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Measurements of the deflection induced by thermal noise have been performed on a rectangular
atomic force microscope cantilever in air. The detection method, based on polarization
interferometry, can achieve a resolution of 10−14 m /#Hz in the frequency range 1–800 kHz. The
focused beam from the interferometer probes the cantilever at different positions along its length,
and the spatial modes’ shapes are determined up to the fourth resonance, without external excitation.
Results are in good agreement with theoretically expected behavior. From this analysis accurate
determination of the elastic constant of the cantilever is also achieved. © 2009 American Institute
of Physics. $doi:10.1063/1.3245394%

I. INTRODUCTION

Atomic force microscopy !AFM" is currently used in a
great variety of studies involving small forces’ measurement1

including unfolding of protein,2,3 probing the structure of
biological membranes4 and monitoring the mechanical re-
sponse of living cells,5,6 as well as microelectromechanical
systems !MEMSs" and other nanotechnological devices.7,8

All those applications exploit the great accuracy in mea-
suring the cantilever deflection offered by AFM and convert-
ing this measurement in units of force assuming the cantile-
ver behaves like a spring with known stiffness.
Manufacturers often specify the spring constant of their can-
tilevers in a wide range of values, mainly because of the
great uncertainties in the dimensions, particularly the thick-
ness, resulting from the fabrication process. To overcome
this problem several techniques have been proposed to cali-
brate cantilever spring constant.1,9–12 The reader is referred to
the work of Burnham et al.13 and the references therein for a
comparative summary of the different techniques.

One of the first and still most commonly used is the so
called thermal calibration method11 based on the measure-
ment of the vibration amplitude of the free end of a cantile-
ver exited by thermal noise. The first peak of the thermal
noise spectrum is related back to the spring constant of the
cantilever modeled as a harmonic oscillator. In a more accu-
rate model, Butt and Jaschke14 introduced a correction factor
deduced from the Euler–Bernoulli description of the flexural
dynamic of a free-clamped beam.

In this work we measure thermal noise spectra of the
cantilever deflection along its length, and compare the rms
amplitudes of the first four modes of vibration as a function
of spatial position with the eigenmodes of the Euler–

Bernoulli model. Furthermore, we present an extension of
the thermal noise calibration method for the spring constant
based on the multimode measurement.

II. THEORETICAL BACKGROUND

Let us first recall the main lines of Butt and Jaschke’s
work14 to interpret our measurements. The cantilever is
sketched in Fig. 1. Its length L is supposed to be much larger
than its width W, which itself is much larger than its thick-
ness T. We will limit ourselves in this study to the flexural
modes of the cantilever: The deformations are supposed to
be only perpendicular to its length !along axis z of Fig. 1"
and uniform across its width. These deformations can thus be
described by the deflection d!x , t", x being the spatial coor-
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FIG. 1. !Color online" The thermal fluctuations of deflection d!x , t" of a
rectangular cantilever !BS-Cont-GB-G" are measured with a differential in-
terferometer: The optical path difference between the reference beam, re-
flecting on the chip holding the cantilever, and the sensing beam, focused on
the cantilever, directly gives a spatially resolved and calibrated measurement
of deflection d !Ref. 15". The whole cantilever can be probed by displacing
the beams along its length !x axis". Length L, thickness T, and width W of
the cantilever are indicated in the figure.
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dinate along the beam, and t the time. The generic solution of
the Euler–Bernoulli equation can be expressed as follows:

d!x,t" = &
n=1

!

dn!t""n' x
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( , !1"

in which the spatial solutions are in the form
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where the #n satisfy the relation

1 + cos!#n"cosh!#n" = 0, !3"

which leads to #1=1.875, #2=4.694, . . . ,#n+!n−1 /2"%.
The amplitude dn!t" of each mode is governed by harmonic
oscillator equations, with spring constants kn, mass m, and
resonance frequencies fn as follows:
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where kc and mc are the static stiffness and mass of the
cantilever, and E and & are Young’s modulus and density of
its material.

We furthermore consider, under the hypothesis of ther-
mal equilibrium, that the thermal noise driven deflection fol-
lows the equipartition theorem, and each resonance mode
can be considered as an independent harmonic oscillator14

with mean quadratic fluctuations ,dn
2-

1
2kBT = 1

2kn,dn
2- , !7"

where , - represents time average.

III. EXPERIMENTAL METHODOLOGY AND RESULTS

In our experiment, we measure both the amplitude of the
thermal noise distribution among the modes ,dn

2- and their
spatial shape "n!x /L". We use gold coated BudgetSensors
AFM cantilevers !Cont-GB-G". They present a nominal rect-
angular geometry: L=450 'm long, W=50 'm wide, and
T=2 'm thick, with a 70 nm gold layer on both sides. We
observe the fluctuation of the cantilever deflection induced
by thermal noise. The measurement is performed with a
homemade interferometric deflection sensor,15,16 inspired by
the original design of Schonenberger and Alvarado17 with a
quadrature phase detection technique:18 The interference be-
tween the reference laser beam reflecting on the chip of the

cantilever15 and the sensing beam on the cantilever gives a
direct measurement of the deflection d!x , t", with very high
accuracy !see Fig. 1".

A first advantage of this technique is that it offers a
calibrated measurement of deflection, without conversion
factor from angle to displacement, as in the standard optical
lever technique common in AFM. A second advantage of our
detection system is a very low intrinsic noise, as illustrated in
Fig. 2 with the power spectrum density !PSD" of a rigid
mirror !bottom black line": The light intensities on the pho-
todiodes are tuned exactly as during the measurement on the
cantilever, but since the mirror is still, the measured spec-
trum reflects only the detection noise. This background noise
is as low as 3$10−28 m2 /Hz in the frequency range from 1
to 800 kHz, just 10% higher than the shot noise limit of our
detection system. A third advantage is that the precision of
the measurement is independent of the focused beam size on
the cantilever, which was tuned as small as 10 'm to ensure
good spatial resolution along the cantilever length.

When translating the focusing lens with respect to the
cantilever, both reference and sensing laser beams are shifted
along the chip and cantilever, respectively.15 The chip’s first
structural mode is at very high frequency compared to that of
the cantilever; hence it is considered as a rigid fixed mirror
independently of the actual reference beam position on top of
it. The measured interference signal is therefore only due to
the thermal noise driven deflection of the cantilever. Figure 2
illustrates such a spectrum when the sensing beam is close to
the free end. The signal to noise ratio is good enough to
identify the first four flexural resonances !as well as the first
two torsional resonances, which are visible due to imperfect
centering of the spot laterally". The relative frequencies of
the peaks should obey the following relation that directly
derives from Eqs. !4" and !6":

fn

f1
=

#n
2

#1
2 . !8"

The experimental ratios of resonance frequencies are in good
agreement with the expected values !see Table I".

103 104 105 10610−28

10−26

10−24

10−22

frequency f/Hz

P
S
D

S
d
(x

≈
L

,f
)/

(m
2
/H

z)

FIG. 2. !Color online" PSD Sd!x+L , f" of thermal noise induced deflection
!red curve" measured close to the free end of the cantilever as a function of
frequency f !log scale on both axis". The first four flexural modes and first
two torsional modes are clearly above the background noise !bottom black
line", measured with a rigid mirror. With our interferometric setup, reso-
lution better than 1.7$10−14 m /#Hz can be achieved on the whole fre-
quency range explored here !1–800 kHz".
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A precision screw allows adjusting the horizontal posi-
tion of the focusing lens and locating the sensing beam at
different positions along the cantilever length while the ref-
erence beam is always on the chip.15 For each measurement,
the x position of the laser spot on the cantilever can be esti-
mated from the image acquired by a simple digital camera.
The spot center in the images can be detected with (1.4 'm
accuracy on the cantilever. Measurements were repeated with
approximative 15 'm steps. At every position we measure
the deflection d!x , t" produced by thermal excitation of the
cantilever and evaluate the PSD Sd!x , f". The complete set of
results is reported in Fig. 3 as a three-dimensional !3D" rep-
resentation. The first four oscillation modes can be clearly
seen with their respective number of nodes. Two further
peaks can be noted, the first at about 220 kHz and a second,
of smaller amplitude, at 790 kHz, that we attribute to the first
and second torsional modes.

For a quantitative characterization of the shape of the
modes we determine the rms amplitude of each resonance
,)n

2!x"- as a function of the position x, by integrating the PSD
in a convenient frequency interval 2*f around each peak,

,)n
2!x"- = .

fn−*f

fn+*f

Sd!x, f"df . !9"

This quantity is computed directly from the experimental
spectra, without any fitting process of the resonances. We

anyway take care to subtract contribution of the background
noise of the interferometer and to compensate for the finite
integration range in frequency. Experimental data computed
this way are plotted in Fig. 4. Error bars correspond to the
equivalent noise of the detection system in the bandwidth
chosen around each resonance !a very conservative estima-
tion of uncertainty".

According to Eq. !1", we should have

,)n
2!x"- = ,dn

2-/"n' x

L
(/2

. !10"

Using the expression of ,dn
2- $Eq. !7"%, it is therefore possible

to fit the data with three adjustable parameters: the length of
the lever L!, the clamping position x0, and the static spring
constant of the cantilever kc!. We realize the fit on the rms
amplitude simultaneously on the four modes with the follow-
ing functions:

#,)n
2!x"- =# 3

#n
4

kBT

kc!
/"n' x − x0

L!
(/ , !11"

where n=1, . . . ,4. The red curves in Fig. 4 represent the fits
of the four considered modes, in good agreement for all
modes. The best fit values are L!=450(5 'm and kc!
=0.376(0.015 N /m. These lengths and stiffnesses are
compatible with the values provided by the manufacturer
!L=450(10 'm and kc from 0.07 to 0.4 N/m".

It is worth noting that the accuracy of our instrument
provides a precise measurement of the thermal noise driven
deflection along the cantilever length and allows verification
of the Euler–Bernoulli model for the microlever. Further-
more this multimode approach provides a more reliable way
to estimate the spring constant of a cantilever with respect to
the standard thermal noise calibration method, which is lim-
ited to the integral of the first mode only and just at the
cantilever free end !circled point in Fig. 4". Actually a pre-

TABLE I. Measured and expected parameters for the first four flexural
modes.

Mode
fn

!kHz" fn / f1 #n
2 /#1

2 Qn Qn
Sader

1 14.046 1 1 88 85
2 87.921 6.26 6.27 231 243
3 245.500 17.48 17.55 420 423
4 479.970 34.17 34.40 680 601

posi
tio

n x/m
m
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S
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m
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FIG. 3. !Color online" PSD Sd!x , f" of thermal noise induced deflection as a function of frequency f and position x along the cantilever. The first four normal
modes are clearly visible, with a vanishing amplitude toward the clamped extremity of the mechanical beam and the nodes of each mode. Another vibration
peak with no nodes is also visible close to the third mode; it is attributed to the first mode in torsion, but is not studied in this paper.
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cise measurement of stiffness could be obtained from the
first three modes only, the presence of the nodes providing a
favorable constraint to the fitting process. Moreover, the use
of the interferometric setup allows one to avoid the calibra-
tion of the segmented photodiode response as in the classical
optical lever readout scheme: This step implies a contact
between the AFM tip and a hard sample, which is translated
of a known amount, a process that may be undesirable to
preserve the probe’s sharpness or its coating. Our calibration
method leaves only a small 4% uncertainty on the spring
constant value for the cantilever used here !confidence inter-
val corresponding to one standard deviation estimated during
the linear least squares fitting process".

Experimental PSD curves show that resonances have a
mode number dependent frequency width. This effect is
mainly due to the viscous drag of the fluid, a point that is not
considered in the Euler–Bernoulli framework. A simple
model that accounts for this aspect, for each eigenmode, is a
damped harmonic oscillator characterized by three param-
eters: the resonance frequency fn, the elastic constant kn, and
the quality factor Qn. The PSD of the damped oscillator can
be expressed as

Sd!f" =
2kBT

kn%fn

Qn

!1 − u2"2Qn
2 + u2 , !12"

with u= f / fn the normalized frequency. For each mode the
PSD depends on the spatial coordinate along the cantilever
length still according to 0"n!x"02. The Qn are evaluated from
experimental data by a fit in the region around the peaks of
each node !see Fig. 5". Those values are constant along the
cantilever. Since the elastic constant kn and resonant fre-
quency fn of each mode are known, the quality factor Qn is
the only free parameter in these fits. In Table I the Qn values
of the first four modes are compared with the hydrodynamic
predictions of the Sader model19 that account for viscous
effect in the fluid. These predictions were computed with
tabulated values of silicon and gold for Young’s modulus and
density, and the physical dimensions of the cantilever
!length, width, and thickness" were tuned within the manu-
facturer tolerance to match the experimental observations.
Note that the elastic moduli of gold and silicon are of the
same order of magnitude, whereas the density of gold is
about eight times that of silicon; therefore even a thin coat-
ing layer of 70 nm produces a mass increment of about 60%
that cannot be neglected in the evaluation of total mass.
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FIG. 4. !Color online" Amplitude of thermal noise for the first four flexural
modes along the cantilever. The errors bars correspond to the equivalent
noise of the detection system in the bandwidth chosen around each reso-
nance !a very conservative estimation of uncertainty". The simultaneous fit
!red curves" of the four resonances with the normal modes shapes is excel-
lent and leads to a precise measurement of the stiffness of the cantilever. The
common calibration method for the spring constant considers only the value
of )1

2!L", the circled point in the upper graph.
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FIG. 5. !Color online" PSD Sd!x+L , f" of thermal noise induced deflection
measured close to the free end of the cantilever as a function of frequency f
around each resonance fn. We subtract from the raw measurement !dashed
blue" the background noise !black" to estimate the mechanical noise of the
cantilever !blue", then we perform a fit with a simple damped harmonic
oscillator model !dashed red". For each plot, the horizontal scale spans
(10fn /Qn around fn.
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A good agreement between the model and experiment is
observed for the first three resonances, but at the highest
frequency a deviation is observed: a lower dissipation than
that foreseen by the Sader model. This behavior was already
observed by Maali et al.20 This deviation is expected since
the original Sader model neglects the 3D nature of the fluid
flowing around the cantilever, an effect increasing with mode
number.19 In an extended model by Van Eysden and Sader,21

such a correction is also observed in the same direction as in
our observation.

IV. CONCLUSIONS

We presented in this paper a high precision measurement
of thermal noise induced deflection of a soft rectangular mi-
crocantilever as a function of frequency and position along
the mechanical beam. The four first flexural spatial modes
could be studied without any external forcing. Their shapes
are very well fitted by the Euler–Bernoulli model, and their
vibration amplitudes accurately described within the Butt
and Jaschke14 framework. Furthermore this multimode ap-
proach provides an extension to the standard thermal noise
calibration method for the spring constant of the cantilever,
with a more robust estimation: It is obtained by a simulta-
neous fit on several modes, when the classic measurement is
limited to the integral of the first mode only and just at the
cantilever free end. Here, the stiffness of our cantilever could
be determined with only 4% uncertainty. Quality factors of
resonances are also robustly extracted from the measure-
ments and compare well to the Sader estimation.19

The very simple geometry considered here, a rectangular
AFM probe, is commonly used in many other applications.
In fact, single-clamped structures, similar to cantilevers, are
often the basic elements of complex MEMS devices. Many
physical, chemical, and biological sensors, a large family of
microdevices, are based on cantilever shaped structures.
They respond to an external change with a small, barely
detectable, mechanical movement. The proposed calibration
method would be directly applicable to these objects. The
characterization of more complex structures !bidimensional,
for instance" such as arrays, double clamped elements, mem-
branes, and other micromechanical structures could also be
performed, although it would also require a proper theoreti-
cal treatment to extract the relevant physical parameters from

the measurement. The absence of external forcing !that may
not be controlled or hard to characterize", thanks to the use of
thermal noise and the great resolution of the interferometric
setup, makes our approach a very promising tool for the
mechanical characterization of MEMS. Even beyond such
calibration, our setup proves to be a valuable tool to perform
measurements of extremely small mechanical displacements
with a high bandwidth.
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