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Abstract A Riemann-Hilbert problem (RHP) is a particular type of boundary value problem for a matrix valued function on the
complex plane (or other Riemann surface). It is the analytic tool, for example, to find holomorphic sections of vector bundles, the typical
example being the Birkhoff factorization theorem on the Riemann Sphere.

There is a surprisingly wide plethora of problems that can be framed within the theory of RHPs; it includes the inverse spectral problem for
integrable wave equations (KdV, mKdV, NLS, AKNS, and, to some extent, KP), the theory of occupation numbers for certain stochastic
point fields, the theory of Painlevé equations and even the analysis of the spectral properties of certain inverse problems in tomography.
Special techniques have been developed in the late 790 to study asymptotic behaviours of solutions of RHPs and this allows rigorous and
very (extremely, in fact) detailed asymptotic analysis of nonlinear waves, be it in the long-time or small-dispersion regimes; for example
results of “universality” of behaviour of solution near the caustic curve of the zero-dispersion approximation can be approached (if not
outright solved) by such techniques.

A "tau” function can be associated to the deformation space of any RHP; in special cases it becomes a Fredholm determinant, in others it
takes the meaning of generating function of intersection numbers of characteristic classes on moduli spaces.

In this talk I will try to give an overview of these topics to showcase the breadth and reach of the method, as well as my collaborators’

research and my own.



We give an overview of the wide range of applications of Riemann—Hilbert problems in
recent results.

@ Riemann—Hilbert problems

Nonlinear Waves (B. Tovbis '15, Grava-Claeys '13, Dubrovin-Grava-Klein '12)
Random (Multi)-Matrices (B.-Gekhtman-Szmigielski '12, B. Bothner '15)
Spectral properties of tomography (B.-Katsevich-Tovbis, '15-'17).
Intersection numbers (B.-Dubrovin-Di '16, B.-Cafasso '16, B.-Ruzza '17)

Integrable systems: Painlevé-Calogero-Moser, (Levin-Olshanetsky '00, Takasaki
'01, B.-Cafasso-Rubtsov '17)
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WHAT 1S A RHP AND WHY YOU SHOULD CARE

OPs, NLS, KdV, Gap probatilities, Painlevé equations, etc. are related to a particular
type of boundary value problem in the complex plane. A Riemann—Hilbert problem is
a boundary-value problem for a matrix—valued, piecewise analytic function I'(z).

PROBLEM

Let 3 be an oriented (union of) curve(s) and M (z) a (sufficiently smooth) matrix
function defined on . Find a matrix-valued function Y (z) with the properties that

e Y (z) is analytic on C\X;
o lim; .o Y (2) = 1 (or some other normalization);
o Yi(2)=Y_(2)M(z); VzeX




In the scalar case, a RHP is reducible to the Sokhotsky-Plemelji formula

THEOREM (SOKHOTSKY-PLEMELJI FORMULA )

Let h(w) be a—Hélder on ¥ and

16 = o [ M o fw - @) =hw) = et —efet ()

2im w—z

(Partial) Index problem.

In the matrix case the solution cannot be written explicitly (at best an integral
equation can be derived) and hence the problem is genuinely transcendental.

Can be rephrased as a triviality of a vector bundle (Birkhoff—theorem < partial indices)J




TAU FUNCTION

DEFINITION (B. ’10, B.

Deformation theory of jump-matrix M (z;t) leads to

el
o InT(t) = J Tr (Y:IYLatMMfl) — +O(t) 2)
= 2
O is a smooth one form of the deformation parameters (an “anomaly”). First term
has a simple pole with integer residue on the Malgrange divisor.

@ The principal property: 7 is locally analytic and 7(t) = 0 if and only if the RHP
has no solution (vector bundle is non-trivial).

o Behaves like a (regularized) Fredholm determinant (Malgrange '90).
o Connects with symplectic geometry of the deformation space.

o Isomonodromic deformations: Painlevé and conformal blocks in CFT (lorgov,
Lisovyy, Gamayun, Its, Tykhyy,..."13—onwards)

For “oscillatory” problems (depending on parameter), Deift—Zhou method
(“non-abelian steepest descent”).




Nonlinear Waves
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NONLINEAR SCHRODINGER EQUATION

The focusing Nonlinear Schrédinger (NLS) equation,
ihdrqg = —h*d3q — 2|a*q ®3)

models self-focusing and self-modulation (optical fibers). It is integrable by inverse
scattering methods (Zakharov—Shabat). It exhibits interesting behaviour as h — 0
(modulational instability); in different regions of spacetime, there are different
asymptotic behaviors (phases) separated by breaking curves (or nonlinear caustics).




The tip-point of the braking curves is called a point of gradient catastrophe, or
elliptic umbilical singularity [Dubrovin-Grava-Klein].

Leading order asymptotic g(z, ¢, k) on and around the gradient catastrophe point
(.’E(), to).

The behavior in the bulk is described in terms of slow
modulation of exact quasi-periodic solutions (genus
2), while outside by slow modulation equations for
the amplitude. There are (generically) two types of Umbiical grad
transitional regions

o A strip region of scale O(hln k) around the
breaking curves (nonlinear caustics);

4
@ a circular region of scale O(h5) around the
gradient catastrophe point.
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FIGURE: A(z) = e~ %", ' (2) = tanhz
and h = 0.03
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ZOOMING IN ON A PEAK (B.-Tovsis, '13)

If we scale by % around each peak we find the rational or Peregrine breather

r—x rT—z
; Pog= - P (4)
12
_ —ti{ag ey, (1 . 1+ 4ib%n ) 5
Qor(§,m) =e 1+ 4b%(€ + 4an)? + 16b%n> ®)

ia'f]QbT + angr + 2|Qbr|2Qbr =0 (6)

£ =




Emergence of “Peregrine breather solution” and time of highest peak after shock predicted
analytically in [B.-Tovbis '13 CPAM] and experimentally verified in nonlinear optics:

"Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear
Schrédinger Equation”, Phys. Rev. Lett. 119 (2017)
Tikan-Billet-El-Tovbis-B.-Sylvestre-Gustave-Randoux-Genty-Suret-Dudley
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FIG. 4. Experimental and numerical simulations: temporal

dynamics of the optical power (setup 1). Input pulse (green FIG.3. Schematic experimental setups. The pulsed light source
points) cormresponding to N =1/¢=22. Output of the js cither a fiber picosecond laser or a spectrally filtered femto-
400 m-long PMF (blue circles). Numerical simulations of the second OPO. The nonlinear propagation of pulses is achieved in a
NLSE (black line) and theoretical Peregrine soliton (red line). HNLF or in a standard PMF fiber.
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KDV EQUATION AND SMALL—DISPERSION

The KdV equation
ur = Utz + Clora , u(z,0) = uo(z) rapidly decaying (7)

For e = 0 we have Burger's equation u¢ = uu,, solved by the hodograph method
(characteristics), locally

flwy=z+ut  flu)=uy' (®)

It shocks at tg = ————.
max ug ()
The small-dispersion also exhibits interesting behavior:

@ Near the point of gradient catastrophe (zg,to) its behavior is described in terms
of a generalization of the Painlevé | equation with critical scale h?
(Dubrovin-Grava-Klein, Grava-Claeys);

o Near the trailing edge (after the time ¢() it is described by the Hastings-McLeod
solution of the Painlevé Il equation y”(s) = sy(s) 4+ 2y3(s) with critical scale n3
(Grava-Claeys);

o Near the leading edge the behavior is described in terms of elementary function
(superposition of soliton solutions) with scale i ln i (Grava-Claeys)



KdV-small dispersion

KdV-zero dispersion = Burgers




NLS anD RHP

The nonlinear Schrédinger equation (in 1 spatial dimension)

ihqe(z,t) = —1*qax (2, ) + 2|q(z, ) *q(2, 1) 9)

THEOREM (ZAKHAROV)

Let I'(z;z,t) be a 2 x 2 matrix, analytic in z € C\R,

24 2
1—|r(z 2 —7(z e—?@tz +xzz)
Ty (si2,8) = T_(x,1) A, T
r(z)en 1
D(z;x,t) =14+ 01, |2 - o (11)
Then the function of x,t
q(z,t) := 2¢ lim 2T12(z;2,t) (12)
zZ—00

is a solution of the defocusing NLS, with initial data given by the data that was
associated to the scattering transform.

The advantage of the formulation of the Theorem is that the x,t dependence is in
plain sight; the disadvantage is that it is not possible (in general) to obtain a closed
formula for the solution of the advocated Riemann—Hilbert problem.



Random Matrices
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RANDOM MATRIX MODELS

The typical setup: Hy := {M Hermitean N x N matrix (M = MT)}.

dp := dMe™ V(D) (13)
dM = [ ] dR(M;) dS(Mij) | | dMpy (14)
1<j k

ZIMM ) .= Jdu = Partition function. (15)




THE CAUCHY CHAIN OF POSITIVE MATRICES

DEFINITION (THE p-CHAIN-CAUCHY MATRIX-MODEL, B.-GEKHTMAN-SZMIGIELSKI

’10-13, B.-BOTHNER ’15)

Let ./\/l(p)Jr be the set of p—tuples of positive semidefinite Hermitean matrices with the
following class of measures

. P det(M;)% e~ N Tr Ui (M;) gy,
du(M) = ==L~ !
[15=7 det(M; + Mj41)™

(16)

4

The scaling parameter N is taken proportional to the size when considering the limit
of large sizes n — 0.




THE p—CHAIN

No explicit formulas for finite size n, p > 3 ; however

THEOREM (RIEMANN-HILBERT CHARACTERIZATION FOR {9k, ®k}r>0)

Determine a (p + 1) x (p + 1) function I'(z) = 'y, () with jump on R
(1i(2) = 2%e~V350);
1 pa(=)x+ 0 T
_ 0 1 " o 0 1 0 0
Ty(2) =T_(2) | © Lo ma f)x‘ 0 l:} 0 H ) \T}
7
1
I'(z) = (1 + O (zfl)) diag [z", 1,..., l,zfn] , z— 0.
Moreover the correlation kernels K, are given by (B.-Bothner '15)
Kjl(wv y) = e_%Uj(z)_%Ué(y)Mj[(way)a
—)t-1 r-1 w;n)'(z;n
Mjg(a:,y) = ( ) — ( ) ( ) o \it+1
(—2mi)i—t+1 w—z : w=z(-)
j+1,8 smy(—)t—1




SCALING BEHAVIOUR AT THE ORIGIN AND CONJECTURAL
UNIVERSALITY

MELJER-G RANDOM POINT FIELD FOR p-CHAIN

CONJECTURE (B.BOTHNER ’15)

For any p = 2,3,. .., there exists co = co(p) and {n;}} which depend on {a;}} such
that - - - ®
: =N K. P (g P
nhl:%o np+1n ¢ JK]Z<nP+1§’ an’l) chjg (57777 {aj}l)

uniformly for £, chosen from compact subsets of (0,00). Here the limiting
correlation kernels equal

(p) (& n; {a;}?) J J S 1525 D(u — ass) [°_;T(a1 —v)  €%p~* dvdu

(T +a1s —uw) TEZIT(M — ars +v) 1 —u + v (270)2
Y T2 T + v —ars) II5-;T(a1s —v) £y
sepoqoy t=° [I_,T(a1s —v) I0TA + v —a1s) ()6 —(—)n

with P = {a1, := Zﬁ:l aj, 1 <£<p}.

Found also in the statistical analysis of singular values of products of Ginibre random matrices (Akemann-Burda '12, A.Kieburg-Wei '13,
Kuijlaars-Zhang '13) (the (1, 1) entry specifically) of the kernels.




Random Matrices and Intersection Numbers |
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(OPEN) INTERSECTION NUMBERS AND RHPs I

The Kontsevich—Penner matrix integral is

det(1Y)N Tr (2 M3 — Y M?

Zn(Y, N) = € (1 ) J exp (3 ) . (17)
Sy, dMexp Tr (=Y M?) Jg, det(M +1Y)N
1 —k

FTr (Y7F) k=1,..,n
log Z,(Y;N) ~log Z(t; N), T =<k B 18
g Zn(Y;N) ~log Z(t; N), Ty {0 s ntl (18)
ty = (—D)F k25 T, (19)

CONJECTURE (ALEXANDROV-BURYAK-TESSLER ’17,

PANDHARIPANDE-SOLOMON-TESSLER 1)

The coefficients of the formal power series log Z(t; N) are the open intersection
numbers.

The open intersection numbers are a generalization of the closed intersection numbers:

ryeomrdei= [t ae g (20)

h,n

20 / 36



(OPEN) INTERSECTION NUMBERS AND RHPs II

r log Z(t; N) (21)

Td, - Td = - -
< 2 2 8td1+1 s 6td"+1

t=0

2 o

which would be a generalization of the Kontsevich's identity;
1+a+b+2N‘ Z)

a—b+1 1—a—b—2N
- PIR(N)Z™ =B 5Ty 7 ifa-b |~
— a, - 1 +a—
m?OF(a b+21+6m) i a 1
a—b+2 2—a—b—2N 2 b+2N
P(52) gty pm _ 2N tath £ 2mes ey |,£>
— b 3 2ta=b
mzo T (e=bEiEomy Ta 2 3 4
(22)
b _3k+2 & _3k k _3k+1
N ¥ Py _(N)A 2 X PE, (M)A 2 X Py _q(N)X 2
k=0 k>0
& _3k+1 X _3k—1 . _ 3k
AN = | N ¥ PFo(N)A 2 3 PR (A 2 T PEo(NAT 2 .(3)
k>0 k=0 ’ k>0
_ 3k _3k=2 _3k—1
2 Y Pk (AT T2 Y PEL(NAT T2
k=0 ? k=0

k
N Y PF(N)A
k=0 b1



EXAMPLE: ONE-POINT OPEN INTERSECTION NUMBERS

at (=nditt,; + 1
Z H Td; 4.+l d; = (24)
dy,...,dp=0 \i=1 2 Q%Ajul
7 o
2 g+1 *3g2+1
—Xg=1 3942 10,0 (N)Xq n=1
R Ay ) A, ) - On,2 n>2 @)
™ €Sy Qg =Xig) i =Xig) (A% A%)z
1723

x3 1

(Tp_gde X" =e 2 = {T3p_920c = ———
2 <Tr—2de 3h—2)e = s

B.—Ruzza '17
Z <Ti_2>0
d>o0 2




(Noncommutative) Painlevé

equations

1PN G4
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(NONCOMMUTATIVE) PAINLEVE EQUATIONS

Paul Painlevé studied (1900) and classified all second order ODEs

2" = R(z',z,t) (26)

with R a rational function, such that the only moveable singularities of the solutions
are poles (i.e. not essential singularities or branchpoint).

50 canonical forms; 6 genuinely transcendental (not reducible to known ODEs and
special functions).

z" =6z2 +¢ (27)

" = 22% + ot + (28)

tea” = t(z')? — za’ + 6t + Bz + aa® + ytat (29)

Etc.



PAINLEVE AND RHP

All the Painlevé equations are related to a Riemann—Hilbert problem. For example P-II

A 1 0
L(s) := i ; ,
U(s2) () [ ses 2tz }
—id 3 gz
{(%) y@*\ U(s) := |: Losems ]
0 1
S1 — S2 + 83 + 815253 =0
RIGS <
[(z) ~14+ 031
L(s2)
v

u=u(z;8) =2 lim 2T12(z;2,5)
zZ—00



NoON-COMMUTATIVE PAINLEVE HAMILTONIANS

(B.-CAFASSO-RUBTSOV '17)

t(t—1)Hy = ﬂ{q(q —1)(a—t)p°+

+((6° + 1~ [p,al)a@— 1) + 0" (a— 1)(a - t) + (0 + 207 — Dala - t))p+

+(6 + 6°)(6° + 6t + ef)q]

tHy
tHrv
tHrrr(pe)
tHrrr(pr)
tHrr1(Ds)
tHrr

tHyp

Trlp(p +t)a(a—1) + fpa +vp — (a + v)tq],

H

rlpa(p —q—1t) +5p+aq]

p’a’ — (@ = Bq— t)p — aq]

H

r

[

[

[

Tr[pzq +apa +tp +al,
[
[
[

Tr
Tr|p® — (a° + t)p —aq}

Tr

Q= Tr(dp A dq) [p,q] = const



GENERAL PROCEDURE:

@ We start with a Lax pair of type

0 _
5, V(zt) = A(za,q L )W (25 t)
z . .
= q=A(q,p.t), p=D5(apt)

2 -1

5 (=) = Bzia,a™,p, )¥(z1),

with A, B polynomials (rationals) in g, p such that the equations above are Hamiltonians and
A is of degree at most 1 in p and B is of degree at most 2 in p.

@ [p, q] is a constant of motion: flow preserves coadjoint orbits

@ On special Kazhdan-Kostant-Sternberg orbit

0 1 1
[p,al=dg| 1 0 1... (30)

1 .1 0

X = AX,Y,t)+[X,F],

ol .
Y = B(X,Y,t)+[Y, F].
. . ig
X = Diag(q1;---,qn); Y = Diag(p1,...,pPn) + <7>
45 — Ak / j1p




GENERAL PROCEDURE II:

Proposition :
(wi —2))°Fy 5 = ([A(va)aX])_ i #E g,
i
1
Fjj=— Y Fp+K, Ki== > Fim.
kikt] ™ g milAm
All entries of F are rational functions of (z1,...,x,) only.
Proof :

[X,X]=0—= [X, (X, F]] = [A(X, Y), X]. (This gives the first equation).

d
0= SIXY] = [AX,Y), X] + [V, B Y]+ ([IX, FLY] + [X [V, F)).
On the other hand
[A(a,p), P] + [P, B(q,p)] = 0 = [A(X,Y), X] + [\, B(X,Y)] = 0.
Hence
0=[[X, F1.Y] + [X, [V, F]] = —[[Y. X], F] = [ig(v"v), F]
The off-diagonal entries of the equation above give the linear system of equations

Fid D Fiy—fe— D, Fje=0, i,k=1,...,nji#k
J#i J#k



GENERAL PROCEDURE III:

HVI :

Hy :

Hpy :

Hprr e

HII H

Hy :

From non-commutative Painlevé to Calogero—Painlevé systems.

(Using Takasaki ('10) canonical transformations.)

¢ 2 3
V(P v o > © ,
D <j' + > gneles + '»'u)> +9° )] <w(f/,, —qr) + p(g; + (IL>>>

- n=0
£

J
Jj=1

j#k

2 2
pj «@ B vt ot
o _ " cosh(q. 2 cosh(2q.
(2 sinh?(q;/2)  cosh?(q;/2) + 2 % (a;) + g (24;) |+

+92 Z ( ) ‘17 + - 1 )
j7% \sinh (g5 —qx)/2) ~ sinh*((g; + qx)/2)
(G- -u(®) - (3) (%))

) 1 1
+9 + .
j;k ((qj —ar)? (a5 +ax)?
2

£ 2
p a t . S0ttt o, 1
Z 3 —el + [ie 4 — 162% + —e % | +4° Z sinh2 ((a: — a)/2) "
22 4 4 8 8 ) sinh (a5 — ar)/2)
0 2
D; 1( 2 ty2 2 1
— — =g+ =) —aq;j| +g T 5
2 2
P; 3 2 1
- —2q; —tg; | +g o
J; ( 2 ! J) 7;» (a5 = ax)?
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MONODROMY AND NON-COMMUTATIVE STOKES MANIFOLD: PII CASE

.22 . 2 -t . 0

11— +1q° + 1= zq —i1p — —

d 2 2 z

—U(t;2) = A(t; 2)T(t;2);  A(t;2) =
dz 0 22 t
zq+ip— -  —i— —iq® —i=
z 2 2
There exists a unique piecewise analytic solution ¥ = {¥,, v = 0, ..., 7} satisfying

/.3
— . A -y &
Uit 2) ~ (1 Lo ®o3 —q®o2 . 0(272)) e(lr\z+17re)[q,p]®lez< 3 +t2>63,
4

The corresponding (matrix) Stokes operator V2 4 v
X,Y,Z satisfy the noncommutative relations l 0 J
Y [ 1
(X +Z+XYZ)Q+ Q'Y = 2isin(n0)
Ge) | W3
Q
(XY +1)Q - Q Y (YX+1)=0 v Y X v
cinlp.al®1 crpaler

ZQX -XQ'Z+Q-Q ' =0 )“(\ /X
hY A K0

(YZ+1)Q-Q NZY +1)=0 W\ Yoo

YQ+ QY (X +2Z+2ZYX) = 2isin(n6), EEa

Q= eimlp.al




“CLASSICAL” AND DEFORMED CUBICS I

If Q = e'™[Pal = +1 then we recover the classical case:

X, Y] =[X,Z] =[Y,Z] =0
X+Y +Z+ XYZ = const,

For [p,q] = ih (only operatorial setting) we obtain “quantized” Stokes manifold,
giving explicit presentation to (Mazzocco-Rubtsov '12).



Spectral asymptotics in Tomography and inverse
problems

J
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ASYMPTOTICS OF SPECTRAL PROBLEMS IN TOMOGRAPHY

In tomography applications with partial data:

@ ay < L e az as

THEOREM

The integral operator (K $)(z) = §; K(z,z)¢(x)dx from L2(I) to L?(I), where

K(z,7) = wi(x)w*i(z)xe(z)X;(;r)(:iuj)(z)wﬁ(x)xi(z)Xe(;,;)7

(31)
or equivalently

_ w(z) f(z)dz _ w(z) g(z)dz
f= Ll w(z) 2in(z — z)XIe @), K|]eg f \ w(z) 2im(z — z) X1, (%)

(32)

where
w(z) :=4/|z — a1l|lz — azg+2| (33)

The function w(x) can be replaced by almost any smooth positive function.




EXACT SPECTRAL INFORMATION

The operator K is self-adjoint and Hilbert-Schmidt (in fact even Trace-Class); the

spectrum is {£An} with \1 > X2 > .... The eigenvalues are simple. In fact KKt is
the direct sum of two endomorphisms of L?(I;), L?(I.) both of which are totally
positive.

Because of the underlying total positivity, the eigenfunctions satisfy a sort of
Sturm-theorem, by which they change signs as many times as the ordinal of the

eigenvalue.
sy S, (%) A C))

FIGURE: Two pairs of the corresponding singular functions (fi2, h12) and (f24, h24), obtained
numerically simultaneously with A,,. Note, the envelope of the oscillations is already visibly the
same, as expected from the asymptotic description below.



REFORMULATION AS A MATRIX RIEMANN—HILBERT PROBLEM

PROBLEM

Find a 2 x 2 matrix-function T' = T'(z; A), A € C\{0}, which is analytic in C\I, where
I = I; u I, admits non-tangential boundary values from the upper/lower half-planes

that belong to leoc in the interior points of I, and satisfies

i

1o i
r+(z;,\)=r,(z;x)[i,Tw 1], zely;  Th(ziA) =T_(z5A) [(1) i\w] zele, (34)

P(2:A) =1+ 0(2" 1) as z - o, (35)




THEOREM (B.-KATSEV

TovBIs '14)

5 10 ‘5” 20 25 30
-10 X <
The spectrum of the operator corresponds to = N
values of \ for which the RHP above has no - q
solution; asymptotically w0 e
CndT L O(1 o
An = e " TOW), (36) :
-60 ",
]n(l ) _ Inm
" 11‘1

THEOREM (B.-KATSEVICH-TOVBIS ’17, IN PROGRESS)

If £ of the gaps shrink to zero, the spectrum becomes continuous in [0, 1] with
multiplicity 24.




