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Main themes

Project INRIA - NUMED. Complex math. modelling in Medecine: brain stroke,

cancer. Multiscale analysis. Wave propagation in complex media. Statistical

parameter estimates for PDEs. Numerical simulations.

Collaborations with medical teams.

Fluid dynamics. Hydrodynamics. Boundary layers. Statistical Physics. Boltz-

mann & kinetic equations. Mathematical modelling. Relative entropy method.



The equation ; 1st formulation

Unknown φ : Ω→ R ; planar bounded domain.

div
∇φ√

2φ+ |∇φ|2
+

2√
2φ+ |∇φ|2

= 0. (1)

In quasilinear form

(2φ+ |∇φ|2)∆φ−D2
φ(∇φ,∇φ)+4φ+ |∇φ|2 = 0.



The equation ; 2nd formulation

Auxiliary unknown w =
√

2φ (when φ > 0)

div
∇w√

1+ |∇w|2
+

2

w
√

1+ |∇w|2
= 0. (2)

or

(1+ |∇w|2)∆w−D2w(∇w,∇w)+2
1+ |∇w|2

w
= 0.



Motivation (I)

The PDE is the Euler-Lagrange equation of either

L[φ] =
∫ √

2φ+ |∇φ|2 dx

φ3/2
or L [w] =

∫ √
1+ |∇w|2 dx

w2 .

Interpretation :

The graph x3 = w(x1,x2) is a non-parametric minimal surface in the
Poincaré’s half-space

H3 = {x ∈ R3 |x3 > 0}, ds2 =
1
x2

3
(dx2

1+dx2
2+dx2

3),

of constant negative curvature.



Motivation (II)

The PDE can be recast in terms of principal curvatures of a rotationally symmetric

hypersurface in R4 as

κ3 =
1
2
(κ1+κ2).

Again, a parametric equation √
x2

4+ x2
3 = w(x1,x2).



Motivation (III)

Euler equations for isentropic gas dynamics

∂tρ+div(ρu) = 0,

∂t(ρu)+div(ρu⊗u)+∇p(ρ) = 0.

For self-similar flows (Riemann Problem)

ρ = ρ

(x
t

)
, u = u

(x
t

)
,

the system becomes

div(ρv)+2ρ = 0, (v ·∇)v+v+
1
ρ

∇p = 0,

where v(y) := u(y)− y is the pseudo-velocity.



Sub-case : the potential flow

v = ∇φ

satisfies Bernoulli’s Theorem (ı the enthalpy)

1
2
|∇φ|2+φ+ ı(ρ) = 0, ı′(ρ) =

1
ρ

p′(ρ),

that is

ρ = h(2φ+ |∇φ|2).

Whence a 2nd-order PDE

div
(

h(2φ+ |∇φ|2)∇φ

)
+2h(2φ+ |∇φ|2) = 0. (3)

The Chaplygin / von Kármán equation of state leads to

h(s) = s−1/2.

Then (3) reduces to our PDE.



Type of the equation

• Hyperbolic type if φ < 0

(think to the wave equation).

• Elliptic type if φ > 0

(think to the Laplace equation).

• Degeneracy when φ vanishes.

We look for positive solution. Hence we may work in terms of w =
√

2φ .



The boundary condition

φ|∂Ω = 0 (i.e. w|∂Ω = 0). (4)

Interpretations

(I) The minimal surface is complete,

M. Anderson (Inventiones Math. 1982) proved the existence of parametric
complete minimal surface, using geometric measure theory.

He considers also the non-parametric case, but then his “proof” has serious
flaws.



(II) The surface of revolution has no boundary,

(III) The domain Ω is the subsonic zone of a flow.

The boundary ∂Ω is calculated a priori from the Riemann data, by solving

plnar wave interactions.



Summing up, our BVP is

(2φ+ |∇φ|2)∆φ−D2
φ(∇φ,∇φ)+4φ+ |∇φ|2 = 0 in Ω,

φ > 0 in Ω,

φ = 0 on ∂Ω.

The equation is elliptic in Ω ; it degenerates along the boundary.

At x ∈ ∂Ω the ellipticity is lost. Its failure occurs in the tangent direction (unlike

Tricomi equation) : a non generic degeneracy (of Keldysh type).



But then,

Where is the data ?

The PDE is homogeneous, as well as the boundary condition ...

The data of the problem is the domain Ω !

For the Chaplygin gas, only the supersonic part of the flow is not explicit.



A necessary condition for existence

Non generic degeneracy is associated with an explicit formula of every derivative
at the boundary ∂Ω !

For instance

κ
∂φ

∂ν
=−1, (κ the curvature).

With φ > 0 in Ω and φ = 0 on ∂Ω, this yields:

Proposition 1 A necessary condition for the existence of a solution, of
class C 2 up to the boundary, is that Ω be uniformly convex :

infκ > 0.

♠



The convexity is sufficient !

Theorem 1 (DS, 2009, 2015.) Let Ω be a bounded planar convex do-

main.

Then there exists a unique positive solution to the BVP,

φ ∈ C ∞(Ω)∩C (Ω).

♥

Difficulties : – non-linearity, – degeneracy at the boundary, – non-uniform ellipticity

(unless |∇w| is bounded, unlikely).

Maximum Principle is the only tool ...



The Maximum Principle

The equation writes N(w,∇w,D2w) = 0 with

• (ellipticity) S 7→ N(w, p,S) strictly increasing in Sym2(R),

• w 7→ N(w, p,S) decreasing in (0,+∞).

MP 1 If w+ is a super-solution (N(w+,∇w+,D2w+)≤ 0 in ω), if w− is a

sub-solution (N(w−,∇w−,D2w−)≥ 0), and if w− ≤ w+ over ∂ω, then

w− ≤ w+ dans ω.



Strategy

1. The MP implies uniqueness.

2. Comparison with exact solutions φr,m(x) = 1
2(r

2− |x−m|2) yield an explicit
lower bound wmin satisfying

wmin > 0 in Ω, wmin = 0 over ∂Ω.

3. Similiar idea, with a little more calculations, yields an explicit upper bound
wmax such that

wmax > 0 in Ω, wmax = 0 over ∂Ω.

Not the end of the story, because of the lack of uniform ellipticity.



4. Establish a Lipschitz estimate, to ensure the uniform ellipticity.

The most delicate point, since it is known to be only local !

5. Apply the regularity theory (cf Gilbarg–Trudinger) to get an estimate of D2w
(or D2φ as well). This ensure the pre-compactness for ∇φ.

6. Proceed with a continuation method, with respect to the parameters

div
∇φ√

2φ+ |∇φ|2
+

µ√
2φ+ |∇φ|2

= 0, µ ∈ [0,2],

and

φ|∂Ω = ε > 0, ε→ 0+,

(for µ = 0, the solution is φ≡ ε).



The Lipschitz estimate

Along ∂Ω,

|∇φ|= 1
κ
, |∇w|= ∞.

Lemma 1 (2009) If min∂Ω κ> 0 (uniformly convex domain), the Lipschitz
estimate of φ at the boundary + a (delicate) MP yields a priori

‖∇φ‖∞ <C(minκ,diamΩ).

♦

Useless when κ vanishes (flat points) ; one even has ‖∇φ‖∞ = ∞.



Instead, let us use the invariance of the PDE

under translation : if w is a solution in Ω, then x 7→w(x+a) is a solution

in Ω−a,

under rescaling : likewise, x 7→ λw(λ−1x) is a solution in λΩ.

For a,b ∈Ω, define

p(a|b) = inf{λ > 0 |Ω−b⊂ λ(Ω−a)} ∈ [1,+∞).



For λ≥ p(a|b),

z(x) := λw
(x

λ
+a
)

is a solution of the BVP in λ(Ω−a). It is thus a super-solution in Ω−b. Therefore

the MP gives

w(x+b)≤ z(x), ∀x ∈Ω−b.

Put x = 0 :

w(b)≤ w(a)p(a|b).

Lipschitz estimate :

| logw(a)− logw(b)| ≤ dΩ(a,b) := max{log p(a|b), log p(b|a)},

where dΩ is the Thompson distance over Ω.



Equivalence 1
2 dH ≤ dΩ ≤ dH , where

dH(a,b) := log p(a|b)+ log p(b|a).

dH is the Hilbert met-

ric in Ω.

dH(a,b)= log
ac ·bd
ad ·bc

.

x

x

a

b
c

d



Corollary 1 Let w be the unique solution w of the BVP. Then logw is
1-Lipschitz with respect to the Hilbert metric.

♦

Summary

• The solution is a priori bounded above and below by wmax > wmin > 0, both
vanishing at the boundary,

• On every compact sub-domain, |∇w| is a priori bounded (dH is locally equiv-
alent to the Euclidian metric),

• Thus the PDE has uniform ellipticity, away from the boundary,



• Therefore the regularity theory for elliptic equations applies. Whence a priori

bounds for D2w on compact sub-domains,

• By Ascoli–Arzela, one has pre-compactness of (approximate) solutions in C 1.

The passage to the limit in the equation is valid.

• The limit of approximate solutions is a solution.

• By the MP, the solution is unique.

Up to technical details, this proves Theorem 1.



Thanks for your attention !


