RANDOM TILINGS AND RANDOM MATRICES

ALICE GUIONNET

CNRS - École Normale Supérieure de Lyon

Organigramme de l' UMPA au 13 novembre 2017

6 PR 6 MC 5 DR 9 CR 2 PR invité 2 IR 1 AI 3 TCR 5 AGPR 1 ATER 2 Postdoc 16 Thésards

Probability Team

Grégory Miermont

Random planar maps

Emmanuel Jacob

Random graphs and Processes

Adrien Kassel

Combinatorial stochastic processes

+ 1 Post Doc +1 AGPR+ 4 PhD

Random matrices

aij random, N large.

$$A_{N} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{2N} \\ \vdots & \cdots & \ddots & \cdots & \vdots \\ \vdots & \cdots & \ddots & \cdots & \vdots \\ a_{N1} & \cdots & \cdots & \cdots & a_{NN} \end{pmatrix}$$

Random matrices

aij random, N large.

$$A_{N} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{2N} \\ \vdots & \cdots & \ddots & \cdots & \vdots \\ \vdots & \cdots & \ddots & \cdots & \vdots \\ a_{N1} & \cdots & \cdots & \cdots & a_{NN} \end{pmatrix}$$

How does the spectrum looks like when *N* goes to infinity? What about the eigenvectors (localized or not)? Universality? Nonnormal matrices? relation with operator algebra (and free probability)?

Beta-ensembles

When A_N is Hermitian and the entries Gaussian, the joint law of the eigenvalues is given by

$$dQ_N^{\beta,V}(\lambda) = \frac{1}{Z_N} \prod_{i < j} |\lambda_i - \lambda_j|^{\beta} e^{-\beta N \sum V(\lambda_i)} \prod d\lambda_i$$

with $\beta = 1, 2, 4$ and $V = x^2/2$.

Beta-ensembles

When A_N is Hermitian and the entries Gaussian, the joint law of the eigenvalues is given by

$$dQ_N^{\beta,V}(\lambda) = \frac{1}{Z_N} \prod_{i < j} |\lambda_i - \lambda_j|^{\beta} e^{-\beta N \sum V(\lambda_i)} \prod d\lambda_i$$

with $\beta = 1, 2, 4$ and $V = x^2/2$.

▶ (LLN) If V is continuous, going to infinity sufficiently fast, $\frac{1}{N}\sum \delta_{\lambda_i}$ converges towards the equilibrium measure μ_V

► (CLT)[Johansson 97, Shcherbina, G-Borot 11] Under more assumptions [cf 1 cut, off-critical], for smooth f,

$$\sum_{i=1}^{N} f(\lambda_i) - N \int f(x) d\mu_V(x) \xrightarrow{} N(m_f, \sigma_f)$$

Local fluctuations of Beta ensembles

How does the spectrum look like when N goes to infinity and we look at detailed information like the behaviour of spacings $N(\lambda_i - \lambda_{i-1})$ or largest eigenvalue $\max_i \lambda_i$?

When $\beta = 2$, the law $Q_N^{2,V}$ is determinantal: its density is the square of a determinant

$$\prod_{i < j} |\lambda_i - \lambda_j| = \det(\lambda_j^i)$$

so that its local fluctuations can be analyzed by orthogonal polynomial techniques [Mehta 91', Tracy-Widom 94'].

Beta-ensembles: local fluctuations at the edge

Dumitriu-Edelman 02': Take $V(x)=\beta x^2/2$. Then $Q_N^{\beta,\beta x^2/2}$ is the law of the eigenvalues of

$$H_{N}^{\beta} = \begin{pmatrix} Y_{1}^{\beta} & \xi_{1} & 0 & \cdots & 0 \\ \xi_{1} & Y_{2}^{\beta} & \xi_{2} & 0 & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \xi_{N-1} & Y_{N}^{\beta} \end{pmatrix}$$

where ξ_i are iid N(0,1) and $Y_i^{\beta} \simeq \chi_{i\beta}$ independent.

Beta-ensembles: local fluctuations at the edge

Dumitriu-Edelman 02': Take $V(x)=\beta x^2/2$. Then $Q_N^{\beta,\beta x^2/2}$ is the law of the eigenvalues of

$$H_{N}^{\beta} = \begin{pmatrix} Y_{1}^{\beta} & \xi_{1} & 0 & \cdots & 0 \\ \xi_{1} & Y_{2}^{\beta} & \xi_{2} & 0 & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \xi_{N-1} & Y_{N}^{\beta} \end{pmatrix}$$

where ξ_i are iid N(0,1) and $Y_i^{\beta} \simeq \chi_{i\beta}$ independent.

Ramirez-Rider-Viràg 06': The largest eigenvalue fluctuates like Tracy-Widom β distribution.

Beta-ensembles: local fluctuations at the edge

Dumitriu-Edelman 02': Take $V(x)=\beta x^2/2$. Then $Q_N^{\beta,\beta x^2/2}$ is the law of the eigenvalues of

$$H_{N}^{\beta} = \begin{pmatrix} Y_{1}^{\beta} & \xi_{1} & 0 & \cdots & 0 \\ \xi_{1} & Y_{2}^{\beta} & \xi_{2} & 0 & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \xi_{N-1} & Y_{N}^{\beta} \end{pmatrix}$$

where ξ_i are iid N(0,1) and $Y_i^{\beta} \simeq \chi_{i\beta}$ independent.

Ramirez-Rider-Viràg 06': The largest eigenvalue fluctuates like Tracy-Widom β distribution.

Bourgade-Erdòs-Yau 11', Shcherbina 13', Bekerman-Figalli-G 13': Universality: This remains true for general potentials provided off-criticality holds.

Random tiling in the hexagon

Take a tiling of the hexagon by lozenges uniformly at random

The distribution of horizontal tiles $\ell_1 < \ell_2 < \cdots < \ell_N$ along a vertical line is proportionnal to

$$\prod_{i < j} |\ell_{i} - \ell_{j}|^{2} w(\ell_{i})$$

Random tiling in domains constructed by gluing trapezoid

The distribution of horizontal tiles $\ell_1 < \ell_2 < \cdots < \ell_N$ along a vertical line is proportionnal to

$$\prod_{i < j} |\ell_{i-}\ell_{j}|^{\theta_{i,j}} w(\ell_{i})$$

Discrete β -ensembles ($\beta = 2\theta$)

For configurations ℓ such that $\ell_{i+1} - \ell_i - \theta \in \mathbb{N}$, $\ell_i \in [aN, bN]$, it is given by:

$$P_N^{\theta,w}(\ell) = \frac{1}{Z_N^{\theta,w}} \prod_{1 \leq i < j \leq N} I_{\theta}(\ell_j,\ell_i) \prod w(\ell_i),$$

where
$$I_{\theta}(\ell',\ell) = \frac{\Gamma(\ell'-\ell+1)\Gamma(\ell'-\ell+\theta)}{\Gamma(\ell'-\ell)\Gamma(\ell'-\ell+1-\theta)}$$

Note that $I_{\theta}(\ell',\ell) \simeq |\ell'-\ell|^{2\theta}$ with = if $\theta=1,1/2$.

Discrete β -ensembles ($\beta = 2\theta$)

For configurations ℓ such that $\ell_{i+1} - \ell_i - \theta \in \mathbb{N}$, $\ell_i \in [aN, bN]$, it is given by:

$$P_N^{\theta,w}(\ell) = \frac{1}{Z_N^{\theta,w}} \prod_{1 \leq i < j \leq N} I_{\theta}(\ell_j,\ell_i) \prod w(\ell_i),$$

where
$$I_{\theta}(\ell',\ell) = \frac{\Gamma(\ell'-\ell+1)\Gamma(\ell'-\ell+\theta)}{\Gamma(\ell'-\ell)\Gamma(\ell'-\ell+1-\theta)}$$

Note that $I_{\theta}(\ell',\ell) \simeq |\ell' - \ell|^{2\theta}$ with = if $\theta = 1, 1/2$.

We can study the convergence, global fluctuations of the empirical measures

$$\hat{\mu}_{N} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\ell_{i}/N}$$

and fluctuations of the extreme particles of the liquid region [Borodin, Borot, Gorin, G., Huang]

Convergence of the empirical measure

For configurations ℓ such that $\ell_{i+1} - \ell_i - \theta \in \mathbb{N}, \ell_i \in [aN, bN],$

$$P_N^{\theta,w}(\ell) = \frac{1}{Z_N^{\theta,w}} \prod_{1 \leq i < j \leq N} I_{\theta}(\ell_j,\ell_i) \prod w(\ell_i),$$

Theorem

Assume that $w(\ell) \simeq e^{-NV(\ell/N)}$ with V continuous on [a,b]. Then $\hat{\mu}_N = \frac{1}{N} \sum_{i=1}^N \delta_{\ell_i/N}$ converges almost surely towards μ_V which minimizes

$$\mathcal{E}(\mu) = \int V(x)d\mu(x) - \theta \int \int \ln|x - y|d\mu(x)d\mu(y)$$

over probability measures with density bounded by $1/\theta$.

Convergence of the empirical measure

For configurations ℓ such that $\ell_{i+1} - \ell_i - \theta \in \mathbb{N}, \ell_i \in [aN, bN],$

$$P_N^{\theta,w}(\ell) = \frac{1}{Z_N^{\theta,w}} \prod_{1 \leq i < j \leq N} I_{\theta}(\ell_j,\ell_i) \prod w(\ell_i),$$

Theorem

Assume that $w(\ell) \simeq e^{-NV(\ell/N)}$ with V continuous on [a,b]. Then $\hat{\mu}_N = \frac{1}{N} \sum_{i=1}^N \delta_{\ell_i/N}$ converges almost surely towards μ_V which minimizes

$$\mathcal{E}(\mu) = \int V(x)d\mu(x) - \theta \int \int \ln|x - y|d\mu(x)d\mu(y)$$

over probability measures with density bounded by $1/\theta$.

Proof

$$P_N^{\theta,w}(\ell) \simeq \frac{1}{Z_N^{\theta,w}} e^{-N^2 \mathcal{E}(\hat{\mu}_N)}, \quad \theta \# \{i : \ell_i/N \in [\alpha,\beta]\} \leq N(\beta-\alpha) + 1$$

Fluctuations of the largest particles

For configurations ℓ such that $\ell_{i+1} - \ell_i - \theta \in \mathbb{N}$, $\ell_i \in [aN, bN]$,

$$P_N^{\theta,w}(\ell) = \frac{1}{Z_N^{\theta,w}} \prod_{1 \leq i < j \leq N} I_{\theta}(\ell_j,\ell_i) \prod w(\ell_i),$$

Theorem (Huang-G 17')

Under technical assumptions [one cut, off-criticality, analyticity], the largest particle ℓ_N fluctuates according to the Tracy-Widom 2θ distribution:

$$\lim_{N\to\infty} P_N^{\theta,w}\left(N^{-1/3}(\ell_N - N\beta) \ge t\right) = F_{2\theta}(t)$$

if
$$\beta = \min\{t : \mu_V((-\infty, t))\} = 1$$
.

Idea of the proof

▶ Rigidity (cf Erdos, Schlein, Yau 06'): for any *a* > 0

$$P_N^{\theta,w}(\sup_i |\ell_i - N\gamma_i| \geq \frac{N^a}{\min\{i/N, 1 - i/N\}^{1/3}}) \leq e^{-(\log N)^2}$$
 where $\mu_V((-\infty, \gamma_i)) = i/N$.

Idea of the proof

▶ Rigidity (cf Erdos, Schlein, Yau 06'): for any *a* > 0

$$P_N^{\theta,w}(\sup_i |\ell_i - N\gamma_i| \geq \frac{N^a}{\min\{i/N, 1 - i/N\}^{1/3}}) \leq e^{-(\log N)^2}$$

where
$$\mu_V((-\infty, \gamma_i)) = i/N$$
.

▶ One can compare the law of the extreme particles, at distance of order $N^{1/3}\gg 1$ (the mesh of the tiling) with the law of the extreme particles for the continuous model and deduce the 2θ -Tracy-Widom fluctuations.

Rigidity and Nekrasov equations

Rigidity is obtained by proving that the Stieljes transform

$$G_N(z) = \frac{1}{N} \sum_{i=1}^N \frac{1}{z - \ell_i/N}$$

is close to its deterministic limit for $\Im z \geq N^{-1+\delta}$. This is enough to show that the number of particles in an interval I of size $N^{-1+2\delta}$ is approximately $N\mu_V(I)$.

Estimating the Stieljes equations is done thanks to the analysis of equations, analogous to loop or Dyson-Schwinger equations, derived by Nekrasov for the correlators (all moments of G_N), concentration of measures, and multiscale analysis.

Related questions and problems

- Several cuts (JW G. Borot and V. Gorin)
- ► Fluctuations of the surface of random tilings (Bufetov, Gorin)
- More general interactions (cf JW Borot and Kozlowski on sinsh model)
- Higher dimensions (cf Leblé-Serfaty)
- Pb: Universality: results are still restricted to very specific interactions (unknown for exact Coulomb gas in the discrete setting or Gamma interaction in the continuous).
- Fluctuations in the bulk ?
- Integrable systems?