!B;C

>'.1%(+E+3!F+./1G ! "#$!%& ! '()! *$!%&

H+'.!I%J1G ! #$!%& ! :;<! K!%&

"G%&7.+,, ! +!%& ! '()! *!%&

"%$!8+%/G1 ! *,!%& ! '()! +!%&

"%$!L+1!M'&7 ! 5K!NC ! '()! #!%&

"%$!-'J%*, O!AK!.C
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8'(R!>0.+!S./(+

A?T!<!AKT!'(0./!&'.1%(+E+3!'U%,!
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5?T!'1!1G+!'$+U

-! >0.1'&1!H0J+!'.J!

! L$+&%'(!S$$(%&'1%0.,

-! ./01023!4/5/670879!:7679/5!;</=2
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! 5/&7516!0879D52EE!/F!,$5&!/5!=/08!E732E!

! 0R!1G+!&'.1%(+E+3@!"G%,!&0'1%./!'(,0!

! 2581592E!082!61E2<!<2G2907B70H!/F!082!!

! &'.1%(+E+3@
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D.2 Budget Sensors Cont cantilever

AFM probe Model:

!" #$%&'(&")$*+" "

!" ,$&'&+*")$%$-.&/.("0.-.($%"12$3+

" 0455+&2.("6.7"0/'7+

" #/.78.9+:";<=">"?<@">"A<;"55

!" #$'&.%B:"%$%+

!" 6/.8"72$3+"C8+8"'%"D$%"8('%"'%B-+E"8455+&2.("&.7"&$"72$F.*+

" '"5$2+"8455+&2.("2+72+8+%&'&.$%"$G"G+'&C2+8"$F+2"HAA"%5<

" 647.('-"I'-C+8 ,'%B+

,+8$%'%&"J2+KC+%(4 " ?;"LM9 " NOP" ="LM9

J$2(+"#$%!'%& " A<H"QO5 " A<AR"P"A<="QO5

#'%&.-+F+2"S+%B&/ " =TA"U5 " NOP" ?A"U5

)+'%"V.*&/ " TA"U5 " NOP" T"U5

6/.(L%+88 " H"U5 " NOP" ?"U5

6.7"M+.B/& " ?R"U5 " NOP" H"U5

6.7"0+&"W'(L " ?T"X5 " NOP" T"U5

6.7",'*.C8 Y"?A"%5

#$'&.%B %$%+

M'-G"#$%+"Z%B-+

HA["P"HT["'-$%B"('%&.-+F+2"'>.8"

HT["P";A["G2$5"8.*+"

?A["'&"&/+"'7+>

Contact
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D.3 NanoWorld Arrow TL cantilever

 

Arrow™ Silicon-SPM-Probes

General Description 

 
General

SPM probe for very high resolution imaging
fits to all well-known commercial SPMs
cantilever and tip are supported by a single crystal silicon holder
monolithic design of holder, cantilever and tip
tip is pointing into the <100> direction

Material Features

highly doped, single crystal silicon
high conductivity of the doped silicon prevents electrostatic charging
resistivity is as low as 0.01-0.025 Ohm*cm.
no intrinsic stress and absolutely straight cantilevers
no bending of cantilever by changing temperatures
chemically inert silicon for application in fluids or electrochemical cells

Cantilever

rectangular cantilever that is shaped like an arrow
trapezoidal cross section of the cantilever
wide detector side for easy adjustment of the detection system
small width at the tip side reduces damping

 

 

Datasheet Arrow™ TL8

Special Application Cantilevers

NanoWorld Arrow™ TL8 sensors are tipless cantilevers for special applications. They can for
example be used for attaching spheres and other objects to the free end of the cantilever, or
for functionalizing and sensing applications.

All sensors of the Arrow™ series are made from monolithic silicon which is highly doped to
dissipate static charge and are chemically inert. The TL8 sensors feature eight rectangular
cantilevers having a triangular free end.
The cantilevers have a pitch of 250 µm.

The Arrow™ TL8 sensors are optionally available with a top side coating of 5nm titanium /
30nm gold. (Arrow™ TL8Au)

Cantilever Data Value Range*

Thickness 1.0 µm 0.5 - 2.5

Width (rectangular part) 100 µm 95 - 105

Length 500 µm 495 - 505

Force Constant 0.03 N/m 0.004 - 0.54

Pitch 250 µm n.a.

Resonance Frequency 6 kHz 3 - 14

 

Order Code without coating Quantity Data Sheet
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D.4 Budget Sensors HS-20MG calibration sam-

ple
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Abstract

This mémoire presents my current research interests in micro and nano-mecha-
nics in a comprehensive manuscript. Our experimental device is first presented:
this atomic force microscope, designed and realized in the Laboratoire de Physique
de l’ENS Lyon, is based on a quadrature phase differential interferometer. It
features a very high resolution (down to 10−14 m/

√
Hz) in the measurement of

deflexion, down to low frequencies and on a huge input range. The dual output
of the interferometer implies a specific handling to interface common scanning
probe microscope controllers. We developed analog circuitries to tackle static
(contact mode) and dynamic (tapping mode) operations, and we demonstrate
their performance by imaging a simple calibration sample.

As a first application, we used the high sensitivity of our interferometer to
study the mechanical behavior of micro-cantilevers from their fluctuations. The
keystone of the analysis is the Fluctuation-Dissipation Theorem (FDT), relating
the thermal noise spectrum to the dissipative part of the response. We apply this
strategy to confront Sader’s model for viscous dissipation with measurements on
raw silicon cantilevers in air, demonstrating an excellent agreement. When a gold
coating is added, the thermal noise is strongly modified, presenting a 1/f like trend
at low frequencies: we show that this behavior is due to a viscoelastic damping,
and we provide a quantitative phenomenological model. We also characterize the
mechanical properties of cantilevers (stiffness and Elastic Moduli) from a mapping
of the thermal noise on their surface. This analysis validates the description of the
system in term of its normal modes of oscillations in an Euler-Bernoulli framework
for flexion and in Saint-Venant approach for torsion, but points toward a refined
model for the dispersion relation of torsional modes.

Finally, we present peeling experiments on a single wall carbon nanotube at-
tached to the cantilever tip. It is pushed against a flat substrate, and we measure
the quasi-static force as well as the dynamic stiffness using an analysis of the
thermal noise during this process. The most striking feature of these two observ-
ables is a plateau curve for a large range of compression, the values of which are
substrate dependent. We use the Elastica to describe the shape of the nanotube,
and a simple energy of adhesion per unit length Ea to describe the interaction
with the substrate. We analytically derive a complete description of the expected
behavior in the limit of long nanotubes. The analysis of the experimental data
within this simple framework naturally leads to every quantity of interest in the
problem: the force plateau is a direct measurement of the energy of adhesion
Ea for each substrate, and we easily determine the mechanical properties of the
nanotube itself.
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