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Abstract. We prove that, on any closed manifold of dimension at least two

with non-trivial first Betti number, a C∞ generic Riemannian metric has in-

finitely many closed geodesics, and indeed closed geodesics of arbitrarily large
length. We derive this existence result combining a theorem of Mañé to-

gether with the following new theorem of independent interest: the existence

of minimal closed geodesics, in the sense of Aubry-Mather theory, implies the
existence of a transverse homoclinic, and thus of a horseshoe, for the geodesic

flow of a suitable C∞-close Riemannian metric.

1. Introduction

1.1. Background. A long standing conjecture in Riemannian geometry asserts
that any closed Riemannian manifold of dimension at least two has infinitely many
closed geodesics. This conjecture holds for any simply connected closed Riemannian
manifold whose rational cohomology ring is not generated by a single element,
thanks to a combination of results of Gromoll and Meyer [GM69] and Vigué-Poirrier
and Sullivan [SVP75, VPS76]. For non-simply connected Riemannian manifolds,
the conjecture was confirmed by Bangert and Hingston [BH84] for closed manifolds
whose fundamental group is infinite abelian (the most difficult case being Z), and
later generalized by Taimanov [Tăı85] to larger classes of closed manifolds, including
those with infinite solvable fundamental group. The conjecture also holds for any
Riemannian surface, and most notably for any Riemannian 2-sphere, thanks to
a combination of results of Bangert [Ban93] and Franks [Fra92] or, alternatively,
Hingston [Hin93]. To the best of the authors’ knowledge, these are the last results
confirming the conjecture for any Riemannian metric on certain classes of manifolds.
Among the remaining cases, the conjecture is still open for closed manifolds of
dimension at least three having the rational cohomology of a compact rank-one
symmetric space Sn, CPn, HPn, or CaP 2.

A result of Hingston [Hin84], later reproved by Rademacher [Rad89] with a
different argument, asserts that a C4-generic Riemannian metric on any simply
connected closed manifold with the rational cohomology of a compact rank-one
symmetric space has infinitely many closed geodesics. When the fundamental group
is infinite and non-abelian, C4-generic existence results were proved only for specific
classes of closed manifolds, see [BTZ81, RT22, SZ23] and references therein. The
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general case of closed manifolds with infinite non-abelian fundamental group is still
open.

1.2. Main results. In this paper, we prove a new existence result for closed
geodesics and for homoclinics to closed geodesics, by means of Aubry-Mather the-
ory [Ban90, CI99b, Fat08, Sor15]. We provide the statements after recalling some
relevant definitions.

We consider a closed Riemannian manifold (M, g) of dimension at least two with
non-zero first Betti number. This latter condition is equivalent to the non-vanishing
of the first de Rham cohomology group H1(M ;R). For each closed 1-form σ on M ,
we can associate to each W 1,2 curve γ : [0, τ ] →M an action

Aσ(γ) =
1

τ

∫ τ

0

(
1
2∥γ̇(t)∥

2
g − σ(γ̇(t))

)
dt. (1.1)

When γ is a loop, meaning that γ(0) = γ(τ), the value Aσ(γ) does not depend on
the specific choice of σ, but only on the cohomology class [σ] ∈ H1(M ;R). From
now on, in order to simplify the notation, we will omit the brackets and write σ for
the cohomology class as well.

Throughout this paper, by a geodesic γ : R → M we will always mean a non-
constant solution of ∇tγ̇ ≡ 0, where ∇t is the Levi-Civita covariant derivative of
(M, g). A closed geodesic is a geodesic γ : R→M such that γ = γ(τγ + ·) for some
minimal period τγ > 0. We associate to any such closed geodesic the Riemannian
length L(γ) := τγ∥γ̇∥g and the action Aσ(γ|[0,τγ ]). A closed geodesic γ is called
minimal (in the sense of Aubry-Mather theory [Ban90]) when, for some non-zero
σ ∈ H1(M ;R), we have

Aσ(γ|[0,τγ ]) = inf
ζ
Aσ(ζ),

where the infimum ranges over all τ > 0 andW 1,2 loops ζ : [0, τ ] →M , ζ(0) = ζ(τ).
We will say that γ is σ-minimal or (g, σ)-minimal if we need to specify the co-
homology class and the Riemannian metric.

Any closed geodesic γ lifts to a periodic orbit γ̇ of the geodesic flow on the
sphere tangent bundle of radius ∥γ̇∥g. When γ is hyperbolic, meaning that γ̇ is a
hyperbolic periodic orbit of the geodesic flow, it may admit transverse homoclinics,
that is, geodesics distinct from γ and whose lifts to the sphere tangent bundle lie
on transverse intersection points of the stable and unstable manifolds of γ̇. By a
classical result from hyperbolic dynamics [FH19, Theorem 6.5.2], the presence of
a transverse homoclinic implies the existence of a horseshoe for the geodesic flow.
This further implies that the geodesic flow has positive topological entropy and
exponential growth of the periodic orbits, and in particular that there are infinitely
many closed geodesics of arbitrarily large length.

The following is the main result of this article.

Theorem A. Let (M, g0) be a closed Riemannian manifold of dimension at least
two. If there exists a minimal closed geodesic γ, then there exists a Riemannian
metric g arbitrarily C∞-close to g0 such that γ is a hyperbolic closed geodesic of g
with a transverse homoclinic.

The existence of a transverse homoclinic to a hyperbolic closed geodesic after a
C2-small perturbation of the Riemannian metric was established by the first author
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in [Con10] for those closed manifolds of dimension at least two on which a C2-
generic Riemannian metric has infinitely many closed geodesics1. In particular, the
theorem holds for simply connected closed manifolds (which do not admit minimal
closed geodesics). Our Theorem A, instead, employs in an essential way a minimal
closed geodesic, and achieves the transverse homoclinic with a perturbation of the
Riemannian metric in the finer C∞ topology.

In the general setting of Tonelli Hamiltonians, but under the stronger assump-
tion that the first Betti number of the underlying closed manifold M is at least
two, the analogous of Theorem A was established by the first author and Pater-
nain [CP02, Cor. 2] (in the Tonelli setting, the Hamiltonian function is perturbed
with a potential). In a similar spirit, results on homoclinics were also obtained by
Bolotin [Bol95a, Bol95b, Bol97] using different methods. The essential novelty of
our Theorem A is that it allows the first Betti number of M to be equal to one. In
particular, the hardest case is when the fundamental group π1(M) is isomorphic to
Z, for which the quest for homoclinics requires a min-max scheme inspired by the
above mentioned result of Bangert and Hingston [BH84].

If there are no σ-minimal closed geodesics for some non-zero cohomology class
σ, a result of Mañé [Mañ96, Th. F] asserts that, even without perturbing the
Riemannian metric, there exist infinitely many closed geodesics of arbitrarily large
length. This, combined with Theorem A, implies the following corollary. We denote
by Gk(M) the space of smooth Riemannian metrics on M , endowed with the Ck

topology.

Corollary B. Let M be a closed manifold of dimension at least two with non-
trivial first Betti number. Then, for each 2 ≤ k ≤ ∞, there exists an open and
dense subset of Gk(M) such that every Riemannian metric therein admits infinitely
many closed geodesics of arbitrarily large length.

We will actually prove a slight generalization of Theorem A, allowing the assump-
tions to be satisfied only by a finite cover of the closed manifold M (Theorem 2.5),
and derive a stronger version of the latter corollary (Corollary 2.6).

1.3. Organization of the paper. In Section 2, after recalling the needed back-
ground from Aubry-Mather theory, we prove Theorem A and Corollary B. In the
Appendix, we prove a perturbation result for closed geodesics that will be needed
in the proof of Theorem A.

2. Aubry-Mather theory

2.1. Preliminaries. The proof of Theorem A requires some tools from Aubry-
Mather theory [CI99b,Fat08, Sor15]. Let (M, g) be a closed Riemannian manifold
of dimension at least two. We consider the geodesic flow

ϕt = ϕtg : TM → TM

defined on the whole tangent bundle. Its orbits have the form ϕt(γ̇(0)) = γ̇(t),
where γ : R→M is a geodesic or a constant curve. We denote by M the space of

1In the main theorems in [Con10], the requirement that a C2-generic Riemannian metric on
the considered closed manifold must have infinitely many closed geodesics does not appear due to

an omission.
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probability measures µ on TM that are closed, meaning that∫
TM

df dµ = 0, ∀f ∈ C1(M).

Within M, we have two important classes of measures:

• All those probability measures µ on TM that are invariant under the geo-
desic flow, i.e. ϕt∗µ = µ for all t ∈ R.

• All those probability measures µγ uniformly distributed along a continuous
and piecewise smooth loop γ : [0, τ ] →M , γ(0) = γ(τ), i.e.∫

TM

F dµγ :=
1

τ

∫ τ

0

F (γ̇(t)) dt, ∀F ∈ C0(TM).

Any µ ∈ M has a rotation vector ρ(µ) ∈ H1(M ;R), which is defined via the duality
with de Rham cohomology classes σ ∈ H1(M ;R) by

⟨σ, ρ(µ)⟩ =
∫
TM

σ(v) dµ(v).

Here, as well as later on, within the integral we chose an arbitrary closed 1-form
representing σ, which we still denoted by σ with a slight abuse of notation. Since
µ is a closed measure, the value of the integral is independent of the choice of such
a closed 1-form.

For each σ ∈ H1(M ;R), we consider the Lagrangian action functional

Aσ = Ag,σ : M → (−∞,∞], Aσ(µ) =

∫
TM

(
1
2∥v∥

2
g − σ(v)

)
dµ(v).

Notice that Aσ(µ) = A0(µ)−⟨σ, ρ(µ)⟩. The notation for the action Aσ is consistent
with the one introduced in (1.1): for each continuous and piecewise smooth loop
γ : [0, τ ] →M , γ(0) = γ(τ), with associated probability measure µγ , we have

Aσ(γ) = Aσ(µγ).

The action functional Aσ is bounded from below and achieves its minimum
on M. Any minimizer turns out to be invariant under the geodesic flow, and is
called a σ-minimal measure (or a (g, σ)-minimal measure if we need to specify the
Riemannian metric). Mather alpha function α = αg : H1(M ;R) → R is defined by

α(σ) := −min
M

Aσ.

Alternatively, instead of minimizing over the space of closed measures, Mather
alpha function α : H1(M ;R) → R is also characterized by

α(σ) = − inf
γ

Aσ(γ), (2.1)

where the infimum ranges over all τ ≥ 0 andW 1,2 loops γ : [0, τ ] →M , γ(0) = γ(τ).
If H1(M ;R) is non-trivial, the function α is non-negative, convex, superlinear, and
satisfies α(0) = 0. These properties hold more generally for the alpha function
associated to any Tonelli Lagrangian. In the specific case of geodesic flows, we also
have the following.

Lemma 2.1. The origin is a strict local minimum of Mather alpha function, i.e.
α(σ) > 0 for all non-zero σ ∈ H1(M ;R).
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Proof. Consider a non-zero cohomology class σ ∈ H1(M ;R), and fix any smooth
loop γ : [0, τ ] →M , γ(0) = γ(τ) such that∫

γ

σ < 0.

Since this latter integral and the length

L(γ) :=
∫ τ

0

∥γ̇(t)∥g dt

are independent of the parametrization of γ, we can assume that the speed ∥γ̇∥g is
constant and sufficiently small so that

1

2
L(γ)∥γ̇∥g <

∣∣∣∣∫
γ

σ

∣∣∣∣ .
This implies

Aσ(γ) =
1

τ

(
1

2
L(γ)∥γ̇∥g −

∫
γ

σ

)
< 0,

and therefore α([σ]) > 0 according to (2.1). □

Notice that, for the zero cohomology class σ = 0, the infimum in (2.1) is always
a minimum, and it is achieved only by the constant curves. Instead, for each non-
zero σ ∈ H1(M ;R), a W 1,2

loc periodic curve γ : R → M of minimal period τγ is a
σ-minimal closed geodesic if and only if γ|[0,τγ ] achieves the minimum in (2.1). In
this case, in particular γ is smooth, and the measure µγ associated with γ|[0,τγ ] is
σ-minimal.

Let π : TM →M be the base projection of the tangent bundle. Mather’s graph
theorem [Mat91, Theorem 2] asserts that, for any σ-minimizing measure µ, the
restriction π|supp(µ) is an injective bi-Lipschitz map onto its image. Moreover, by a
theorem due to Carneiro [Car95], supp(µ) is contained in the sphere tangent bundle

SrM =
{
v ∈ TM

∣∣ ∥v∥g = r
}
,

for r2/2 = α(σ). In particular, any σ-minimal closed geodesic γ has speed ∥γ̇∥g ≡ r
and is simple, i.e. the restriction γ|[0,τγ) is an injective map, where τγ > 0 is the
minimal period of γ.

The Riemannian metric g and a closed 1-form σ onM define a Tonelli Lagrangian
L : TM → R and a dual Tonelli Hamiltonian H : H → R by

L(v) = 1
2∥v∥

2
g − σ(v), H(p) = 1

2∥p+ σ∥2g.

These functions are related by the Fenchel inequality H(p) + L(v) ≥ p(v). A
theorem due to Fathi and Siconolfi [FS04], asserts that there exists a C1 function
u :M → R satisfying the Hamilton-Jacobi inequality H ◦ du ≤ α(σ).

2.2. Proofs of the theorems. Before carrying out the proof of Theorem A, for
the reader’s convenience we first provide the short proof of a theorem due to Mañé
[Mañ96, Th. F] in the special case of geodesic flows, which we will need to derive
Corollary B. We say that a closed geodesic γ of (M, g) has non-zero real homology
when [γ|[0,τγ ]] ̸= 0 in H1(M ;R).
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Theorem 2.2. Let (M, g) be a closed Riemannian manifold. If there exists a
non-zero σ ∈ H1(M ;R) not admitting any σ-minimal closed geodesic, then there
exist infinitely many closed geodesics of arbitrarily large length and non-zero real
homology.

Proof. Let µ be a σ-minimal measure. By Poincaré recurrence theorem and Birkhoff
ergodic theorem, there exists v ∈ supp(µ) that is recurrent for the geodesic flow ϕt

and regular for the Birkhoff average. Namely, there exists a sequence of positive
real numbers τn → ∞ such that ϕτn(v) → v, and

lim
n→∞

1

τn

∫ τn

0

F (ϕt(v)) dt =

∫
TM

F dµ, ∀F ∈ L1(TM,µ).

We fix a quantity δ > 0 such that δ∥v∥g is smaller than the injectivity radius
inj(M, g), and consider the geodesic arc ηn : [0, τn − δ] → M , ηn(t) = π(ϕt(v)).
For all n large enough, there exists a unique geodesic arc ζn : [0, δ] → M of
length smaller than inj(M, g) joining ηn(τn − δ) and ηn(0) = π(v). Notice that
the action Aσ(ζn) is uniformly bounded from above for all n. The concatenation
ηn ∗ ζn : [0, τn] →M is a loop with action

Aσ(ηn ∗ ζn) =
(τn − δ)Aσ(ηn) + δAσ(ζn)

τn
−−→
n→∞

Aσ(µ) = −α(σ) < 0. (2.2)

Let Ωn be the space of W 1,2 loops ζ : [0, τn] → M , ζ(0) = ζ(τn), and γn ∈ Ωn a
loop that minimizes Aσ|Ωn

, i.e.

Aσ(γn) ≤ Aσ(ζ), ∀ζ ∈ Ωn.

In particular,

Aσ(γn) ≤ Aσ(ηn ∗ ζn). (2.3)

Each γn is either a constant curve (with action Aσ(γn) = 0) or a closed geodesic
(namely a geodesic loop such that γ̇n(0) = γ̇n(τn) ̸= 0). Up to extracting a subse-
quence, the probability measure µγn

converges in the weak-∗ topology to an invari-
ant probability measure ν, and so do the corresponding actions Aσ(γn) → Aσ(ν).
By (2.2) and (2.3), we infer Aσ(ν) ≤ Aσ(µ), and therefore Aσ(ν) = Aσ(µ). Namely,
ν is a σ-minimal measure. Since σ ̸= 0, Lemma 2.1 implies that α(σ) > 0. By

⟨σ, ρ(ν)⟩ = A0(ν)−Aσ(ν) = A0(ν) + α(σ) ≥ α(σ) > 0,

we infer that ρ(ν) ̸= 0. Since by assumption there are no σ-minimal closed
geodesics, we have the strict inequality Aσ(γn) > Aσ(ν). This, together with
the convergence Aσ(γn) → Aσ(ν), implies that the family γn, for n ≥ 0, contains
infinitely many closed geodesics. Since [γn] → ρ(ν) ̸= 0, the closed geodesics γn
have non-zero real homology for all n large enough. Since the support of ν is con-
tained in the sphere tangent bundle SrM for r2/2 = α(σ), the weak-∗ convergence
µγn

→ ν implies that ∥γ̇n∥g → r. Let τγn
≤ τn be the minimal period of the closed

geodesic γn, which is the minimal positive number such that γn(0) = γn(τγn
) and

γ̇n(0) = γ̇n(τγn
). The sequence τγn

must diverge, for otherwise γn would converge to
a σ-minimal closed geodesic. Therefore the lengths L(γn) = τγn

∥γ̇n∥g diverge. □

We will infer our main Theorem A from the following statement, which under
the same assumptions provide a (not necessarily transverse) homoclinic after an
explicit conformal perturbation of the Riemannian metric. The transversality of
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the homoclinic will then be achieved by invoking a perturbation result of Petroll
[BW02].

Theorem 2.3. Let (M, g0) be a closed Riemannian manifold of dimension at least
two, with a minimal closed geodesic γ. Let ρ :M → [0,∞) be any smooth function
such that ρ(x) = 0 and d2ρ(x)[v, v] > 0 for all x ∈ γ and v ∈ TxM \ {0} orthogonal
to γ, and ρ(y) > 0 for all y ∈M \ γ. Then γ is a hyperbolic closed geodesic of eρg0
with a homoclinic.

Proof. Let γ be a (g0, σ)-minimal closed geodesic, and as usual we denote by τγ > 0
its minimal period. In particular, γ is a simple closed geodesic without conjugate
points. We set x0 := γ(0) = γ(τγ). For each integer n ≥ 1, we will see the loop
γ|[0,nτγ ] as a representative of an element of the fundamental group π1(M,x0).

By the already mentioned theorem of Fathi and Siconolfi [FS04], there exists a C1

function u :M → R that satisfies the Hamilton-Jacobi inequality H0 ◦du ≤ αg0(σ),
where H0 : T ∗M → R is the Tonelli Hamiltonian dual to the Tonelli Lagrangian

L0 : TM → R, L0(v) =
1
2∥v∥

2
g0 − σ(v).

This, together with the Fenchel inequality H0(p) + L0(v) ≥ p(v), implies

F0(v) := L0(v)− du(π(v))v + αg0(σ) ≥ 0, ∀v ∈ TxM,

where π : TM →M is the base projection. Since∫ τγ

0

F0(γ̇(t)) dt = τγ
(
Ag0,σ(γ) + αg0(σ)

)
= 0,

we have F0 ◦ γ̇ ≡ 0.
Let ρ :M → [0,∞) be any smooth function such that ρ(x) = 0 and d2ρ(x)[v, v] >

0 for all x ∈ γ and v ∈ TxM \ {0} orthogonal to γ, and ρ(y) > 0 for all y ∈M \ γ.
By Proposition A.1, γ is a hyperbolic closed geodesic for the Riemannian metric

g := eρg0.

Since Ag,σ ≥ Ag0,σ and Ag,σ(γ) = Ag0,σ(γ), we infer that γ is a (g, σ)-minimal
closed geodesic, and therefore

α := αg0(σ) = αg(σ) = −Ag,σ(γ) > 0.

We introduce the non-negative continuous Tonelli Lagrangian

F : TM → [0,∞), F (v) := 1
2∥v∥

2
g − σ(v)− du(x)v + α.

Notice that F is identically equal to α > 0 along the zero section, and F (v) > 0 for
all v ∈ TM such that π(v) ̸∈ γ. Moreover, for each t ∈ [0, τγ ], we have F (rγ̇(t)) = 0
if and only if r = 1.

For each compact interval [τ1, τ2] ⊂ R and for each W 1,2 curve ζ : [τ1, τ2] →M ,
we set

a(ζ) :=

∫ τ2

τ1

F (ζ̇(t)) dt ≥ 0.

Notice that a(γ|[0,τγ ]) = 0. The following lemma is crucial, and requires two distinct
proofs for the cases π1(M,x0) ̸∼= Z and π1(M,x0) ∼= Z. From now on, all the
geodesics will be associated to the Riemannian metric g, unless we specify otherwise.
Two geodesics are said to be geometrically distinct when their images into the
Riemannian manifold are distinct.



8 GONZALO CONTRERAS AND MARCO MAZZUCCHELLI

Lemma 2.4. There exists a geodesic ζ : R→M geometrically distinct from γ such
that ∫ ∞

−∞
F (ζ̇(t)) dt <∞. (2.4)

Postponing the proof of this lemma, let us first complete the proof of Theo-
rem 2.3. We shall show that ζ is a homoclinic to the closed geodesic γ. For each
ϵ > 0, we denote by Nϵ ⊂ M the open tubular neighborhood of γ of radius ϵ > 0,
measured with respect to the Riemannian metric g. Since F is strictly positive
outside TNϵ and coercive, in particular we have

δϵ := min
T (M\Nϵ)

F > 0.

Assume that, on some interval [t1, t2] ⊂ R, the geodesic arc ζ|[t1,t2] crosses the shell
N2ϵ \Nϵ, so that it has length

∥ζ̇∥g(t2 − t1) ≥ ϵ

and action

a(ζ|[t1,t2]) ≥ (t2 − t1)δϵ ≥
ϵ δϵ

∥ζ̇∥g
=: ρϵ. (2.5)

Since F is continuous and non-negative, there exists s0 > 0 such that

a(ζ|[−s0,s0]) >

∫ ∞

−∞
F (ζ̇(t)) dt− ρϵ, (2.6)

and s1 > s0 such that F (ζ(s1)) < δϵ. Therefore ζ(s1) ∈ Nϵ. The inequalities (2.5)
and (2.6) imply that ζ(t) ∈ N2ϵ for all t > s1. Analogously, ζ(−t) ∈ N2ϵ for all t > 0
large enough. Overall, by sending ϵ→ 0, this argument shows that the distance of
ζ(t) to the closed geodesic γ tends to 0 as |t| → ∞. Therefore, ζ̇ must have the
α-limit and ω-limit

α-lim ζ̇ = rαγ̇, ω-lim ζ̇ = rωγ̇,

where |rα| = |rω| = ∥ζ̇∥g/∥γ̇∥g. Since F (rγ̇(t)) > 0 for all t ∈ [0, τγ ] and r ̸= 1, the
finiteness of the integral (2.4) implies rα = rω = 1. Therefore

α-lim ζ̇ = ω-lim ζ̇ = γ̇,

that is, ζ is a homoclinic to γ. □

Proof of Lemma 2.4 in the case π1(M,x0) ̸∼= Z. Let N be an open tubular neigh-
borhood of the simple closed geodesic γ. We denote the inclusion by i : N ↪→ M .
SinceN is homotopy equivalent to a circle, it has fundamental group π1(N, x0) ∼= Z.
Since π1(M,x0) ̸∼= Z and H1(M ;R) ̸= 0, the homomorphism i∗ : π1(N, x0) →
π1(M,x0) is not surjective (indeed this latter condition would be enough to carry
out the remaining of the proof). We set G := i∗(π1(N, x0)), and fix a homotopy
class h ∈ π1(M,x0) \G. For each T > 0, consider the loop space

ΩT :=
{
ζ : [0, τ ]

W 1,2

−−→M
∣∣∣ ζ(0) = ζ(τ) = x0, 0 < τ ≤ T, [ζ] ∈ GhG

}
.

Namely, ΩT consists of those loops based at x0, defined on an interval of length at
most T , and representing a non-trivial element of the fundamental group π1(M,x0)
of the form [γ]jh[γ]k for some j, k ∈ Z.

The functional a|ΩT
achieves its minimum at some geodesic loop ζT : [0, tT ] →

M , with 0 < tT ≤ T , which is not necessarily unique. We choose one such minimizer



CLOSED GEODESICS AND THE FIRST BETTI NUMBER 9

with the highest possible period tT , so that the function T 7→ tT is non-decreasing.
We fix a constant c > 0 large enough so that F (v) ≥ 1

4∥v∥
2
g − c for all v ∈ TM , and

therefore
a(ζT ) ≥ tT

(
1
4∥ζ̇T ∥

2
g − c

)
.

Since the function T 7→ a(ζT ) is non-increasing, we have

a∞ := lim
T→∞

a(ζT ) <∞,

and for all T ≥ 1 we have

1

4
∥ζ̇T ∥2g ≤ a(ζT )

tT
+ c ≤ a(ζ1)

t1
+ c. (2.7)

Since [ζT ] ∈ GhG and h ̸∈ G, we have that [ζT ] ̸∈ G. Therefore, there exists sT
such that ζT (sT ) ̸∈ N . The uniform bound (2.7) allows us to extract a diverging
sequence Tn → ∞ such that, if we set ζn := ζTn

, sn := sTn
, and tn := tTn

, we have

xn := ζn(sn) → x, vn := ζ̇n(sn) → v.

Let ζ : R→M be the geodesic such that ζ(0) = x and ζ̇(0) = v.
We claim that

lim
n→∞

min{sn, tn − sn} → ∞.

Assume by contradiction that sn is uniformly bounded from above. Up to extracting
a subsequence, we have sn → s > 0. Since a(γ|[0,τγ ]) = 0, we have

a(γ|[0,τγ ] ∗ ζn|[0,sn]) = a(ζn|[0,sn]),

where ∗ denotes the concatenation of paths. Notice that γ|[0,τγ ] ∗ ζn|[0,sn] is not a
geodesic, since it has a corner at γ(τγ) = ζn(0). For each ϵ > 0, we introduce the
space

Υn,ϵ :=
{
λ : [−ϵ, ϵ] W 1,2

−−→M
∣∣∣ λ(−ϵ) = γ(τγ − ϵ), λ(ϵ) = ζn(ϵ)

}
.

Since the geodesic arcs ζn|[0,sn] converge to ζ(· − s)|[0,s] in the C∞ topology on
every compact subinterval of [0, s), we can fix ϵ ∈ (0, τγ) small enough so that
a|Υn,ϵ has a unique minimizer λn, which is a geodesic arc contained in the tubular
neighborhood N , and we have

δ := inf
n∈N

(
a(γ|[τγ−ϵ,τγ ] ∗ ζn|[0,ϵ])− a(λn)

)
> 0.

The concatenation

κn := γ|[0,τγ−ϵ] ∗ λn ∗ ζn|[ϵ,tn] ∈ Ωtn+τγ

represents the same element of the fundamental group as γ ∗ ζn, and therefore

[κn] = [γ][ζn] ∈ GhG.

However, if n is large enough so that |a(ζn)− a∞| < δ, we have

a(κn) ≤ a(ζn)− δ < a∞,

which contradicts the fact that min a|Ωtn+τγ
≥ a∞. This proves that sn → ∞, and

an analogous argument implies that tn − sn → ∞.
For each s > 0, we have

a(ζ|[−s,s]) = lim
n→∞

a(ζn|[sn−s,sn+s]) ≤ lim
n→∞

a(ζn) = a∞,
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and therefore ∫ ∞

−∞
F (ζ̇(t)) dt ≤ a∞. □

Proof of Lemma 2.4 in the case π1(M,x0) ∼= Z. Since M has dimension at least
two and fundamental group π1(M,x0) ∼= Z, there exists a minimal integer k ≥ 1
such that the higher homotopy group πk+1(M,x0) ̸= 0 is non-trivial. Indeed, other-
wise any continuous map β : S1 →M representing a generator of π1(M,x0) would
be a homotopy equivalence, whereas a closed manifold of dimension at least two
cannot be homotopy equivalent to a manifold of dimension one.

In order to simplify the notation, we can assume without loss of generality that
the simple closed geodesic γ has unit speed ∥γ̇∥g ≡ 1 and minimal period τγ = 1.
Let τ be a positive integer that we will fix soon. For each integer n ≥ 1, we set
γn := γ|[0,nτ ], and consider the based and free loop spaces

Ωn :=
{
ζ : [0, nτ ]

W 1,2

−−→M
∣∣ ζ(0) = ζ(nτ) = x0

}
,

Λn :=
{
ζ : [0, nτ ]

W 1,2

−−→M
∣∣ ζ(0) = ζ(nτ)

}
.

The concatenation with γ1 defines a homotopy equivalence

in : Ωn → Ωn+1, ζ 7→ γ1 ∗ ζ.

We denote by jn : Ωn ↪→ Λn the inclusion. A topological result of Bangert and
Hingston [BH84, Lemmas 1 and 2] implies that, for a suitable value of the integer τ ,
there exist non-trivial homotopy classes hn ∈ πk(Ωn, γn) such that hn+1 = in∗hn,
and their images qn := jn∗hn ∈ πk(Λn, γn) are nontrivial as well. We fix a basepoint
z0 in the unit sphere Sk. The representatives of hn are continuous maps of pointed
spaces of the form Γ : (Sk, z0) → (Ωn, γn), and analogously the representatives of
qn are continuous maps of pointed spaces of the form Γ : (Sk, z0) → (Λn, γn). We
define the min-max values

bn := inf
[Γ]=hn

max a ◦ Γ,

an := inf
[Γ]=qn

max a ◦ Γ. (2.8)

Since qn = jn∗hn, we have

bn ≥ an. (2.9)

For each representative Γ of hn, the composition in ◦ Γ is a representative of hn+1,
and since a(γ1) = 0, we have

a(in ◦ Γ(z)) = a(γ1) + a(Γ(z)) = a(Γ(z)), ∀z ∈ Sk.

This implies

bn ≥ bn+1. (2.10)

For each ζ ∈ Ωn, we denote by ζ ∈ Ωn the same geometric curve parametrized
proportionally to arc-length, so that∫ tnτ

0

∥ζ̇(s)∥g ds = t

∫ nτ

0

∥ζ̇(s)∥g ds, ∀t ∈ [0, 1].

The map

un : Λn → Λn, un(ζ) = ζ
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is continuous and homotopic to the identity (as it was proved by Anosov [Ano80,
Theorem 2]). Moreover, un(Ωn) ⊂ Ωn, and we have a(ζ) ≥ a(un(ζ)) for all ζ ∈ Λn.
This shows that in the min-max expressions (2.8) we can equivalently restrict the
infima over maps that further satisfy Γ = un ◦ Γ, that is, such that each loop Γ(z)
is parametrized proportionally to arc-length.

We fix a constant c > 0 large enough so that

F (v) ≥ 1
4∥v∥

2
g − c, ∀v ∈ TM.

For each ζ ∈ Λn parametrized proportionally to arc-length, since

a(ζ) ≥ nτ
(
1
4∥ζ̇∥

2
g − c

)
,

we have the a priori bound

1
4∥ζ̇∥

2
g ≤ a(ζ)

nτ
+ c ≤ a(ζ) + c. (2.11)

Let N ⊂M be an open tubular neighborhood of γ. For each representative Γ of
qn, there exists a point z ∈ Sk such that the loop Γ(z) is not entirely contained in
N . Indeed, consider the free loop space

Υn :=
{
ζ : [0, nτ ]

W 1,2

−−→N | ζ(0) = ζ(nτ)
}
.

Since N is homotopy equivalent to a circle, the evaluation map ev : Λn → M ,
ev(ζ) = ζ(0) restricts to a homotopy equivalence ev|C : C → N , where C is the con-
nected component of Υn containing γn. In particular, ev induces an isomorphism

ev∗ : πk(C, γn)
∼=−−→πk(N, x0) ∼=

{
Z, if k = 1,

0, otherwise.

Since ev ◦ jn ≡ x0 and qn = jn∗hn, we infer that ev∗qn = (ev ◦ jn)∗hn = 0. Since
the homotopy class qn is non-zero, no representative Γ of qn cannot have its image
contained in C.

We claim that

inf
n
an > 0.

Indeed, let N0 ⊂ M be another open tubular neighborhood of γ whose closure is
contained in N , and let ρ > 0 be the minimum distance from points of ∂N0 to points
of ∂N . In particular, any smooth curve that crosses the shell N \ N0 must have
length at least ρ. Here, the distances and the lengths are measured with respect to
the Riemannian metric g. Since F is strictly positive outside N0 and is coercive,
we have

f := min
{
F (v)

∣∣ π(v) ∈M \N0

}
> 0.

Let Γ = un ◦ Γ be a representative of qn that is not too far from being optimal,
meaning that

max
z∈Sk

a(Γ(z)) ≤ an + 1.

We know that there exists z ∈ Sk such that the loop ζ := Γ(z) is not entirely
contained in N . If ζ intersects the smaller tubular neighborhood N0, then there
exists an interval [t0, t1] ⊂ [0, n] such that ζ|[t0,t1] has length ∥ζ̇∥g(t1 − t0) ≥ ρ and
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is contained in M \ N0; the a priori bound (2.11), together with (2.10) and (2.9),
implies

t1 − t0 ≥ ρ

∥ζ̇∥g
≥ ρ√

4(b1 + 1 + c)
,

and therefore

a(ζ) ≥ a(ζ|[t0,t1]) ≥ (t1 − t0)f ≥ ρf√
4(b1 + 1 + c)

.

If instead ζ does not intersect N0, then

a(ζ) ≥ nτf ≥ f.

Standard variational methods imply that an is a critical value of a|Λn . Therefore
an = a(ζn) for some closed geodesic ζn ∈ Λn contained in the connected component

of γn. In particular, ζn is a geodesic loop such that ζ̇n(0) = ζ̇n(nτ), and therefore
from now on we will see it as an nτ -periodic geodesic ζn : R → M . Since an > 0,
we have that ζn is geometrically distinct from γ. We now consider the unit-sphere
tangent bundle

SM =
{
v ∈ TM

∣∣ ∥v∥g = 1
}
.

Since the geodesic flow on SM is expansive near the hyperbolic periodic orbit γ̇
(see, e.g., [FH19, Cor. 5.3.5]), there exists a neighborhood U ⊂ SM of γ̇ such that,
for each n ≥ 1, there exists tn ∈ [0, nτ ] such that

ζ̇n(tn)

∥ζ̇n(tn)∥g
̸∈ U.

Let vn := ζ̇n(tn) be the corresponding tangent vector. The a priori bound (2.11)
implies that the sequence ∥vn∥g is uniformly bounded from above. We claim that
the sequence ∥vn∥g is also uniformly bounded from below by a positive constant.
Indeed, since the continuous Tonelli Lagrangian F is strictly positive along the zero
section of TM , there exists r > 0 small enough so that

δ := min
∥v∥g≤r

F (v) > 0.

If we had ∥vn∥g ≤ r for some integer n > b1/(δτ), then we would get the contra-
diction

an = a(ζn) ≥ δnτ > b1 ≥ bn ≥ an.

Overall, we obtained a compact interval [r1, r2] ⊂ (0,∞) such that r1 ≤ ∥vn∥g ≤ r2
for all integers n ≥ 1. Therefore, up to extracting a subsequence, we have vn → v∞
and an → a∞. If ζ : R→M is the geodesic such that ζ̇(0) = v∞, then ζn(tn+·) → ζ
in the C∞-topology on every compact set. Since F is non-negative, for each s > 0
we have

a(ζ|[−s,s]) = lim
n→∞

a(ζn|[tn−s,tn+s]) ≤ lim
n→∞

an = a∞,

and therefore ∫ ∞

−∞
F (ζ̇(t)) dt ≤ a∞. □
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Proof of Theorem A. By Theorem 2.3, there exists a Riemannian metric g1 arbi-
trarily C∞ close to g such that γ is a hyperbolic closed geodesic of (M, g1) with a
homoclinic. A theorem due to Petroll [BW02, Prop. 2.4] implies that there exists
a Riemannian metric g2 that is arbitrarily C∞ close to g1 such that γ is a hyper-
bolic closed geodesic of (M, g2) with a transverse homoclinic (if M is a surface,
the analogous theorem for C2 perturbations of the Riemannian metric was proved
independently by Donnay [Don95]). □

We now provide a slight generalization of Theorem A that essentially allows its
assumptions to be verified by a finite cover of the considered closed Riemannian
manifold.

Theorem 2.5. Let p : M → M0 be a finite covering map of a closed manifold
of dimension at least two, and g0 a Riemannian metric on M0. If (M,p∗g0) has
a minimal closed geodesic γ, then there exists a Riemannian metric g arbitrarily
C∞-close to g0 such that γ is a hyperbolic closed geodesic of p∗g, and p(γ) is a
hyperbolic simple closed geodesic of g with a transverse homoclinic.

Proof. The proof is almost identical to the one of Theorem 2.3, except for a few
details. Being (p∗g0, σ)-minimal, the closed geodesic γ : R→M is simple. Namely,
γ = γ(τγ + ·) for some minimal period τγ > 0, and γ|[0,τγ) is an injective map.
We claim that, for each Deck transformation ψ : M → M , the closed geodesic
η := ψ ◦ γ is either disjoint from γ or is of the form η = γ(τ + ·) for some τ > 0.
Indeed, assume by contradiction that there exist distinct t1, t2 ∈ [0, τγ) such that
y := η(t1) = γ(t2) but η̇(t1) ̸= γ̇(t2). Since both invariant measures µγ and µη

are (p∗g0, σ)-minimal, so is their average µ := 1
2 (µγ +µη). But the tangent vectors

η̇(t1), γ̇(t2) ∈ supp(µ) are based at the same point y, and therefore π|supp(µ) is not
injective, contradicting Mather’s graph theorem [Mat91, Theorem 2].

This implies that γ0 := p ◦ γ is also a simple closed geodesic for the Riemannian
metric g0 (although τγ may be a multiple of the minimal period of γ0). We can now
carry out word by word the proof of Theorem 2.3, with the only difference that here
we apply Proposition A.1 to the simple closed geodesic γ0 in the base manifold,
and therefore we obtain the conformal factor ρ of the form ρ = ρ0 ◦ p, where
ρ0 :M0 → [0,∞) is a suitable function vanishing on γ0 and strictly positive outside
γ0. We end up with a Riemannian metric g1 = eρ0g0 onM0 arbitrarily C∞-close to
g0 such that γ0 is a hyperbolic simple closed geodesic for the Riemannian metric g1,
and therefore γ is a hyperbolic simple closed geodesic for the Riemannian metric
p∗g1. Instead of vanishing only on γ as in the proof of Theorem 2.3, the function ρ
here vanishes on all the images of γ under Deck transformations. Therefore, at the
end of the proof, instead of a homoclinic to γ, we obtain a heteroclinic ζ from γ to
ψ ◦ γ, for some Deck transformation ψ :M →M . Nevertheless, its base projection
ζ0 := p ◦ ζ is a homoclinic to γ0. We then conclude the proof by applying Petroll’s
theorem [BW02, Prop. 2.4] to γ0, obtaining a Riemannian metric g2 arbitrarily C∞

close to g1 with respect to which γ0 is a hyperbolic closed geodesic with a transverse
homoclinic. □

For a group G, we denote its derived series by Gn, for n ≥ 0. These groups are
defined inductively as G0 = G and Gn+1 = [Gn, Gn], where this latter group is
the commutator subgroup of Gn. We denote by |G : Gn| the index of the derived
subgroupGn. As in Section 1, we denote by Gk(M) the space of smooth Riemannian
metrics on a closed manifold M , endowed with the Ck topology.
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Corollary 2.6. Let M be a closed manifold of dimension at least two such that
the index |π1(M) : π1(M)n| is infinite for some n ≥ 1. Then, for each 2 ≤ k ≤ ∞,
there exists an open and dense subset of Gk(M) such that every Riemannian metric
therein admits infinitely many closed geodesics of arbitrarily large length.

Remark 2.7. Since the fundamental group π1(M) is finitely generated, if the
index |π1(M) : π1(M)1| is infinite then the first Betti number rank(H1(M ;Z)) =
rank(π1(M)/π1(M)1) is non-trivial. Therefore, Corollary B directly follows from
Corollary 2.6.

Proof of Corollary 2.6. Let Gn, n ≥ 0, be the derived series of the fundamental
group π1(M). We have an associated sequence of normal covering spaces

...→M2 →M1 →M0 =M

with fundamental groups π1(Mn) = Gn. The quotient Gn/Gn+1 is the group of
Deck transformations of the covering Mn+1 →Mn. Let n ≥ 0 be the minimal inte-
ger such that Gn/Gn+1 is infinite, which exists by the assumption of the corollary.
Notice that p : Mn → M is a finite covering. Therefore Mn is a closed manifold,
and by our choice of n it has infinite homology group H1(Mn;Z) ∼= Gn/Gn+1.
Since H1(Mn;Z) is finitely generated, the first Betti number rank(H1(Mn;Z)) is
non-zero.

We fix an integer k ≥ 2, and denote by I ⊂ Gk(M) the subspace of those
Riemannian metrics g on M having closed geodesics of arbitrarily large length. We
need to show that I contains an open and dense subset of Gk(M). We denote
by H ⊂ Gk(M) the open subspace of those Riemannian metrics g on M having a
hyperbolic closed geodesic with a transverse homoclinic. As we already mentioned
in Section 1, classical results from hyperbolic dynamics imply that

H ⊂ I.

We denote by A ⊂ Gk(M) the subspace of those Riemannian metrics g on M such
that (Mn, p

∗g) admits a minimal closed geodesic. Theorems 2.2 and 2.5 imply that

A ⊂ H, Gk(M) \ A ⊂ I.

We define B := Gk(M) \ A. We have

H ∪ B = H ∪ B ⊇ A ∪ (Gk(M) \ A) = Gk(M).

We thus have an open and dense subset H∪B of Gk(M) that is contained in I. □

Appendix A. Making closed geodesics hyperbolic

In this appendix we shall provide a proof of the following statement, which is
employed in the proof of Theorem A. We recall that a closed geodesic γ : R→ M
of minimal period τγ > 0 is called simple when γ|[0,τγ) is an injective map.

Proposition A.1. Let γ be a simple closed geodesic without conjugate points in a
closed Riemannian manifold (M, g) of dimension at least two. Then γ is a hyper-
bolic closed geodesic with respect to the conformal Riemannian metric eρg, for any
smooth function ρ : M → [0,∞) such that ρ(x) = 0 and d2ρ(x)[v, v] > 0 for all
x ∈ γ and v ∈ TxM \ {0} orthogonal to γ.
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Proposition A.1 guarantees that, given a simple closed geodesic γ without con-
jugate points, there exists an arbitrarily C∞-small conformal perturbation of the
Riemannian metric that makes γ hyperbolic. An analogous result for perturbations
with potentials of Tonelli Hamiltonians was proved in [CI99a].

A.1. Green spaces. Let us recall some basic facts from geodesic dynamics (for
the details, we refer the reader to, e.g., [Pat99, Kni02]). Let (M, g) be a closed
Riemannian manifold of dimension at least two. We denote its sphere tangent
bundle of radius r > 0 by

SrM =
{
v ∈ TM

∣∣ ∥v∥g = r
}
,

and the geodesic flow by ϕt : SM → SM . The orbits of ϕt are of the form
ϕt(γ̇(0)) = γ̇(t), where γ : R→M is a geodesic parametrized with speed ∥γ̇∥g ≡ r.
Without loss of generality, throughout this section we shall always assume that all
geodesics are parametrized with speed r = 1, and simply write SM = S1M .

Let γ : R → M be a geodesic, so that γ̇(t) = ϕt(v) for v = γ̇(0) ∈ SxM . We
introduce the vector subspace Z := dπ(v)−1⟨v⟩⊥ ⊂ Tv(SM), where π : SM → M
is the base projection, and ⟨v⟩⊥ ⊂ TxM is the orthogonal complement to v. As it
is common, we will identify

Z ≡ ⟨v⟩⊥ × ⟨v⟩⊥,

J̇(0) 7→ (J(0),∇tJ |t=0),
(A.1)

where J is any Jacobi field orthogonal to γ, and ∇tJ is its covariant derivative
with respect to the Levi-Civita connection. We denote by V := ker(dπ) the vertical
sub-bundle of T (SM). By the identification (A.1), we have Vv ≡ {0} × ⟨v⟩⊥.

We assume that γ is without conjugate points, which is equivalent to

Vv ∩ dϕ−t(v)Vϕt(v) = {0}, ∀t ∈ R \ {0}.

We define the vector subspaces

Gt := dϕ−t(ϕt(v))Vϕt(v) ⊂ Z. (A.2)

Since γ is without conjugate points, for each t ̸= 0 the vector subspace Gt is
transverse to the vertical Vv. Via (A.1), we shall always see Gt as a vector subspace
of ⟨v⟩⊥ × ⟨v⟩⊥, and the transversality with Vv implies that Gt is a graph over the
horizontal ⟨v⟩⊥×{0}. More precisely, there exist linear symmetric endomorphisms
At : ⟨v⟩⊥ → ⟨v⟩⊥, depending smoothly on t ∈ R \ {0}, such that Gt ≡ graph(At).
The associated quadratic forms Qt(w) = g(Atw,w) are monotone increasing in
t ∈ R \ {0}, and we have Qt ≤ Q−s for all s, t ∈ R \ {0}. Therefore, the limits

A± := lim
t→±∞

At, G± := lim
t→±∞

Gt,

exist, and we have G± ≡ graph(A±). The associated quadratic forms Q±(w) =
g(A±w,w) satisfy Q+ ≤ Q−. Pushing forward G± with the linearized geodesic
flow dϕt, we obtain the so-called Green bundles of γ, which are well defined even if
γ is a closed geodesic. For our purposes, we will only need the vector spaces G±,
which we will call Green spaces. We will refer to the linear maps A± as to Green
endomorphisms.

Let us now assume that γ is closed. We recall that γ is said to be hyperbolic
when γ̇ is a hyperbolic periodic orbit of the geodesic flow ϕt. The proof of Proposi-
tion A.1 will require the following special case of a theorem due to Eberlein [Ebe73]
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(the general statement actually holds for arbitrary compact invariant subsets of ϕt

without conjugate points).

Theorem A.2 (Eberlein). A closed geodesic without conjugate points is hyperbolic
if and only if its Green spaces satisfy G− ∩G+ = {0}. □

A.2. The index form. Let X be the space of orthogonal vector fields Y : R→ TM
along the geodesic γ, where orthogonal means g(γ̇, Y ) ≡ 0. We denote by J ⊂ X
the subspace of orthogonal Jacobi fields, which are those J ∈ X that satisfy the
Jacobi equation ∇2

tJ + R(J, γ̇)γ̇ = 0; equivalently, they are those vector fields
J : R→ TM along γ such that

J̇(t) = dϕt(v)w,

where v = γ̇(0) and w ∈ Z (with the notation of the previous subsection).
For all τ > 0, we consider the index form of the geodesic arc γ|[0,τ ], which is the

quadratic form

hτ (Y ) =

∫ τ

0

(
∥∇tY ∥2g − g(R(Y, γ̇)γ̇, Y )

)
dt, ∀Y ∈ X .

We shall need two elementary properties of the index form:

(i) For each J ∈ J , we have

hτ (J) = g(∇tJ |t=τ , J(τ))− g(∇tJ |t=0, J(0)).

(ii) For each J ∈ J and Y ∈ X such that J(0) = Y (0) and J(τ) = Y (τ), we
have

hτ (J) ≤ hτ (Y ).

We now employ Eberlein’s theorem, together with the index form, to prove the
perturbation result stated at the beginning of the section.

Proof of Proposition A.1. We set g̃ := eρg. The Riemannian metrics g and g̃ define
associated Levi-Civita connections ∇ and ∇̃ and Riemann tensors R and R̃. Along
γ, since ρ and dρ vanish identically, we have ∇ = ∇̃ and

g(R̃(w, γ̇(t))γ̇(t), w)− g(R(w, γ̇(t))γ̇(t), w) = − 1
2d

2ρ(γ(t))[w,w],

∀w ∈ ⟨γ̇(t)⟩⊥.
(A.3)

By our assumptions on ρ, there exists a constant δ > 0 such that

1
2d

2ρ(γ(t))[w,w] ≥ δ ∥w∥2g, ∀w ∈ ⟨γ̇(t)⟩⊥. (A.4)

We set v := γ̇(0), and first consider the Riemannian objects associated with g. For
each w ∈ ⟨v⟩⊥ and τ ̸= 0, we denote by Jτ,w the Jacobi field along γ such that
Jτ,w(0) = w and Jτ,w(τ) = 0. Notice that ∇tJτ,w|t=0 = Aτw, where Aτ is the
symmetric endomorphism of ⟨v⟩⊥ converging to the Green endomorphisms A± as
τ → ±∞. By property (i) above, the index forms hτ of γ with respect to g satisfy

hτ (Jτ,w) =

{
−g(Aτw,w), if τ > 0,

g(Aτw,w), if τ < 0.
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We denote with a tilde the analogous Riemannian objects with respect to g̃, which
satisfy analogous properties. By (A.3), (A.4), and property (ii) of the index form,
for each τ ≥ 1 we have

g(Aτw,w) = −hτ (Jτ,w) = −h̃τ (Jτ,w) +
∫ τ

0

1
2d

2ρ(γ)[Jτ,w, Jτ,w] dt

≥ −h̃τ (Jτ,w) + δ

∫ 1

0

∥Jτ,w∥2g dt = g(Ãτw,w) + δ

∫ 1

0

∥Jτ,w∥2g dt.
(A.5)

As τ → ∞, we have Jτ,w → Jw, where Jw is the Jacobi field such that Jw(0) = w
and ∇tJw|t=0 = A+w. We set

ϵ := δ−1 min
w

∥w∥−2
g

∫ 1

0

∥Jτ,w∥2g dt > 0,

where the minimum ranges over all w ∈ ⟨v⟩⊥ \ {0}. By taking the limit for τ → ∞
in (A.5), we infer

g(A+w,w) ≥ g(Ã+w,w) + ϵ∥w∥2g. (A.6)

Analogously, for each τ < 0, we have

g(Aτw,w) = hτ (Jτ,w) ≤ hτ (J̃τ,w) ≤ h̃τ (J̃τ,w) = g(Ãτw,w),

and by taking the limit for τ → −∞ we infer

g(A−w,w) ≤ g(Ã−w,w). (A.7)

The inequalities (A.6) and (A.7), together with g(A+w,w) ≤ g(A−w,w) mentioned
in the previous subsection, imply

g(Ã+w,w) + ϵ∥w∥2g ≤ g(Ã−w,w), ∀w ∈ ⟨v⟩⊥.

Therefore the Green spaces G̃+ ≡ graph(Ã+) and G̃− ≡ graph(Ã−) have trivial
intersection, and Theorem A.2 implies that γ is a hyperbolic closed geodesic for g̃.

□
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géodésiques périodiques sur une variété riemannienne compacte, C. R. Acad. Sci. Paris
Sér. A-B 281 (1975), no. 9, Aii, A289–A291. MR400298

[SZ23] Egor Shelukhin and Jun Zhang, Remark on non-contractible closed geodesics and homo-
topy groups, arXiv:2307.13877 (2023).
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