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Main themes

Project INRIA - NUMED. Complex math. modelling in Medecine: brain stroke,
cancer. Multiscale analysis. Wave propagation in complex media. Statistical
parameter estimates for PDEs. Numerical simulations.

Collaborations with medical teams.

Fluid dynamics. Hydrodynamics. Boundary layers. Statistical Physics. Boltz-
mann & kinetic equations. Mathematical modelling. Relative entropy method.



The equation ; 1st formulation

Unknown ¢ : Q — R ; planar bounded domain.

. Vo 2
div + —
V20+ Vo2 (/204 (Vo2

0.

In quasilinear form

(20 + |VO[*)Ad — D*0(V, Vo) +40 + [Vo|* = 0.



The equation ; 2nd formulation

Auxiliary unknown w = /2¢ (when ¢ > 0)

Vw 2

div +
\/1 +|Vw|?

= 0.
w\/l—|—|Vw|2

or
1+ \Vw]z

(1+ |Vw|?)Aw — D*w(Vw, Vw) +2
W

= 0.



Motivation ()

The PDE is the Euler-Lagrange equation of either

L[¢]:/\/2¢+|V¢|2% or L[w]:/\/1+|Vw|2%.

Interpretation :

The graph x3 = w(xy,x2) is a non-parametric minimal surface in the
Poincaré’s half-space

1
H° = {x € R?|x3 > 0}, dszzx—z(dx%—kdx%—l—dx%),
3

of constant negative curvature.



Motivation (ll)

The PDE can be recast in terms of principal curvatures of a rotationally symmetric
hypersurface in R* as

i3 =5 (k1 +K2).

Again, a parametric equation

\/xﬁ—kx% = w(x1,X2).



Motivation (Il)

Euler equations for isentropic gas dynamics

d;p +div(pu) = 0,
J:(pu) +div(pu®u)+Vp(p) = 0.

For self-similar flows (Riemann Problem)
(7) (7)
— L) u=u\|—J,
P=0"p ; p

1
div(pv) +2p =0, (Vv-V)v+v+ va =0,

the system becomes

where v(y) :=u(y) —y is the pseudo-velocity.



Sub-case : the potential flow
v=Vo
satisfies Bernoulli’'s Theorem (1 the enthalpy)
1
SIVOP+o+1(p) =0, /(p)=—p(p).
that is

p=h(20+|Vo|?).
Whence a 2™-order PDE

div (h(2¢+ \Vq)\z)vq)) 2120+ |Vo[?) = 0.

The Chaplygin / von Karman equation of state leads to
h(s) = s—1/2,
Then (3) reduces to our PDE.



Type of the equation

e Hyperbolic type if § <0

(think to the wave equation).

e Elliptic type if 0 > 0

(think to the Laplace equation).

e Degeneracy when ¢ vanishes.

We look for positive solution. Hence we may work in terms of w = /20 .



The boundary condition

daa=0 (ie.  wlyn=0). (4)

Interpretations

(I) The minimal surface is complete,

M. Anderson (/nventiones Math. 1982) proved the existence of parametric
complete minimal surface, using geometric measure theory.

He considers also the non-parametric case, but then his “proof” has serious
flaws.



() The surface of revolution has no boundary,

(Il The domain € is the subsonic zone of a flow.

The boundary dQ is calculated a priori from the Riemann data, by solving
plnar wave interactions.



Summing up, our BVP is

(20+|V0[*)A0 —D?0(V, Vo) +40+ Vo> = 0 inQ,
o > 0 inQ,
® = 0 onadQ.

The equation is elliptic in € ; it degenerates along the boundary.

At x € dQ the ellipticity is lost. lts failure occurs in the tangent direction (unlike
Tricomi equation) : a non generic degeneracy (of Keldysh type).



But then,
Where is the data ?

The PDE is homogeneous, as well as the boundary condition ...

The data of the problem is the domain €2 !

For the Chaplygin gas, only the supersonic part of the flow is not explicit.



A necessary condition for existence

Non generic degeneracy is associated with an explicit formula of every derivative
at the boundary 0Q !

For instance

K— = —1, (x the curvature).

With ¢ > 0 in Q and ¢ = 0 on dQ, this yields:

Proposition 1 A necessary condition for the existence of a solution, of
class C? up to the boundary, is that €2 be uniformly convex :

infx > 0.



The convexity is sufficient !

Theorem 1 (DS, 2009, 2015.) Let 2 be a bounded planar convex do-
main.

Then there exists a unique positive solution to the BVF,

0 e CT(Q)NC(Q).

Difficulties : — non-linearity, — degeneracy at the boundary, — non-uniform ellipticity
(unless |Vw| is bounded, unlikely).

Maximum Principle is the only tool ...



The Maximum Principle
The equation writes N (w, Vw, Dzw) = (0 with
e (ellipticity) S +— N(w, p,S) strictly increasing in Sym,(RR),
e w— N(w,p,S) decreasing in (0, +oo).
MP 1 Ifw, is a super-solution (N(w,Vwy,D?w.) <0inw), ifw_ is a

sub-solution (N (w_,Vw_,Dzw_) >0), and ifw_ < w. overdw, then

w_ <wi dans.



Strategy
. The MP implies uniqueness.

. Comparison with exact solutions ¢"""(x) = %(r2 — |x—m|?) yield an explicit
lower bound wy,i, satisfying

Whin > 01in Q, Wmin = 0 over 0Q.

. Similiar idea, with a little more calculations, yields an explicit upper bound
Wmax Such that

Wmax > O in Q, Wmax — O over aQ

Not the end of the story, because of the lack of uniform ellipticity.



4. Establish a Lipschitz estimate, to ensure the uniform ellipticity.

The most delicate point, since it is known to be only local !

5. Apply the regularity theory (cf Gilbarg—Trudinger) to get an estimate of D?w
(or D2([) as well). This ensure the pre-compactness for V.

6. Proceed with a continuation method, with respect to the parameters
\%
div LA £ =
V20HIV0R /204 Vo2

0, u € (0,2],

and
Oag=¢>0, €—07,

(for u = 0, the solution is ¢ = ¢).



The Lipschitz estimate

Along 0Q,

1
Vo| = — Vw| = oo,
Vo=, [V

Lemma 1 (2009) /fminyg K > 0 (uniformly convex domain), the Lipschitz
estimate of ¢ at the boundary + a (delicate) MP yields a priori

[VO||eo < C(mink,diamQ).

Useless when K vanishes (flat points) ; one even has || V§||e = ce.



Instead, let us use the invariance of the PDE

under translation : if wis a solution in Q, then x — w(x+a) is a solution
in Q—a,

under rescaling : likewise, x — Aw(A~lx) is a solution in AQ.

For a,b € Q, define

plalb) =inf{A>0[Q—bCAMQ—a)} €[1,+00).



For A > p(a|b),
2(x) == Aw (%—Fa)

is a solution of the BVP in A(Q2 —a). It is thus a super-solution in Q — b. Therefore
the MP gives

wkx+b) <z(x), VxeQ-—b.
Putx=0:
w(b) <w(a)p(alb).

Lipschitz estimate :
[logw(a) —logw(b)| < dq(a,b) := max{log p(a|b),log p(bla)},

where dg is the Thompson distance over Q.



Equivalence %dH <dg <dy, where

dg(a,b) :=logp(alb) +logp(bla).

dy is the Hilbert met-
ric in Q.




Corollary 1 Let w be the unique solution w of the BVP. Then logw is
1-Lipschitz with respect to the Hilbert metric.

%

Summary

e The solution is a priori bounded above and below by wmax > wpin > 0, both
vanishing at the boundary,

e On every compact sub-domain, |Vw| is a priori bounded (dy is locally equiv-
alent to the Euclidian metric),

e Thus the PDE has uniform ellipticity, away from the boundary,



Therefore the regularity theory for elliptic equations applies. Whence a priori
bounds for D*w on compact sub-domains,

By Ascoli—Arzela, one has pre-compactness of (approximate) solutions in cl.
The passage to the limit in the equation is valid.

The limit of approximate solutions is a solution.

By the MP, the solution is unique.

Up to technical details, this proves Theorem 1.



Thanks for your attention !



