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Boundary data on compact Riemannian manifolds

(M, g) compact Riemannian manifold, ∂M 6= ∅

Boundary data:

I Boundary distance
dg : ∂M × ∂M → [0,∞)
dg (x , y) = g -distance from x to y

I Lens data:
Sg : U ⊆ ∂inSM → ∂outSM
Sg (x0, v0) = (x1, v1) (scattering map)

`g : ∂inSM → [0,∞]
`g (x0, v0) =length of the geodesic γv0
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Boundary rigidity

I Boundary rigidity holds when dg determines g up to
diffeomorphism
(i.e. we identify g ∼ φ∗g , for all diffeomorphisms
φ : M → M, φ|∂M = id)

I Lens rigidity holds when (Sg , `g ) determines g up to
diffeomorphism
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Boundary rigidity

In general, there is no rigidity



Simple manifolds

Michel’s conjecture (1981): boundary rigidity holds on simple
Riemannian manifolds.

Simple Riemannian manifolds are balls (Bn, g) such that, at each
point x ∈ Bn, the Riemannian exponential map expx : Kx → Bn is
a diffeomorphism.



Simple manifolds

Michel’s conjecture (1981): boundary rigidity holds on simple
Riemannian manifolds.

Simple Riemannian manifolds are balls (Bn, g) such that, at each
point x ∈ Bn, the Riemannian exponential map expx : Kx → Bn is
a diffeomorphism.



Simple manifolds

Michel’s conjecture (1980s): boundary rigidity holds on simple
Riemannian manifolds.

I Croke-Otal, 1990: True if dim(M) = 2, Kg < 0 (negative
curvature)

I Pestov-Uhlmann, 2004: True if dim(M) = 2

I Open if dim(M) > 2, but several partial results
(Stefanov-Uhlmann, Burago-Ivanov, Pestov-Sharafutdinov,
etc.)
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Rigidity on non-simple manifolds

Non-simple manifolds may have trapped sets:

I Croke-Herreros, 2016: Lens rigidity holds for flat cylinders, flat
Möbius strips, and negatively curved cylinders

I Guillarmou, 2015: If (M, g) compact, convex, dim(M) = 2,
Kg < 0, then:
Sg determines M and the conformal class

{
eωg

∣∣ ω|∂M ≡ 0
}
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Marked boundary distance

x , y ∈ ∂M
α curve in M joining x and y

mdg (x , y , [α]) := infγ∼α lengthg (γ)

π : M̃ → M universal cover of M
g̃ = π∗g
mdg is equivalent to dg̃ : ∂M̃ × ∂M̃ → [0,∞)
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Marked boundary rigidity

Theorem (Guillarmou, M., 2016)
Let M be a compact surface with ∂M 6= ∅, and g1, g2 are two
Riemannian metrics on it such that

mdg1 = mdg2

Assume one of the following:

(i) each gi has Kgi < 0 and makes ∂M convex;

(ii) g1 makes ∂M convex, has no conjugate points, and hyperbolic
trapped set;
‖g2 − g1‖C2 is small enough.

Then g2 = φ∗g1 for some diffeomorphism φ : M → M, φ|∂M = id
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Theorem (Guillarmou, M., 2016)
Let M be a compact surface with ∂M 6= ∅, and g1, g2 are two
Riemannian metric on it such that

mdg1 = mdg2

Assume one of the following:

(i) g1 has Kg1 < 0 and makes ∂M convex,
g2 has no conjugate points, trapped set of zero Liouville
measure, and makes ∂M convex;

(ii) g1 makes ∂M convex, has no conjugate points, and hyperbolic
trapped set;
‖g2 − g1‖C2 is small enough.

Then g2 = φ∗g1 for some diffeomorphism φ : M → M, φ|∂M = id



Thank you for your attention!


