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Random matrices

ajj random, N large.
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Random matrices

ajj random, N large.
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How does the spectrum looks like when N
goes to infinity 7 What about the eigenvec-
tors (localized or not)? Universality 7 Non-

mﬁ normal matrices ? relation with operator al-
gebra (and free probability) ?



Beta-ensembles

When Ay is Hermitian and the entries Gaussian, the joint law of
the eigenvalues is given by

dQy’(\) HIA — AjPe PN EVOITT d
I<J
with 8 =1,2,4 and V = x?/2.



Beta-ensembles

When Ay is Hermitian and the entries Gaussian, the joint law of
the eigenvalues is given by

dQy" (V) HIA — AP PNV T dA;
I<_/
with 8 =1,2,4 and V = x?/2.
» (LLN) If V is continuous, going to infinity sufficiently fast,
% >~ 8y, converges towards the equilibrium measure 1y

2 -1 0 1 2

» (CLT)[Johansson 97, Shcherbina, G-Borot 11] Under more
assumptions [cf 1 cut, off-critical], for smooth f,

N
Z f(\) — /v/ f(x)duy(x) = N(mg,of)



Local fluctuations of Beta ensembles

\\\. How does the spectrum look like when N
goes to infinity and we look at detailed

mformatlon like the behaviour of spacings
Ai — Aj—1) or largest eigenvalue max; A;?

When § = 2, the law Q,Z;I’V is determinantal: its density is the
square of a determinant

[T 1A = Al = det(A])

i<j
so that its local fluctuations can be analyzed by orthogonal
polynomial techniques [Mehta 91', Tracy-Widom 94'].



Beta-ensembles: local fluctuations at the edge
Dumitriu-Edelman 02': Take V(x) = B8x?/2. Then Qﬁ’ﬁxzp is the
law of the eigenvalues of
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where &; are iid N(0,1) and Y,.ﬁ ~ xjg independent.
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Tracy-Widom g distribution.



Beta-ensembles: local fluctuations at the edge
Dumitriu-Edelman 02': Take V(x) = B8x?/2. Then Q,@’ﬁxzp is the
law of the eigenvalues of
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where &; are iid N(0,1) and Y,.ﬁ ~ xjg independent.

Ramirez-Rider-Virag 06": The largest eigenvalue fluctuates like
Tracy-Widom g distribution.

Bourgade-Erdos-Yau 11’, Shcherbina 13', Bekerman-Figalli-G 13':
Universality: This remains true for general potentials provided
off-criticality holds.



Random tiling in the hexagon

Take a tiling of the hexagon by lozenges uniformly at random

The distribution of horizontal tiles ¢; < £y < --- < £y along a
vertical line is proportionnal to

[T 16— 6Pw(es)

i<j



Random tiling in domains constructed by gluing trapezoid

< ¢y along a

tiles 1 <y < ---

ribution of horizontal
vertical line is proportionnal to

t

The dis

Hw(li)

41

j—

116

i<j

with 9,‘71' S {0, 1,2}.



Discrete (5-ensembles (5 = 260)

For configurations ¢ such that ¢;11 — ¢; — 6 € N, ¢; € [aN, bN], it
is given by:

w 1

PR == 11 ) [T we,
ZN 1<i<j<N

F( — ¢+ 1) —1+0)

/ _
where /9(£ 76) = I'(E/ _ g)r(é/ —(+1- 9)

Note that lp(¢', ¢) ~ |0/ — ¢|*Y with = if § = 1,1/2.



Discrete (5-ensembles (5 = 260)

For configurations ¢ such that ¢;11 — ¢; — 6 € N, ¢; € [aN, bN], it
is given by:

w 1
PR == 11 ) [T we,
ZN 1<i<j<N

[0 — 0+ 1) =€+ 0)
re—Or@e—ic+1-0)

where Ip(¢',0) =

Note that lp(¢', ¢) ~ |0/ — ¢|*Y with = if § = 1,1/2.

We can study the convergence, global fluctuations of the empirical

measures
LN
fin = N Zl de,/N

and fluctuations of the extreme particles of the liquid region
[Borodin, Borot, Gorin, G., Huang]



Convergence of the empirical measure
For configurations ¢ such that ¢;11 — ¢; — 6 € N, ¢; € [aN, bN],

0,w 1
PN (0 = = T (g e) [T wit),
N 1<i<j<N
Theorem
Assume that w(l) ~ e=NVI/N) with V' continuous on [a, b]. Then

fin = % Z,N: 10¢,/n converges almost surely towards juy, which
minimizes

&) = [ Vedut) =0 [ [ Inlx = yidux)dn(y)

over probability measures with density bounded by 1/6.



Convergence of the empirical measure
For configurations ¢ such that ¢;11 — ¢; — 6 € N, ¢; € [aN, bN],

0,w 1
PN (0 = = T (g e) [T wit),
N 1<i<j<N
Theorem
Assume that w(l) ~ e~ NVUW/N) with V continuous on [a, b]. Then

fin = % Z,N: 10¢,/n converges almost surely towards juy, which
minimizes

&) = [ Vedut) =0 [ [ Inlx = yidux)dn(y)

over probability measures with density bounded by 1/6.
Proof

PR (0) = Zel,we‘”Q“W 037 Li/ N € [, B]} < N(B—a)+1
N



Fluctuations of the largest particles

For configurations ¢ such that ¢;11 — ¢; — 6 € N, ¢; € [aN, bN],

Py (0) = . IT ol ) ] wien),

0,w
ZN 1<i<j<N

Theorem (Huang-G 17')

Under technical assumptions [one cut, off-criticality, analyticity],
the largest particle £ fluctuates according to the Tracy-Widom 26
distribution:

lim P& (N*1/3(€N — NB) > t) = Fa(t)

N—oo

if =min{t: py((—o0,t))} = 1.



Idea of the proof

» Rigidity (cf Erdos, Schlein, Yau 06'): for any a > 0

Na

> < o (log N)?
= N N S €

PR (sup [¢; — N;

where p1y((—00,7i)) = i/N.



Idea of the proof

» Rigidity (cf Erdos, Schlein, Yau 06'): for any a > 0

2 -
~ min{i/N,1—i/N}/3

Py (sup [¢; — Ny ) < (g r

where py((—o0,7i)) = i/N.

» One can compare the law of the extreme particles, at distance
of order N'/3 >> 1 (the mesh of the tiling) with the law of the
extreme particles for the continuous model and deduce the 26-
Tracy-Widom fluctuations.



Rigidity and Nekrasov equations

» Rigidity is obtained by proving that the Stieljes transform

1L 1
Gn(z) = sz—e,//v
i=1

is close to its deterministic limit for Sz > N~1T9. This is
enough to show that the number of particles in an interval /
of size N~12% is approximately Ny (/).

» Estimating the Stieljes equations is done thanks to the
analysis of equations, analogous to loop or Dyson-Schwinger
equations, derived by Nekrasov for the correlators (all
moments of Gy ), concentration of measures, and multiscale
analysis.



Related questions and problems

» Several cuts (JW G. Borot and V. Gorin)
» Fluctuations of the surface of random tilings (Bufetov, Gorin)

» More general interactions (cf JW Borot and Kozlowski on
sinsh model)

» Higher dimensions (cf Leblé-Serfaty)

» Pb: Universality: results are still restricted to very specific
interactions (unknown for exact Coulomb gas in the discrete
setting or Gamma interaction in the continuous).

» Fluctuations in the bulk ?

> Integrable systems?



