Resonant behavior of the wake of a flat plate:
Hot wire and sound scattering measurements
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abstract
We report experimental measurements of the wake behavior of a thin flat plate submitted to
an external harmonic forcing. Two slightly different configurations are examined. Classical
hot wire measurements of the velocity field downstream the plate and sound scattering
experiments of the near wake demonstrates that the flat plate wake displays a kind of
inertial resonance when the inverse of the forcing frequency matches the flying time of
fluid particles along the moving part of the plate.

Introduction

Wakes flows from bluff bodies [1], are normally understood as spatially developing open
flows, because fluid particles enter and leave the flow boundaries of the observation domain
continuously. The particular case of the wake, created by the presence of a thin flat plate,
fall into the class of noise amplifiers |2, 3]. This system is very sensitive to external
noise, which can, in some situations, be amplified. As every portion of the wake is of
convective character (stable or unstable); the system displays, what we call an extrinsic
dynamics. That means that the spatial evolution of the flow is essentially determined,
either by the external noise entering the system or by a coherent external forcing. The
opposite situation is a wake displaying an intrinsic dynamics, either by some adequate
hydrodynamic resonance or by the onset of localized regions of absolute instability [4, 5]|.
The onset of flow structures in this case, become insensitive to the incoming external noise
and display a very definite oscillation frequency. Even though, in both cases, the wake’s
most important signature is the vorticity content [6].

The simplest wake flow is the wake created by a thin flat plate interacting with an uniform
laminar flow stream. A real flat plate, of thickness e and length L, does not, in principle,
present spontaneous self-sustained oscillations, provided that the Reynolds number based
on e, Re., be small (Re, = Uy e/v, where Uy, v are the free stream velocity and the
kinematic fluid viscosity). In that case the the wake flow acts as noise amplifier. Here,



any initial disturbance externally imposed, is ultimately advected by the mean flow. This
sensitiveness to coherent external forcing makes possible to create a very rich family of
spatially evolving vortical structures. The onset of dynamical vortical structures at large
and small scales will determine any further behavior of the wake.

Wake dynamics characterization, like mean and fluctuating velocity profiles, are normally
performed using local measurements of flow velocity (thermal and Laser Doppler anemome-
try) and recently non-local ones, like PIV methods. However, vorticity, a non local quantity
and the most significant ingredient of wake flows, should be measured through non local
methods. Scattering of sound waves of high frequency in air (and water) by laminar and
turbulent vortex flows has been recently proposed as an accurate diagnosis of such a flows
[7, 8,11, 12, 13].

In vortex flows submitted to sound waves, acoustic scattering occurs as a result of a non
linear coupling between flow vorticity and sound. In the first Born approximation, the
sound scattered pressure (or density) is found to be proportional to the Fourier transform
in space and time of the vorticity of the base flow Q(k,r), which constitutes a spectral
probe of the vortex flow structure. That linear theoretical relationship is consider to be
valid if the incident plane sound wave velocity v;(r,¢) and the vortex flow velocity |u,(r, )|
are both small in comparison to the sound velocity ¢, i.e., |v;| < Ju| < c.

If the vortex flow is a slowly varying one, its characteristic time scale 71" is much longer
than that of the sound waves w the vortex flow appears as frozen by the sound field when
T > w~'. Within the first Born approximation, the asymptotic behavior of the scattered
pressure field p, in three dimensions and in the far field region, wir|/c¢ > 1, |r|/L > 1, is
given by the following equation [8],

2
W iamvc/e cos 6

A|r| 1 —cosf

Ps = Do Qz(q: V= Vo) (1)
where we see that fl(q, v — 1,) corresponds to the Fourier transform in space and time
of the base flow vorticity Q(r,t) = V x U(r,t). The scattering wave vector, as in light
scattering theory, is given by q = k; — k; for v ~ v,. If r is the distance between the
vortex target and measuring point, to look for asymptotic plane scattering waves we have
to consider the two conditions /A > 1,7/L > 1, of the far field approximation.

From an experimental point of view, a flow diagnostic is possible if we can get an overall
representation, in Fourier space, of a wide range of scattering wave vectors q. If we consider
a symmetric geometrical representation of the incident and scattered wave vectors, the
scattering wave vector can be approximated (according to a particular choice of a reference

frame) by
4rv,

q= sin(0/2)z with q-y=0

In that form, a flow diagnostic can be done by two ways; changing the scattering angle 6
or varying the incoming sound frequency v,. The second way is easy to achieve, because
a simple frequency sweep provides an overall response at all wave vectors. Scattering
signals in the above theoretical form are pressure signals. They must be measured by
accurate pressure transducers of both high sensitivity and specially high spatial resolution.
Spatial resolution is ultimately limited by diffraction effects due to transducer’s size. The
incoming sound waves involved in theoretical calculations are plane waves, and that can
be provided, for instance, by a flat and large emitter. However the receiver can be either a



large transducer or a small one. The large one enables the right definition of the scattered
wave vector, thus allowing to probe the flow at different scales. A small one should be used
to trace the interference pattern coming from a multitude of scattered wave vectors.

This paper is concerned with the pattern forming structures on the wake of a flat plate
under external forcing. Results from two experiments are shown on the basis of classical
hot wire measurements of the near wake and through the scattering of sound waves by flow
vorticity of the wake.

Experimental set-up

Two flat plates models are investigated. The first case (hereafter case I) considers a thin
and rigid flat plate (copper, small roughness) of aspect ratio length-to-thickness L/e = 25,
with thickness e = 1.6 mm. The plate maintained in vertical position, can perform small
oscillations, through two half-axes passing at the geometric center of the front end of
the plate (border of attack). We use ball-bearings supporting axes to perform oscillatory
forcing reducing friction. (Fig. 1 a).
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Figure 1: Physical set up. (a) Case 1. A rigid flat plate of length L and width e, oscillating at
small angles a around the border of attack. (b) Case II. A fixed flat plate of length L, with a
short flap b at the trailing edge, performing small oscillations. For both systems, incoming fluid
flow was a flat velocity profile (below 1 %) of controlled free stream velocity Ux,.

The second thin plate system (hereafter case IT ) consist of a fixed flat plate of length L
with a small flap of length b at the trailing edge (supported by small ball-bearings), which
can perform small oscillations when forced by an external shaker. The aspect ratios are:
length-to-thickness L/e = 12.5, flap length-to-thickness b/e = 18.7 (Fig. 1 b). The first
model was tested in the open low turbulence wind tunnel at the Physics laboratory (Ecole



Normale Supérieure-Lyon). This wind tunnel reaches a maximum free stream velocity of
Us = 2 m/s, with a rate of turbulence less than 0.05 %.

The second model was tested in the closed (double section) wind tunnel at the LEAF-NL
laboratory, (Universidad de Chile). For this tunnel, the maximum free stream velocity is
Usx = 20 m/s with a turbulence rate less than 0.5 %. Leading and trailing edges for both
flat plate models are similar.

Harmonic forcing, in both cases, was performed with a B&K 4810 electromagnetic shaker
coupled to a rigid aluminum arm system attached to: both sides of the plate for the
first case, and to the both sides of the flap, in second case. Both systems were mounted
on a completely independent support, uncoupled from the wind tunnel in order to avoid
undesired vibrations from fans. Measurements of wake velocity profiles were made with hot
wire probes at different downstream distances (z/e coordinate) from the plate’s trailing
edge.

Hot wire Results

The free regime without forcing (Fig.2) as well as the accurate wake response to differ-
ent forcing regimes (Fig.3), was obtained by systematic measurements of the whole wake
velocity profiles using thermal anemometry. Scanning the cross stream coordinate (y/e)
across the wake with the hot wire probe coupled to a stepper motion provides a clear but
complementary picture of the wake dynamics (velocity profiles) before to proceed with
scattering experiments.
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Figure 2: Case II: Normalized velocity profiles U(y)/Us when the flap in horizontal position
(without forcing), for x/e = 31.2, @ = 0, at different values of the width based, e, Reynolds
number Re.: ¢, 54,6; *, 83,2 ; o, 109,3 ; O, 151,2 ; «, 181,2.
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Without forcing

In cases I and II, we recorded mean velocity profiles U(y) as a function of Reynolds number
Re,. In both situations, velocity profiles are symmetric with respect to y/e = 0, where the
minimum wake velocity (at any x/e position) is found. Wake width and Reynolds number
are related through the effects on the upstream boundary layer (on the plate).

We found that the greater the Re, the thinner the wake. However, all normalized velocity
profiles (by U,,) collapse into a single curve when we scale the transverse coordinate with
the estimated boundary layer thickness at the trailing edge of the plate §(Rey), as we see
in Fig. 2. The wake thickness is of the order of ~ 2§(Rey) at any of the Reynolds values.

Harmonic forcing

The forcing mechanism is exactly the same in both situations. When the flap (Case I)
or the overall plate (Case II) are forced to oscillate harmonically at small angles «, the
natural wake is modulated at the forcing frequency fy. The angle is given by

at) = apy sin(2 fot) (2)

where a,,, the maximum forcing angle and f, the forcing frequency, and we define o, = 20,
as the peak-to-peak value.
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Figure 3: Case I: Systematic effect of forcing frequency on the wake behavior (x/e = 79.4) at
constant but small peak-to-peak amplitude of the order of 2ba,, /e ~ 0.2 and Reynolds number
Rey, = 47.4. (a) Mean velocity profiles U(y)/Us. Free wake behavior is indicated by a O (fp, =0
Hz). Case I1: Mean velocity profiles U(y) for different forcing frequencies fy: *, 1 [Hz|; o, 18 [Hz|;
O, 25 [Hz[; «, 33 [Hz|; > 44 [Hz]. Reynolds number is Re, = 83.2 and z/e = 31.2

A significant difference between the free and forced wake is the cross stream increased scale
of the later. The effect of harmonic forcing, for the Reynolds numbers here studied, is to
increase the wake width, defined as A\(Re.), with respect to the free case. However, the wake
width will depend on fy provided that the peak-to-peak forcing amplitude be constant. In
any case, the wake displays an oscillatory and periodic motion at the forcing frequency f
which consist of spatial vorticity waves advected at an average velocity downstream the



flat plate. A simple estimation for the wave length of the spatial vorticity pattern, Aq, can
be the ratio between the free stream mean velocity and the forcing frequency, g ~ U,/ fo.
This spatially periodic pattern can be understood if we consider the spatial and temporal
Fourier transform of the vorticity equation in 2D, (neglecting diffusion terms). A dispersion
relation relating frequency f and wave number k, of the form; 27 f = k - U, where U, - &
is the advection velocity of vorticity and |k| = 27/ \q.

This relationship will explain a Doppler effect associated to scattered pressure signals [12].
We will prove that sound scattering will be intense when the scattering wave vector ¢
matches the wave length of the spatial vorticity pattern \q.

The wake width difference that is seen between overall velocity profiles from case I and
IT under forcing (Fig. 3) can be explained because hot wire measurements in case I were
made at higher z/e distances from the trailing edge and the wake width increases with
longitudinal coordinate x. At similar measuring points, both wakes under similar forcing
parameters, «, fy, are similar.

A simple dimensionless analysis of the general situation gives us three characteristic time
scales, 1y, tp, to, defined as follows.

b
=g b= b= % (3)
Both times scales, t;, and t;, are equivalent, and correspond to the flying time required for
fluid particles to move along that length scale of the plate which is under forcing. In case
I it is the whole plate L which performs oscillations, and in case II it is only the small flap
b. The last time scale % is simply the inverse of the forcing frequency.
The two dimensionless parameters involving those time scales are the ratios F, = t,/t, and
Fp, =ty /to which are understood as the inertial response of the flow around the boundary
layer to a periodic forcing. If we increase fy, enough such that F' > 1, fluid particles inside
the boundary layer are now submitted to a harmonic forcing in time, and we can now
trigger instabilities of the boundary layer itself [15].
For the particular condition Fj, F;, ~ n where n = 1,2, 3, ..., the system will display some
kind of inertial resonance, as the flying time equals the forcing period, and fluid particles
of each plate side, leave the trailing edge at zero angle o = 0. This behavior is seen in Fig
3, where mean velocity profiles (case II) are wider when Fj approaches unity (or fy is 25
Hz).
To find out the wake response to systematic forcing from wake velocity measurements, we
look for energy, or velocity fluctuations, profiles downstream the system. Fig. 4 displays
the wake frequency response in the form of integrated mean squared values of velocity
fluctuations (u?) as a function of forcing frequency fy, for three different Reynolds values.
In any case, energy fluctuations are maximum at three resonant forcing frequencies f, ~
15,25,29 Hz, for Reynolds numbers of Re, = 59,104, 83 respectively. Note that in these
experiments, the averaged forcing energy, is very small, (E;) o o2 f¢ represents around
3% of kinematic flow energy. This resonant behavior is obtained if the dimensionless
parameter Fp, Fy are close to unity. In this case, the wake pattern adopts the form of
periodic modulated vorticity sheets of wavelength A\q ~ Uy /f, where f, corresponds to
the resonant forcing frequency. The resonant behavior, in the form of maxima of integrated
fluctuating energy, must be related to the vorticity of the wake. The following scattering
experiments, will provide a proof of this inertial resonance.
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Figure 4: Case I1: Integrated mean squared energy fluctuations < u? > versus forcing frequency
fo, at three Reynolds numbers Re.: 0 59; < 83; x 104. Resonance frequencies are f, ~ 15,25,29
Hz respectively.

Sound scattering

As mentioned before, sound scattered pressure p, is proportional to the spatio-temporal
Fourier transform of vorticity, Q(q, v). According to our experimental conditions for case I,
the scattering wave vector, defined as q = k, —k;, can be written as ¢ ~ 47 (v,/c) sin(/2)z
because q -y = 0 in Fig 5.

Experiments were performed as in Fig 5, looking for a symmetrical configuration. Both
the sound emitter and receiver are square Sell type transducers of size A = 15 cm, having
a flat response between 5 to 100 kHz within 10 dB. Details can be found in [11, 12].

The emitter and receiver (placed outside the test section) are focused toward the near
wake of the plate (Fig. 5). The incident, k;, and scattered, ks, wave vectors forming an
angle . With such a geometry we probe the vortex flow at length scales corresponding
to the wave vector q = k, — k; of components ¢, = 0 and ¢, = 47(v,/c)sin(0/2). At
constant scattering angle # = 30°, different wave vectors q are obtained by simply setting
the emitter frequency v,.

A heterodyne detection procedure (demodulation of the received acoustic signal) gives us
an analytic signal [16]| that can be sampled at low-frequency. The phase of this analytic
signal is directly related to the Doppler shift and the amplitude proportional to vorticity
content of the periodic flow inside the scattering volume.

As we have shown above, harmonic forcing on the flat plate, traduces into an oscillatory
wake pattern. Any wake modulation traduces into a vorticity modulation at the forcing
frequency fy. The fact that the scattering pressure signal, ps, displays a Doppler frequency
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Figure 5: Sound scattering experimental set up. Square (size A = 15 cm) Sell type ultrasound
emitter and receiver under a symmetric configuration. The scattering angle between the incident
(ki) and the scattered (ks) wave vector is @ = 30°. The beginning of the scattering volume, z,,
corresponds to a x,/b = 13 ratio downstream the plate.

shift (Av = fy — 1g), where its sign is given by the sense of the scattering wave vector ¢
originates because the vortex target is moving at an advection velocity close to the mean
free stream flow velocity. After a heterodyne demodulation, the power spectrum of the
scattered pressure signal is centered at v, and one measures with good accuracy (dv = 50
mHz) the spectral line associated to the scattered pressure ps, as shown in Fig. 6 (a).
The scattering peak occurs exactly at Av = — fy, independent of the advection velocity,
in agreement with theory. An overall wave scattering vector scanning, provides the peak
amplitude at the forcing frequency from each of the power spectra of scattered pressure.
Fig. 6 (b) displays two clear resonances of the power spectrum amplitude as a function
of the scattering wave vector q. However, two different flow velocities are involved. This
is explained only if we respect the dispersion relationship stated in the previous section.
Forcing frequency, scattering wave number and flow velocity obey 27f = q - U, where
U, - & is the advection velocity of vorticity (U, ~ Us) and |q| = 27/Aq. The Doppler
shift is invariant, and if we take the resonant wave vectors of Fig 6, with their associated
velocities, the dispersion relationship is exactly fulfilled. An estimate of U, is given by the
averaged flow velocity inside the wake.

If we trace the power spectrum amplitude at the Doppler peak for resonant wave vectors
(constant Reynolds, Re,.), we get an overall vorticity resonance as shown in Fig. 7. The
resonance occurs when the dimensionless parameter, in this case F7, is close to unity.
When Fj, ~ 1, the wavelength of the periodic vortex motion inside the wake, \q is an
exact multiple of the flat plate length scale L, and, as we stated before, the wake width
is maximum, so we conclude that vorticity resonance are directly related to the wake’s
transverse extension.
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Figure 6: Ultrasound scattering by the forced wake at two different free stream velocities Re, = 40
(d), Re. = 60 (o), where the forcing amplitude and frequency are : 2La,, /e ~ 0.2 , and fo = 10
Hz, respectively. (a) The power spectra of scattered pressure display the same Doppler peak at
the forcing frequency fo. (b) A sweep of the scattering wave vector q = 4m(v,/c) sin(6/2) indicate
two clearly different spatial resonances at very definite length scales (qy).
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Figure 7: Evolution of the normalized resonant scattered pressure amplitudes (30) and resonant
wavelengths (A) with the dimensionless parameter Fr, = foL/U,.

35



Concluding remarks

A complete investigation of the wake resonant behavior, in two slightly different situations
(case I, ITI), was accomplished using both classical hot wire anemometry and ultrasound
scattering methods. The aim of this experimental work was to study and compare the
dynamical response of the laminar wake of a flat plate under two slightly different forcing
methods. In a first case, forcing was introduced by small amplitude rotary oscillations of
the trailing edge of a flat plate. In a second case, the flat plate was composed of a static
part plus a small flap attached to the trailing edge, that was in oscillatory forced motion.
Both methods confirmed the presence of a resonant wake behavior. At the resonance
condition, the wake width is maximum, and vorticity displays a maximum amplitude. In
addition, sound scattering results, confirm that Doppler effect is in agreement with recent
theoretical findings, in particular that the Doppler shift and wave length of vorticity obey
accurately the scalar product q - U.
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