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Abstract

The functionalization of an atomic force microscope (AFM) cantilever with a colloidal bead is
a widely used technique when the geometry between the probe and the sample must be
controlled, particularly in force spectroscopy. But some questions remain: how does a bead
glued at the end of a cantilever influence its mechanical response? And more importantly for
quantitative measurements, can we still determine the stiffness of the AFM probe with
traditional techniques?

In this paper, the influence of the colloidal mass loading on the eigenmode shape and
resonant frequency is investigated by measuring the thermal noise on rectangular AFM
microcantilevers with and without beads attached at their extremities. The experiments are
performed with a home-made ultra-sensitive AFM, based on differential interferometry. The
focused beam from the interferometer probes the cantilever at different positions and the
spatial shapes of the modes are determined up to the fifth resonance, without external
excitation. The results clearly demonstrate that the first eigenmode is almost unchanged by
mass loading. However the oscillation behavior of higher resonances presents a marked
difference: with a particle glued at its extremity, the nodes of the modes are displaced towards
the free end of the cantilever. These results are compared to an analytical model taking into
account the mass and inertial moment of the load in an Euler–Bernoulli framework, where the
normalization of the eigenmodes is explicitly worked out in order to allow a quantitative
prediction of the thermal noise amplitude of each mode. A good agreement between the
experimental results and the analytical model is demonstrated, allowing a clean calibration of
the probe stiffness.

S Online supplementary data available from stacks.iop.org/Nano/24/225504/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

Atomic force microscopes (AFMs) are currently used in a
great variety of studies in various disciplines to measure small
forces by detecting the deflection of a microcantilever [1].
In biophysics, for example, it has been applied to the

unfolding of proteins [2, 3], probing the structure of biological
membranes [4], and monitoring the mechanical response
of living cells [5, 6]. Also in nanotechnology, micro-scale
levers find applications in micro-electro-mechanical systems
(MEMS) and other nanotechnological devices [7]. In material,
surface or nanosciences in general, AFM probes appear
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as a cornerstone for quantitative studies of nanoscale
properties [8].

All these applications exploit the great accuracy in
measuring the cantilever deflection offered by AFM,
converting this measurement into units of force by assuming
the cantilever behaves like a spring of known stiffness.
Manufacturers often specify the spring constant of their
cantilevers with a wide range of values, mainly because
of the great uncertainties in the dimensions, particularly
the thickness, resulting from the fabrication process. To
overcome this problem several techniques have been proposed
to calibrate the cantilever spring constant [1, 9–12]. The
reader is referred to the work of Burnham et al [13] and the
references therein for a comparative summary of the different
techniques.

One of the first and still most commonly used calibration
methods is the so-called thermal calibration method, based
on the measurement of the vibration amplitude of the free
end of a cantilever excited due to thermal noise [11]. The
first peak of the thermal noise spectrum is related back
to the spring constant of the cantilever modeled as an
harmonic oscillator. In a more accurate model, Butt and
Jaschke [14] introduced a correction factor deduced from
the Euler–Bernoulli description of the flexural dynamics of
a free-clamped beam. In a previous work, we demonstrated
that measuring this thermal noise for the first resonant mode
of the cantilever provides an excellent benchmark to probe
the mechanical response of the cantilever and compare it to a
simple mechanical model [15].

In this paper, we extend this method to the case of
functionalized AFM cantilevers. Indeed, when the geometry
between the probe and the sample must be controlled, it is
common to use a colloidal bead fixed at the free end of the
lever. The radius of curvature of the ‘tip’ is then controlled
and stable, and offers a clean sphere–plane geometry to
study interactions at nanometric distances. These modified
probes (whether home-made or commercially available) are
commonly used in force spectroscopy, in particular for the
measurement of the nanorheology of confined fluids [16, 17]
or of the Casimir interaction [18]. How does this loaded mass
influence the mechanical response of the AFM cantilever?
Can the common techniques (thermal noise calibration in
particular) to determine the stiffness still be used?

In this work, we measure the thermal noise spectra of the
cantilever deflection on its whole surface and compare the rms
amplitudes obtained with and without a bead loaded at its free
extremity. Furthermore, we compare the results to a simple
mass model that modifies only the boundary conditions of
the classical rectangular beam theory [19]. A good agreement
between experimental data and this analytical model will be
demonstrated, showing that thermal noise calibration of the
probe stiffness is still perfectly pertinent for such cantilevers.

The paper is organized as follows. Section 2 describes the
theoretical approach, with a special emphasis on eigenmode
normalization to allow the prediction of the thermal noise
amplitude of each mode. Section 3 details the experimental
results in the light of this model, for two cantilevers probing
various mass ratios between the cantilever and the colloidal

Figure 1. Schematics of the experiment and analytical model. The
cantilever (length L, width W, thickness H) is modeled in the
Euler–Bernoulli framework by its neutral axis subject to a deflection
Z(x, t). The bead glued at its free end is modeled as a point mass mb
located at the extremity. rg is the equivalent gyration radius of the
bead and accounts for the inertia in rotation of the bead at the
cantilever end. In the experiment, the deflection can be measured at
any position x and y (along and transverse to the cantilever axis)
with a very low noise differential interferometer [15, 21, 22],
sensing the optical path difference between the two laser beams
represented in the figure.

bead. A discussion and conclusions are given in section 4,
with a specific focus on how our conclusions can be applied
to the classic angular deflection measurement technique.

2. Analytical description of thermal noise

2.1. Flexural eigenmodes of a clamped cantilever

In the Euler–Bernoulli framework to describe the micrometer-
sized mechanical beam, we assume that the cantilever length
L is much larger than its width W, which itself is much larger
than its thickness T (see figure 1). The flexural modes of the
cantilever are supposed to be only perpendicular to its length
and uniform across its width. The deformations can thus be
described by the deflection Z(x, t), with t the time and x the
spatial coordinate along the beam normalized to its length L.
The bead is supposed to be nondeformable, and thus described
as a rigid mass mb at the free end of the cantilever. It may be
offset from the neutral axis and carry a non-negligible inertia:
these effects are taken into account with an inertial moment
mbr2

g, rg being the equivalent gyration radius computed at
the free end of the cantilever. For a sphere of radius r, rg is
equal to

p
7/5r. We neglect in our analysis any offset along

the cantilever axis and any coupling with torsion: precise
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gluing of the bead should make those effects negligible in
a first approximation. In order to reach a simple analytical
solution, we also neglect the actual triangular shape of the
cantilever at its free end: we will consider that the lever has
an effective length smaller than its total length to approximate
the real geometry. This last approximation will prove to be
reasonable to describe our measurements. Figure 1 sketches
the experiment and the applied model. Following [19], we will
include the effect of the bead in the boundary conditions of the
cantilever dynamics.

The equation of motion for the cantilever, once the
variables in time and space are separated, can be written as

k
3

d4z
dx4 = mc!

2z (1)

with k the static stiffness of the cantilever, mc its mass,
Z(x, t) = z(x)ei!t the deflection, and ! the angular frequency.
This equation can be rewritten as

z(4) = ↵4z (2)

where (n) is the spatial derivative of order n, and ↵ is given by
the dispersion relation:

↵4 = 3mc!
2

k
. (3)

The generic solution to this equation is

z(x) = a cos(↵x) + b sin(↵x) � c cosh(↵x) � d sinh(↵x).(4)

The boundary conditions in x = 0 correspond to a clamped
end, implying z(0) = 0 and z(1)(0) = 0, hence a = c and
b = d. Defining R = b/a, expression (4) can thus be written
as

z(x) = a(cos(↵x) � cosh(↵x)

+ R[sin(↵x) � sinh(↵x)]). (5)

For x = 1, corresponding to the free end of the cantilever
where the bead is glued, the conditions on the force and
torque are linked to the inertia in translation and rotation of
the bead [19]:

z(3)(1) = �↵4m̃z(1) (6)

z(2)(1) = ↵4m̃r̃2z(1)(1) (7)

where m̃ = mb/mc is the mass of the bead mb normalized to
that of the cantilever mc, and r̃ = rg/L is the gyration radius of
the bead rg normalized to the cantilever length L. Expressing
these boundary conditions with expression (5) leads to

R = sin↵ � sinh↵ + ↵m̃(cos↵ � cosh↵)

cos↵ + cosh↵ � ↵m̃(sin↵ � sinh↵)
(8)

= �cos↵ + cosh↵ � ↵3m̃r̃2(sin↵ + sinh↵)

sin↵ + sinh↵ + ↵3m̃r̃2(cos↵ � cosh↵)
. (9)

The values of ↵ allowing this equality are quantified, and
correspond to the spatial eigenvalues ↵n(m̃, r̃) of the resonant
modes of the cantilever. They can be numerically computed.
For m̃ = 0 (no bead), the last equation simplifies to the
usual condition 1 + cos↵ cosh↵ = 0, leading to the common

Figure 2. Plot showing the first five normal modes �n(x) for
various m̃ and r̃. The amplitude of the first mode decreases and the
nodes of the higher order modes get closer to the free end when
either m̃ or r̃ increases.

tabulated eigenvalues of a clamped–free Euler–Bernoulli
mechanical beam. The ↵n(m̃, r̃) values are reported for the
first five modes, for 0  m̃  2 and 0  r̃  0.1, in tables
I–V in the supplementary data (available at stacks.iop.org/
Nano/24/225504/mmedia). The corresponding shapes of the
eigenmodes are plotted in figure 2.

The length of the cantilever L used in the normalization of
x, and thus impacting the spatial eigenvalues ↵n, is sometimes
experimentally ill-defined due to the triangular shape of the
cantilever end. The direct comparison of the experimental
values of ↵n with the theoretical ones is thus hampered by this
incertitude. However, their ratio is free from this bias and can
be used to check analytical predictions. In the appendix, we
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plot such ratios, useful to extract the values of m̃ and r̃ from
the experimental observations.

2.2. Orthogonality relations and normalization

The eigenmodes zn(x) are given by equation (5), with a
dependence of the three parameters a, R and ↵ on mode
number n and on m̃ and r̃ (the dependence in m̃ and r̃ will
be implicit in our notation):

zn(x) = an⇣n(x) (10)
= an

�
cos(↵nx) � cosh(↵nx)

+ Rn [sin(↵nx) � sinh(↵nx)]
�
. (11)

However, if we only consider this expression, then the
orthogonality between two modes zn and zm does not hold:
it is easy to show that for n 6= m,
Z 1

0
zn(x)zm(x)dx = �m̃zn(1)zm(1)

� m̃r̃2z(1)
n (1)z(1)

m (1). (12)

We therefore define the normal modes by

�n(x) = zn(x) + zn(1)
p

m̃�(x � 1)

+ z(1)
n (1)r̃

p
m̃�(x � 1 + ✏) (13)

where �(x � 1) and �(x � 1 + ✏) are the Dirac distributions
centered on x = 1 and 1 � ✏, with ✏ being an arbitrarily
small quantity ensuring only that there is no overlap between
the zn(1) and z(1)

n (1) terms. With such a definition, it is
straightforward to prove the orthogonality of the �n basis.
Moreover, as �n(x) = zn(x) for any x 2 [0, 1 � ✏[,�n(x) thus
obeys the initial differential equation (2) and the boundary
conditions in the limit x = 0 and x ! 1 (in the limit ✏ !
0). Eventually, the normalization of �n is easily obtained by
imposing

Z 1

0
�2

n(x) dx = 1 (14)

a2
n

 Z 1

0
⇣ 2

n (x) dx + m̃⇣ 2
n (1) + m̃r̃2⇣ 02

n (1)

!

= 1 (15)

where ⇣n(x) is defined in equation (10). This last equation thus
imposes the values of an to construct the orthonormal basis
�n. The result of this process is illustrated in figure 2 for a few
values of m̃ and r̃.

Let us now give an energetic meaning to the Dirac term,
in the case r̃ = 0. We first compute the kinetic energy of
a mode �n with amplitude A: Z(x, t) = A�n(x) cos!nt. The
speed of a mass element mcdx is �A�n(x)!n sin!nt, thus the
total kinetic energy is

Ec =
Z 1

0

1
2 mc dx A2�2

n(x)!2
n sin2!nt (16)

= 1
2 mc

 Z 1

0
�2

n(x) dx

!

A2!2
nsin2!nt (17)

= 1
2 mcA2!2

nsin2!nt. (18)

This is the kinetic energy of a harmonic oscillator of mass
mc, resonant angular frequency !n and amplitude A. Notice
that the amplitude of this oscillator is different from the
deflection at the free end of the cantilever: Ac = A�n(x !
1) = Azn(1) = Aan⇣n(1). We may also rewrite the integral on
�2

n(x) in equation (17) using equation (15):

Ec = 1
2 mca2

n

 Z 1

0
⇣ 2

n (x) dx+m̃⇣ 2
n (1)

!

A2!2
nsin2!nt (19)

=
Z 1

0

1
2 mc dx A2z2

n(x)!
2
nsin2!nt

+ 1
2 mbA2

c!
2
nsin2!nt. (20)

We can easily identify here the sum of two terms: the kinetic
energy of the mode n of the cantilever itself, subject to a
sinusoidal motion with an amplitude Ac at its free end, and
the kinetic energy of a point mass mb, subject to a sinusoidal
motion with the same amplitude Ac. The additional Dirac term
in �n thus takes into account the bead motion in the total
energy of the equivalent harmonic oscillator. The amplitude
of the latter is not equal to the amplitude at the free end of
the cantilever (which is also the case without the added mass
since |�n(x = 1)| = 2 for m̃ = 0).

In the case where r̃ 6= 0, we can extend this energetic
approach to include the kinetic energy due to the rotation
of the bead, and retrieve the normalization of the modes. A
similar approach has been used by Oguamanam [19] to ensure
the orthonormalization of the normal modes in a more general
framework including the coupling of flexural and torsional
modes.

2.3. Thermal noise amplitude of resonant modes

We compute the thermal noise of each resonant mode
following [14, 20]: let us project the thermal noise driven
deflection on the orthonormal basis �n(x):

Z(x, t) =
1X

n=1

Zn(t)�n(x). (21)

Under the hypothesis of uncoupled modes, we have for each
degree of freedom

1
2 knhZ2

n(t)i = 1
2 kBT (22)

where kB is Boltzmann’s constant, T the temperature of the
cantilever, and kn the stiffness of the mode defined by:

kn = k
3
↵4

n = mc!
2
n. (23)

The mean quadratic deflection measured in x should thus be

hZ2(x, t)i =
1X

n=1

hZni2(t)|�n(x)|2 (24)

= kBT
k

1X

n=1

3
|�n(x)|2
↵4

n

= kBT
k

1X

n=1

⌘n(x, m̃, r̃). (25)
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Figure 3. Thermal noise expected for a cantilever of static stiffness
k = 0.1 N m�1 at 300 K for a few values of m̃ and r̃. The rms
deflection of the first five modes is plotted as a function of the
position along the cantilever x. The first mode is weakly impacted
by the bead. When m̃ increases, the amplitudes of the higher order
modes vanish close to the free end, and the thermal energy is
reported towards the antinodes, the amplitudes of which increase.

In figure 3, we plot the expected rms thermal noise at 300 K
along a cantilever of static stiffness k = 0.1 N m�1 for the
first five eigenmodes, for a few values of m̃ and r̃. Note that
the normalization of the �n basis is a crucial step in applying
the energy equipartition theorem in a quantitative manner
to this analysis. Our approach also allows us to estimate
the repartition of energy between the different modes. For
example, if we perform the measurement at the free end of
the cantilever (x = 1), the first mode accounts for ⌘1(x =
1, m̃ = 0, r̃ = 0) = 97% of the total thermal fluctuations for
m̃ = r̃ = 0, and ⌘1(x = 1, m̃ = 1, r̃ = 0) = 99.8% for m̃ = 1
and r̃ = 0. In figure 4, we plot the contribution of each mode to

Figure 4. Fraction ⌘n(x = 1, m̃, r̃ = 0) at the free end of the
cantilever of the mean quadratic deflection driven by thermal noise
for the first five modes as a function of the normalized bead mass m̃.
The amplitude of the first mode (plotted as 1 � ⌘1 since ⌘1 ! 1)
quickly overcomes the contribution of all the other modes, for
which the inertia of the mass implies a node close to the free end of
the cantilever.

Figure 5. Pictures from an optical microscope of beads glued at the
apex of cantilevers A and B.

the mean quadratic deflection measured at its extremity when
m̃ changes (for r̃ = 0): the larger the mass, the stronger is the
contribution of the first mode.

3. Experimental methodology and results

3.1. Experiment description

Manufacturer specifications of our two samples (A and B)
are given in table 1. Both present a ‘rectangular’ geometry,
close to the model used in our analytical approach. However,
the triangular end (see figure 5) departs from the model, and
impedes a proper definition of their length L. We measure the
deflection solely driven by thermal noise over the surface of
these two different commercial cantilevers, first when they are
still bare, then again after a glass bead has been glued at their
free end with a two-part epoxy adhesive (Araldite). The bead
of cantilever A is a fused borosilicate glass microsphere from
Potters (Sphericel 110P8), whereas the bead of cantilever B is
a borosilicate sphere from Cospheric (BSGMS 45–53 m). The
radius r of the bead is reported in table 1 for each sample.

As already mentioned, due to the manufacturing process,
the uncertainty in the thickness of the lever is large, resulting
in a large uncertainty in the computation of its mass. The
case is even worse for cantilever B, where the gold coating
can significantly change the total mass due to the high
density of gold. In addition, the quantity of glue cannot
be measured precisely from the images of the cantilever.
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Table 1. Manufacturer specifications for cantilevers A and B. The last line corresponds to the glass bead that we glued at the free end of the
cantilever, as illustrated in figure 5.

Cantilever A Cantilever B

Manufacturer BudgetSensors Nano-World
Reference AIO, lever A Arrow-TL8Au
Material Silicon Silicon
Tip height (17 ± 2) µm Tipless
Coating None Ti 5 nm + Au 30 nm
Resonant frequency (15 ± 5) kHz 6 kHz

(3–14) kHz
Force constant k 0.2 N m�1 0.03 N m�1

(0.04–0.7) N m�1 (0.004–0.54) N m�1

Length L (500 ± 10) µm (500 ± 5) µm
Width W (30 ± 5) µm (100 ± 5) µm
Thickness T (2.7 ± 1.0) µm 1.0 µm

(0.5–2.5) µm
Bead radius r (7.8 ± 0.2) µm (25.8 ± 0.5) µm

The geometric calculation of m̃ can thus only give a rough
estimation of the actual value. We estimate m̃A ⇡ 0.1 (range
0.04–0.3) for cantilever A, and m̃B ⇡ 1.2 (range 0.5–2.6) for
cantilever B. The geometric estimation of r̃ is less hampered
by the uncertainty of the cantilever geometry, but still suffers
from the uncontrolled repartition of the glue. We estimate
r̃A = 0.02 ± 0.01 for cantilever A, and r̃B = 0.06 ± 0.02
for cantilever B. However, as demonstrated by Allen et al
[23], the tip of the bare cantilever A itself may have a
non-negligible effect. We can geometrically estimate m̃A tip ⇡
0.04 and r̃A tip ⇡ 0.02 for a 17 µm tall pyramidal tip.

The measurement is performed with a home-made
interferometric deflection sensor [15], inspired by the original
design of Schonenberger [21], with a quadrature phase
detection technique [22]: the interference between the
reference laser beam reflecting on the chip of the cantilever
and the sensing beam on the cantilever gives a direct
measurement of the deflection with a very high accuracy (see
figure 1). This technique offers a very low intrinsic noise
(down to 10�14 m Hz�1/2). It is intrinsically calibrated as it
directly measures the deflection against the wavelength of the
laser beam, in contrast to the standard optical lever technique,
which actually measures an angular deflection. Lastly, the
focused beam size resolution is tuned to as small as 10 µm
to ensure a good spatial resolution.

We apply the methodology of Paolino et al [15]: at every
position x and y on a 5 µm ⇥ 5 µm grid, we measure the
deflection z(x, y, t) produced by the sole thermal excitation of
the cantilever and we evaluate the power spectrum density
(PSD) Sz(x, y, f ) on a 20 s signal sampled at 2 MHz. For
a quantitative characterization of the shape of the modes,
the mean squared amplitude of each resonance hA2

n(x, y)i is
determined as a function of positions x and y by integrating
the PSD in a convenient frequency interval 21f around each
resonance frequency fn:

D
A2

n(x, y)
E
=
Z fn+1f

fn�1f
S2

z (x, y, f ) df . (26)

This quantity is computed directly from the experimental
spectra, without any fitting process. We take care to subtract

the background noise contribution of the interferometer,
and we also compensate for the finite integration range in
frequency [15].

The complete set of results for cantilever A is reported in

figure 6, where the rms amplitude
q⌦

A2
n(x, y)

↵
is represented

with a color coded scale. The first three vibration modes can
be clearly seen with their respective number of nodes. A weak
component in torsion can be seen for the third mode with the
bead, certainly because it has not been glued perfectly on the
axis. However, in the following, we will neglect this effect
and focus on the flexural modes along the x axis. Therefore,

at each position x, the median
q⌦

A2
n(x)

↵
along the y axis of

q⌦
A2

n(x, y)
↵

is calculated. Due to the higher reflectivity of
the gold-coated cantilever B, the background noise is lower,
and we accurately measure the thermal noise up to the fifth
resonant mode for this last sample.

3.2. Results and discussion

3.2.1. Resonant frequency ratios. In a first attempt to
estimate the added mass parameters m̃ and r̃, which must be
known for proper normalization of the normal modes (value of
an), let us focus on the ratio between the resonant frequency fn
of the successive modes. Indeed, equation (23) translates into:

↵n(m̃, r̃)
↵1(m̃, r̃)

=
s

fn
f1

. (27)

The resonant frequencies of each mode are easily found by
a simple harmonic oscillator fit of each resonant peak in the
thermal noise spectrum. We report in table 2 the square root of
the frequencies of the first three modes of cantilever A and the
first five modes of cantilever B, normalized to the frequency
of mode 1. We can then compare those measurements to the
output of the analytical model (figure A.1), and try to estimate
the values of m̃ and r̃ for our samples.

For cantilever A without the bead, the presence of the
tip can be detected on the measured modes, leading to the
estimation m̃A tip = 0.057 ± 0.010 and r̃A tip = 0.03 ± 0.02

6



Nanotechnology 24 (2013) 225504 J Laurent et al

Figure 6. Maps of thermal noise of cantilever A. The rms amplitude of the first three flexural modes, with (right) and without (left) a bead
glued at the free cantilever end, are plotted using a color coded amplitude map (color bar at the bottom of the figure). The resonant
frequency and full scale amplitude are given below each map. A weak component in torsion can be seen clearly for the third mode with the
bead, hinting at a slightly off-axis gluing of the colloidal particle.

Table 2. Frequency ratio between modes and frequency shift upon gluing of the bead. The square root of these ratios should be equal to the
ratio of the corresponding spatial eigenvalues ↵n(m̃, r̃) (with a correction factor Lw/Lwo for the frequency shift, which we suppose equal to
0.98 here). Using estimated values of m̃ and r̃ for each measurement set (bare and loaded cantilevers A and B), we get a good overall
agreement for every mode, especially for sample A. The model reaches its limitation for the higher modes of cantilever B, whose triangular
shaped end is not taken into account.

Mode number n 1 2 3 1 2 3 4 5

Bare cantilever A: m̃A tip = 0.057, r̃A tip = 0.03 B: m̃B tip = 0, r̃B tip = 0

f wo
n (Hz) 14 956 95 017 267 530 7195 42 975 117 220 224 500 363 370p

f wo
n /f wo

1 1.000 2.521 4.229 1.000 2.444 4.036 5.586 7.107
↵n(m̃tip, r̃tip)/↵1(m̃tip, r̃tip) 1.000 2.521 4.236 1.000 2.503 4.189 5.864 7.539
Disagreement (%) 0.0 �0.0 �0.1 0.0 �2.4 �3.6 �4.7 �5.7

Loaded cantilever A: m̃A = 0.35, r̃A = 0.03 B: m̃B = 1.18, r̃B = 0.06

f w
n (Hz) 10 974 83 050 246 380 3101 29 319 79 023 152 400 270 980p

f w
n /f w

1 1.000 2.751 4.738 1.000 3.075 5.048 7.010 9.348
↵n(m̃, r̃)/↵1(m̃, r̃) 1.000 2.762 4.762 1.000 3.195 5.190 7.040 9.347
Disagreement (%) 0.0 �0.4 �0.5 0.0 �3.8 �2.7 �0.4 0.0

Frequency shift upon loading Cantilever A Cantilever B

(Lw/Lwo)
p

f w
n /f wo

n 0.839 0.916 0.940 0.643 0.809 0.805 0.807 0.846
↵n(m̃, r̃)/↵n(m̃tip, r̃tip) 0.844 0.924 0.948 0.642 0.820 0.796 0.771 0.796
Disagreement (%) �0.5 �0.9 �0.8 0.2 �1.2 1.1 4.7 6.3

(the standard deviations correspond to a 0.2% max distance
between the analytical model and the measured frequency
ratio on the three modes), close to the values expected from
the geometrical analysis. Adding the bead changes those
values to m̃A = 0.336 ± 0.008 and r̃A = 0.029 ± 0.005 (same
criterion for error bars).

For bare cantilever B, the ratios of frequencies between
modes cannot be explained by our model: the triangular shape
of the end of the cantilever alters the results from those of
a rectangular one. If, however, we look at the data for the
loaded cantilever, we have a reasonable agreement for m̃B =
1.18 ± 0.09 and r̃B = 0.070 ± 0.006 (the standard deviations
correspond to a 2% max distance between the analytical
model and measured frequency ratio on the five modes), again
in line with the geometrical analysis.

3.2.2. Resonant frequency shifts—a naive attempt. Another
way to determine the m̃ and r̃ parameters is to analyze the
resonant frequency shifts due to the loading, in an approach
similar to the Cleveland method [24]. In a naive attempt, we
suppose that the process of gluing a bead to the cantilever free
end should have a limited effect on its stiffness and proper
mass, thus we can relate the frequencies with (f w

n ) and without
(f wo

n ) the mass to the spatial eigenvalues with (↵n(m̃, r̃)) and
without (↵n(0, 0)) the mass through equation (23):

↵n(m̃, r̃)
↵n(0, 0)

=
s

f w
n

f wo
n

. (28)

The resonant frequencies of each mode are easily found
by a simple harmonic oscillator fit of each resonant peak
of the thermal noise spectrum. We can then compare those
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measurements to the output of the analytical model, and try to
estimate the values of m̃ and r̃ for our samples.

As shown in figure 10, the first mode is almost
independent of the value of r̃, and should thus reliably be
used to measure m̃. This measurement is equivalent to the
method of the added mass proposed by Cleveland [24]. We
find, with this protocol, m̃ = 0.21 ± 0.005 for cantilever A,
and m̃ = 1.065 ± 0.010 for cantilever B.

This estimation of m̃ is hardly compatible with the
expectation of the higher order modes for cantilever A, which
would rather be m̃ = 0.10 ± 0.01 (mode 2) or m̃ = 0.055 ±
0.010 (mode 3), even considering the effect of r̃. As for
cantilever B, the estimation could be compatible with higher
order modes, but for both cantilevers the value of m̃ is clearly
underestimated with respect to the previous measurement
through the frequency ratios between successive modes of the
loaded cantilever.

3.2.3. Resonant frequency shifts—refined analysis. Two
naive hypotheses are responsible for the shortcomings of the
previous analysis of the frequency shifts upon loading: it first
relies on the assumption that the effective length of the loaded
cantilever is unchanged. It then assumes that the behavior
of the cantilever without the load is that of an ideal bare
rectangular cantilever.

Let us first consider the effect of a possible modification
of the effective length L of the cantilever upon gluing a bead
close to its free end. Indeed, this process may rigidify the end
portion of the cantilever, thus shortening its effective length
by the rigid part. Alternatively, the inertia of a large mass
not fixed exactly at the free end, by bringing the nodes of
the higher order modes closer to the position of the bead
than to the free end, can also lead to a shortening of the
effective length of the loaded cantilever. In order to evidence
the dependence of the eigenvalue ↵n on the cantilever length
L, equation (3) can be expressed as:

↵4
n = 3µL4!2

n

EI
(29)

where E is Young’s modulus of the cantilever, I its second
moment of inertia, and µ its mass per unit length. As E, I and
µ do not depend either on the cantilever’s length or on the
gluing of a bead, equation (28) should in fact be written as

↵w
n

↵wo
n

= Lw

Lwo

s
f w
n

f wo
n

(30)

where the superscript w (respectively wo) designates a quantity
with (respectively without) the load. Assuming ↵wo

n is
known, the parameters m̃ and r̃ for the loaded cantilever
can be deduced by comparing the ↵w

n values obtained from
equation (30) to the tabulated values given in the appendix1.
Let us stress that if the resonant frequencies are measured with

1 In order to retrieve the variation of the resonant frequencies with the
fixation distance of a given bead to the free end of a cantilever, or to determine
the added mass mb and the gyration radius rg from the m̃ and r̃ values, one
must remember that the values of m̃ and r̃ determined from the resonant
frequencies ratios or shifts also depend on the effective length of the loaded
cantilever.

a very good accuracy, the effective length ratio is not known a
priori. A small error in the effective length ratio leads only to
the same relative error in the value of ↵w

n . But since ↵n(m̃, r̃)
varies only slowly with m̃ (see the appendix), it can result
in a much larger error on m̃ and thus on the normalization
of the normal modes (parameter an). In section 3.2.5, we
estimate that the gluing of a bead reduces the effective length
of cantilevers A and B by 10 µm, resulting in a 2% shortening.
We thus use this 2% correction in table 2 to compare the
relative frequency shifts to the spatial eigenvalue ratios.

When analyzing the frequency ratios with and without a
bead, it is also very important to use the right ↵wo

n value for
the cantilever without the bead. We have seen with the naive
approach that ignoring this initial loading for cantilever A
leads to inconsistent values between modes, underestimating
the true loading. However, if ↵n(m̃A tip, r̃A tip) (with m̃A tip =
0.057 and r̃A tip = 0.03 as determined in section 3.2.1) is
used as the unloaded reference value instead of ↵n(0, 0), one
obtains m̃A = 0.37 ± 0.04 and r̃A = 0.031 ± 0.018 with the
first three modes, in much better agreement with the previous
estimation.

The behavior of the tipless cantilever B also deviates from
that of a bare rectangular cantilever because of its triangular
end. However, since the frequency ratios between the modes
of the unloaded cantilever B do not yield any consistent
set of m̃ and r̃ values (see figure A.1), we choose to take
m̃B tip = r̃B tip = 0 for the bare cantilever B. We thus compare
the square root of the frequency ratio (corrected by the length
ratio) with the ↵n(m̃, r̃)/↵n(0, 0) ratio displayed on figure 10
for the first five modes of cantilever B. As shown in figure 10,
the first mode is almost independent of the value of r̃, and can
thus be used to measure m̃ alone; we obtain m̃B = 1.17±0.04
for mode 1. The higher order modes are compatible with the
estimation of m̃B = 1.17 and can be used to guess the value
of r̃B. Using figure 10, we measure r̃B = 0.068 (mode 2),
r̃B = 0.057 (mode 3), r̃B = 0.046 (mode 4) and r̃B = 0.030
(mode 5). The dispersion of results is quite large for r̃B, and
points to the limitations of the model with respect to the actual
cantilever shape. A simultaneous least squares minimization
of the distance between the analytical model and measured
frequency shifts on the five modes leads to m̃B = 1.19 ± 0.13
and r̃B = 0.051 ± 0.006 (standard deviation corresponding to
a 3.5% max distance).

As a summary, we have two ways to estimate the
normalized added mass and equivalent gyration radius from
the measurement of the resonant frequencies of the loaded
and unloaded cantilever: the frequency ratio between modes
in one measurement, and the frequency shifts due to the
addition of the bead. Provided the initial tip and effective
length shortening are taken into account, both methods agree
reasonably, though the dispersion on r̃ is quite large. In the
following we will retain the values:

• Unloaded cantilever A: m̃A tip = 0.057, r̃A tip = 0.03.
• Loaded cantilever A: m̃A = 0.35, r̃A = 0.03.
• Unloaded cantilever B: m̃B tip = 0, r̃B tip = 0.
• Loaded cantilever B: m̃B = 1.18, r̃B = 0.06.
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Figure 7. Amplitude of thermal noise for the first three flexural
modes along cantilever A with and without a sphere (in red and blue
respectively). The markers represent the data while the lines exhibit
the fits: independent fits of each mode as a plain line, and
simultaneous fit of all modes as a dashed line. The agreement is
excellent for the bare and the loaded cantilever.

Eventually, using those estimations of m̃ and r̃, we can
compute the values of the eigenvalues ↵n(m̃, r̃) from the
model, and compare them with the frequency shifts due to the
bead. As one can see in table 2, the agreement is quite good,
with an overall agreement better than 1% for cantilever A, and
3% for cantilever B (except for the highest order modes of
cantilever B, where the limitations of the model appear more
severe).

3.2.4. Spatial modes shapes. Figures 7 and 8 show the

rms amplitude
q⌦

A2
n(x)

↵
of the first three resonant modes

of cantilever A and the first five modes of cantilever B
respectively, with (red circles) and without (blue crosses)
the bead loading their ends. It is worth mentioning that
the maximum of the last mode is only a few pm high,
demonstrating the high resolution of our instrument. The
behavior of the experimental data is clearly in line with the
model illustrated in figure 3: the effect of the bead is almost
negligible on the first longitudinal mode, and the nodes of
higher order modes are shifted towards the free end of the
cantilever.

In a first step to fit the data, we use independent fits for all
modes. The fitting function is equivalent to equation (5). This
generic function should be suitable for any cantilever clamped
at its origin, whatever boundary conditions are applied at its

Figure 8. Amplitude of thermal noise for the first five flexural
modes along cantilever B with and without a sphere (in red and blue
respectively). The markers represent the data while the lines exhibit
the fits: independent fits of each mode as a plain line, and
simultaneous fit of all modes as a dashed line. The agreement is
very good for the bare and the loaded cantilever.

other end. Note that x is now not normalized to the length L of
the cantilever. We therefore use the following fitting function
for

⌦
A2

n(x)
↵
:

 2
✓

x, ā, R̄,
↵̄

L̄
, x̄0

◆

= ā2
✓

cos
✓
↵̄

x � x̄0

L̄

◆
� cosh

✓
↵̄

x � x̄0

L̄

◆

+ R̄


sin
✓
↵̄

x � x̄0

L̄

◆
� sinh

✓
↵̄

x � x̄0

L̄

◆�◆2

(31)
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Table 3. Eigenvalues normalized to the third mode for both cantilevers, bare and loaded with the bead: we compare the output of generic
fits with equation (31) and the values expected from the model. The agreement is quite good for every mode but the first one, where the fit is
not sufficiently constrained to converge to accurate estimations.

Mode number n 1 2 1 2 4 5

Bare cantilever A: m̃A tip = 0.056,
r̃A tip = 0.03

B: m̃B tip = 0, r̃B tip = 0

Measurement: ↵̄n/↵̄3 0.278 0.599 0.277 0.602 1.389 1.760
Theory: ↵n(m̃tip, r̃tip)/↵3(m̃tip, r̃tip) 0.236 0.595 0.239 0.598 1.400 1.800
Disagreement (%) �18 �0.7 �15 �0.7 0.8 2.2

Loaded cantilever A: m̃A = 0.35,
r̃A = 0.03

B: m̃B = 1.18, r̃B = 0.06

Measurement: ↵̄n/↵̄3 0.251 0.580 0.191 0.561 1.389 1.865
Theory: ↵n(m̃, r̃)/↵3(m̃, r̃) 0.210 0.580 0.193 0.616 1.356 1.801
Disagreement (%) �19 0.0 �1.1 8.8 �2.7 �3.5

with ā, R̄, ↵̄/L̄ and x̄0 being the four fitting parameters. As
can be seen in figures 7 and 8, the result of this procedure
is excellent, the model closely matching the experimental
data.

The interesting output of the fit is the spatial eigenvalue
↵̄n/L̄ of each mode, however, since L̄ is not known precisely,
only relative values of ↵̄n can be compared to the theory.
We choose to normalize the values of ↵̄n to the third mode:
the presence of two nodes and the ‘high’ amplitude constrain
the fit to provide reliable values for ↵̄3. The result of this
procedure is shown in table 3. The agreement with the
theoretical ratios is good for higher order modes, within a few
per cent. Mode 1 stands apart, with a higher deviation: since
no nodes are present, the fit is poorly constrained and the value
of ↵̄1 is not reliable.

3.2.5. Stiffness determination. If the generic independent
fits are interesting to compare the eigenvalues and the shapes
of the eigenmodes with the theory, it is not possible to
compare the amplitude of the modes to the expectation from
thermal noise excitation. Indeed, the normalization of the
mode depends on the boundary conditions (kinetic energy of
the bead), and cannot be guessed a priori. To go further, we
therefore perform a simultaneous fit of all modes, imposing
the values of ↵n [15]. The fitting function for

⌦
A2

n(x)
↵

is now

'2
n(x, k̄, L̄, x̄0) = 3

↵4
n(m̃, r̃)

kBT

k̄
�2

n

✓
x � x̄0

L̄
, m̃, r̃

◆
(32)

where �n(x, m̃, r̃) is the normal mode defined and normalized
in section 2.2 (we write here explicitly the dependence in m̃
and r̃ to underline that those �n depend on the presence of the
bead). The fitting parameters are k̄, L̄ and x̄0, while the values
of m̃ and r̃ are set to the estimation of section 3.2.3.

We shall thus perform a single simultaneous fit of all
modes with those three free parameters on each cantilever,
bare or loaded with a bead. We tried several weightings of
the modes to compensate the decreasing amplitude of higher
order modes driven by thermal noise: the function ✏j to

minimize during the fit is defined as

✏j(k̄, L̄, x̄0) =
X

n
↵j

n

Z L

0
dx|hA2

n(x)i � '2
n(x, k̄, L̄, x̄0)|2 (33)

where j is a weighting parameter: j = 0 corresponds to natural
weighting (mode 1 dominant) and increasing j weights to
increasingly higher order modes (‘flat’ weighting for j =
8). We estimate the best fitting parameters k̄, L̄ and x̄0 for
j = 0–12, to test the robustness of the simultaneous fitting
procedure. The dashed lines in figures 7 and 8 represent
the result of this fitting process. Though not as perfect as
independent fits, the results are in good agreement for all
modes of each cantilever, with and without the bead.

For the bare cantilever A, the best fit values are
k̄ = (0.321 ± 0.008) N m�1 and L̄ = (497 ± 1) µm.
The uncertainties correspond to the standard deviation in
the full range of weighting parameter j, their low values
demonstrating the robustness of the fit. For the loaded
cantilever A, the best fit values are k̄ = (0.339±0.010) N m�1

and L̄ = (485 ± 7) µm. The stiffness of the cantilever
experiences a small increase (6%) after the gluing of
the bead. This is not surprising since the glue increases
the rigidity of the end of the cantilever, shortening its
effective length by about 10 µm according to the fit.
This 2% decrease in length translates into a 6% rise
of the stiffness (k scales as 1/L3), in agreement with
our estimation.

For the bare cantilever B, the best fit values are k̄ =
(0.151 ± 0.002) N m�1 and L̄ = (463 ± 4) µm. Again, the
dispersion of estimated parameters is very low, hinting at the
robustness of the model and fitting procedure. The value of L̄
is quite small with respect to the manufacturer specifications,
however this effective length takes into account the triangular
end of the cantilever. For the loaded cantilever B the best fit
values are k̄ = (0.169±0.010) N m�1 and L̄ = (448±5) µm.
Again, this 12% increase of the static spring constant goes in
the expected direction, and is consistent with a reduction of
the effective length of the cantilever by 15 µm (which should
translate into a 10% increase in k).
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Figure 9. Multiplicative correction factor to apply to the thermal
noise measurement of the first resonant mode with an angular
deflection measurement technique to compute the cantilever
stiffness: the higher the added mass, the smaller the correction.

4. Conclusion

Our work demonstrates that even a glued bead as large as 10%
of the length of a soft cantilever (k ⇠ 0.1 N m�1) modifies
only slightly its first flexural mode and its static stiffness.
A simultaneous fit of the thermal modes leads to a small
decrease in the effective length and a small increase in the
effective static stiffness of a cantilever upon gluing the bead.
However, since these variations respect the 1/L3 scaling of
k, the stiffness at the geometrical free end of the cantilever
appears to be the same with and without a bead loading.
Thus, the classic method to determine the spring constant by
measuring the thermal spectrum of the first flexural mode
at the free end of the cantilever can still be used even if
the microlever is functionalized. In fact, we have shown that
the thermal calibration based on the first mode only gets
even closer to the static stiffness when the size of the bead
increases, since the first mode gathers a higher fraction of
the thermal energy at the free end. We have also shown
that the mass model considering the load as a modification
of the boundary conditions at the free end of a beam is a
good approximation and fits well with all our results. On the
way, we have introduced a proper normalization method of
the resonant modes, an unavoidable step in computing the
thermal noise amplitude of each mode. Once the stiffness of
the colloidal probe is determined through the classic thermal
noise calibration, one must make sure to take into account
other corrections due to the tip geometry, as demonstrated by
Edwards et al [25].

One of the main difficulties in testing the models is to
estimate correctly the mass and gyration radius of the glued
bead. We have seen that it can be important to consider the
initial loading due to the AFM tip and the effective length
shortening in order to get consistent results: an error of 30%
on m̃ could have been made by only considering the frequency
shift due to the bead, if one refers to a tipless cantilever. The
ratio between resonant frequencies of a cantilever offers an
interesting way to estimate the load properties (without any
prior knowledge about the cantilever, such as its unloaded
properties), by comparison to tabulated values of ↵n(m̃, r̃). We

Figure 10. Spatial eigenvalues ↵n(m̃, r̃) numerically computed for
modes 1–5 as a function of m̃ and r̃ (r̃ increases from 0 to 0.1 from
the top to bottom curve in each plot), normalized to their value at
m̃ = 0. The values of these ratios for cantilevers A and B, estimated
by the frequency shift due to the addition of the bead, and supposing
an effective length decrease of 2%, are plotted as a labeled
horizontal line. Mode 1 is almost independent of the value of r̃, and
can thus be used to estimate m̃. This curve is very close to the
prediction given in the Cleveland method [24].

provide a set of such values in the appendix, for the first five
modes, 0  m̃  2 and 0  r̃  0.1

As a final remark, let us study how our findings apply to
the common AFM detection scheme. Indeed, our differential
interferometer allows us to measure the actual deflection at
any point of the cantilever, whereas most AFMs use an optical
angular deflection measurement. The latter technique needs to
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be calibrated to infer from the 4-quadrant photodiode output
the true deflection of the probe. This step is usually done
by a rigid contact between the probe and a hard surface, the
calibrated displacement of the sample providing a benchmark
to measure the sensitivity (in nm V�1). This sensitivity is thus
valid for a static deformation only, and a mode-dependent
correction factor must be applied to estimate the actual
deflection of a resonant mode [1]. This multiplicative factor is
0.817 when one wants to use the thermal noise measurement
of the first mode to calibrate the spring constant of a classic
cantilever. In the current framework, we can easily compute
how this correction factor depends on the normalized bead
mass m̃ by comparing the slope of the first eigenmode to
that of a static deflection with the same deflection at its free
end. We plot the result in figure 9 (computed with r̃ = 0):
the correction rapidly vanishes as m̃ increases. Indeed, we
have seen that the effect of the added mass is to decrease
the eigenvalue ↵1 (see figure 10), thus equation (2) tends
to z(4)

1 = 0 when m̃ increases. This last equation is that
describing the static deflection, thus the first normal mode
tends to the static deflection when m̃ increases. The effect
of the added mass is thus doubly beneficial for the angular
measurement: both the sensitivity of the sensor tends to be
more accurate (figure 9) and the first mode gathers most
of the thermal noise at the cantilever free end (figure 4).
More generally, an accurate coefficient can be extracted
from our analysis for any m̃, and applied to the thermal
noise calibration of AFM colloidal probes in any commercial
device2.
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Appendix. Spatial eigenvalues ↵n(m̃, r̃)

In this appendix, we plot in figure 10 the spatial eigenvalues
↵n(m̃, r̃) numerically computed for modes 1–5 as a function
of m̃ and r̃, normalized to their value at m̃ = r̃ = 0. The
curve for ↵1 is very close to the prediction given in the
Cleveland method [24], linking the frequency shift to the
added mass. This figure can be used to estimate m̃ and r̃ from
the value of the frequency shift of various modes, if the initial
situation corresponds to a rectangular tipless cantilever and
the potential effective length decrease after gluing the particle
is known.

In figure A.1, we plot the same computed eigenvalues
↵n(m̃, r̃), but normalized to the value of the first mode for the
same added mass ↵1(m̃, r̃). When one has no prior knowledge

2 Integrated commercial AFM software may include calibration coefficients
corresponding to a bare cantilever (most probably tipless), which should be
taken into account for precise calibration of the photodiode sensitivity and
cantilever stiffness.

Figure A.1. Spatial eigenvalues ↵n(m̃, r̃) numerically computed for
modes 1–5 as a function of m̃ and r̃ (r̃ increases from 0 to 0.1 from
the top to bottom curve in each plot), normalized to the value of
mode 1. The values of these ratios for cantilevers A and B,
estimated by the frequency ratios between modes, are plotted as a
labeled horizontal line for unloaded (index wo) and loaded (index w)
cantilevers. The model is not suited to the description of the bare
cantilever B (Bwo), but allows the estimation of m̃ and r̃ for the other
three situations.

of the unloaded resonant frequencies, the ratio of the resonant
frequencies between modes can be used to estimate m̃ and r̃.
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