On marked boundary rigidity for surfaces

Marco Mazzucchelli, CNRS and ENS de Lyon (joint work with Colin Guillarmou)

March 30, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(M,g) compact Riemannian manifold, $\partial M \neq \varnothing$

(M,g) compact Riemannian manifold, $\partial M \neq \varnothing$

Boundary data:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(M,g) compact Riemannian manifold, $\partial M \neq \varnothing$

Boundary data:

► Boundary distance $d_g : \partial M \times \partial M \rightarrow [0, \infty)$ $d_g(x, y) = g$ -distance from x to y

(M,g) compact Riemannian manifold, $\partial M
eq arnothing$

Boundary data:

► Boundary distance $d_g : \partial M \times \partial M \rightarrow [0, \infty)$ $d_g(x, y) = g$ -distance from x to y

Lens data:

 $egin{aligned} &S_g: U \subseteq \partial_{\mathrm{in}} SM o \partial_{\mathrm{out}} SM \ &S_g(x_0,v_0) = (x_1,v_1) \end{aligned}$ (scattering map)

(M,g) compact Riemannian manifold, $\partial M
eq arnothing$

Boundary data:

▶ Boundary distance $d_g : \partial M \times \partial M \rightarrow [0, \infty)$ $d_g(x, y) = g$ -distance from x to y

Lens data:

$$\begin{split} S_g &: U \subseteq \partial_{\mathrm{in}} SM \to \partial_{\mathrm{out}} SM \\ S_g(x_0, v_0) &= (x_1, v_1) \quad \text{(scattering map)} \\ \ell_g &: \partial_{\mathrm{in}} SM \to [0, \infty] \\ \ell_g(x_0, v_0) &= \text{length of the geodesic } \gamma_{v_0} \end{split}$$

Boundary rigidity

 ▶ Boundary rigidity holds when d_g determines g up to diffeomorphism (i.e. we identify g ~ φ*g, for all diffeomorphisms

$$\phi: M \to M, \ \phi|_{\partial M} = \mathrm{id})$$

Boundary rigidity

- Boundary rigidity holds when d_g determines g up to diffeomorphism
 (i.e. we identify g ~ φ^{*}g, for all diffeomorphisms φ : M → M, φ|_{∂M} = id)
- ► Lens rigidity holds when (S_g, ℓ_g) determines g up to diffeomorphism

Boundary rigidity

In general, there is no rigidity

Michel's conjecture (1981): boundary rigidity holds on simple Riemannian manifolds.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Michel's conjecture (1981): boundary rigidity holds on simple Riemannian manifolds.

Simple Riemannian manifolds are balls (B^n, g) such that, at each point $x \in B^n$, the Riemannian exponential map $\exp_x : K_x \to B^n$ is a diffeomorphism.

Michel's conjecture (1980s): boundary rigidity holds on simple Riemannian manifolds.

Michel's conjecture (1980s): boundary rigidity holds on simple Riemannian manifolds.

► Croke-Otal, 1990: True if dim(M) = 2, K_g < 0 (negative curvature)</p>

Michel's conjecture (1980s): boundary rigidity holds on simple Riemannian manifolds.

► Croke-Otal, 1990: True if dim(M) = 2, K_g < 0 (negative curvature)</p>

• Pestov-Uhlmann, 2004: True if dim(M) = 2

Michel's conjecture (1980s): boundary rigidity holds on simple Riemannian manifolds.

- ► Croke-Otal, 1990: True if dim(M) = 2, K_g < 0 (negative curvature)</p>
- Pestov-Uhlmann, 2004: True if dim(M) = 2
- Open if dim(M) > 2, but several partial results (Stefanov-Uhlmann, Burago-Ivanov, Pestov-Sharafutdinov, etc.)

Non-simple manifolds may have trapped sets:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Non-simple manifolds may have trapped sets:

 Croke-Herreros, 2016: Lens rigidity holds for flat cylinders, flat Möbius strips, and negatively curved cylinders

Non-simple manifolds may have trapped sets:

- Croke-Herreros, 2016: Lens rigidity holds for flat cylinders, flat Möbius strips, and negatively curved cylinders
- ► Guillarmou, 2015: If (M, g) compact, convex, dim(M) = 2, $K_g < 0$, then: S_g determines M and the conformal class $\{e^{\omega}g \mid \omega|_{\partial M} \equiv 0\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Non-simple manifolds may have trapped sets:

- Croke-Herreros, 2016: Lens rigidity holds for flat cylinders, flat Möbius strips, and negatively curved cylinders
- Guillarmou, 2015: If (M, g) compact, convex, dim(M) = 2, no conjugate points, hyperbolic trapped set, then:
 S_g determines M and the conformal class {e^ωg | ω|_{∂M} ≡ 0}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Non-simple manifolds may have trapped sets:

- Croke-Herreros, 2016: Lens rigidity holds for flat cylinders, flat Möbius strips, and negatively curved cylinders
- Guillarmou, 2015: If (M, g) compact, convex, dim(M) = 2, no conjugate points, hyperbolic trapped set, then: S_g determines M and the conformal class {e^ωg | ω|_{∂M} ≡ 0}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Several recent results in higher dimension (Pestov-Sharafutdinov, Stefanov-Uhlmann, Stefanov-Uhlmann-Vasy, etc.)

Marked boundary distance

 $\begin{array}{l} x, y \in \partial M\\ \alpha \text{ curve in } M \text{ joining } x \text{ and } y\\ md_g(x, y, [\alpha]) := \inf_{\gamma \sim \alpha} \operatorname{length}_g(\gamma) \end{array}$

Marked boundary distance

$$\begin{split} & x, y \in \partial M \\ & \alpha \text{ curve in } M \text{ joining } x \text{ and } y \\ & md_g(x, y, [\alpha]) := \inf_{\gamma \sim \alpha} \text{length}_g(\gamma) \end{split}$$

$$\begin{split} &\pi:\widetilde{M}\to M \text{ universal cover of } M \\ &\widetilde{g}=\pi^*g \\ &md_g \text{ is equivalent to } d_{\widetilde{g}}:\partial\widetilde{M}\times\partial\widetilde{M}\to[0,\infty) \end{split}$$

Theorem (Guillarmou, M., 2016)

Let *M* be a compact surface with $\partial M \neq \emptyset$, and g_1, g_2 are two Riemannian metrics on it such that

 $md_{g_1} = md_{g_2}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Guillarmou, M., 2016)

Let *M* be a compact surface with $\partial M \neq \emptyset$, and g_1, g_2 are two Riemannian metrics on it such that

 $md_{g_1} = md_{g_2}$

Assume one of the following:

(i) each g_i has $K_{g_i} < 0$ and makes ∂M convex;

Theorem (Guillarmou, M., 2016)

Let *M* be a compact surface with $\partial M \neq \emptyset$, and g_1, g_2 are two Riemannian metrics on it such that

$$\mathit{md}_{g_1} = \mathit{md}_{g_2}$$

Assume one of the following:

- (i) each g_i has $K_{g_i} < 0$ and makes ∂M convex;
- (ii) g₁ makes ∂M convex, has no conjugate points, and hyperbolic trapped set;

$$\|g_2 - g_1\|_{C^2}$$
 is small enough.

Theorem (Guillarmou, M., 2016)

Let *M* be a compact surface with $\partial M \neq \emptyset$, and g_1, g_2 are two Riemannian metrics on it such that

$$\mathit{md}_{g_1} = \mathit{md}_{g_2}$$

Assume one of the following:

- (i) each g_i has $K_{g_i} < 0$ and makes ∂M convex;
- (ii) g₁ makes ∂M convex, has no conjugate points, and hyperbolic trapped set;

$$\|g_2 - g_1\|_{C^2}$$
 is small enough.

Then $g_2 = \phi^* g_1$ for some diffeomorphism $\phi : M \to M$, $\phi|_{\partial M} = id$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Guillarmou, M., 2016)

Let *M* be a compact surface with $\partial M \neq \emptyset$, and g_1, g_2 are two Riemannian metric on it such that

$$\mathit{md}_{g_1} = \mathit{md}_{g_2}$$

Assume one of the following:

- (i) g₁ has K_{g1} < 0 and makes ∂M convex,
 g₂ has no conjugate points, trapped set of zero Liouville measure, and makes ∂M convex;
- (ii) g₁ makes ∂M convex, has no conjugate points, and hyperbolic trapped set;

 $||g_2 - g_1||_{C^2}$ is small enough.

Then $g_2 = \phi^* g_1$ for some diffeomorphism $\phi : M \to M$, $\phi|_{\partial M} = id$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thank you for your attention!

(日)、(型)、(E)、(E)、(E)、(O)へ(C)