On the boundary rigidity problem for surfaces

Marco Mazzucchelli, CNRS and ENS de Lyon (joint work with Colin Guillarmou and Leo Tzou)

June 4, 2018

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

(M,g) compact Riemannian manifold,  $\partial M \neq \varnothing$ 



(M,g) compact Riemannian manifold,  $\partial M \neq \emptyset$  $\phi_t$  geodesic flow on unit tangent bundle *SM*.

(M,g) compact Riemannian manifold,  $\partial M \neq \varnothing$  $\phi_t$  geodesic flow on unit tangent bundle *SM*.

 $D_g: M imes M o [0,\infty), \quad D_g(x,y) = g$ -distance from x to y

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(M,g) compact Riemannian manifold,  $\partial M \neq \varnothing$  $\phi_t$  geodesic flow on unit tangent bundle *SM*.

 $D_g: M imes M o [0,\infty), \quad D_g(x,y) = g$ -distance from x to y

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Boundary data:

(M,g) compact Riemannian manifold,  $\partial M \neq \varnothing$  $\phi_t$  geodesic flow on unit tangent bundle *SM*.

 $D_g: M imes M o [0,\infty), \quad D_g(x,y) = g$ -distance from x to y

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Boundary data:

• Boundary distance  $d_g := D_g|_{\partial M \times \partial M}$ 

(M,g) compact Riemannian manifold,  $\partial M \neq \varnothing$  $\phi_t$  geodesic flow on unit tangent bundle *SM*.

 $D_g: M imes M o [0,\infty), \quad D_g(x,y) = g$ -distance from x to y

Boundary data:

- Boundary distance  $d_g := D_g|_{\partial M \times \partial M}$
- Lens data  $(\sigma_g, \tau_g)$

(M,g) compact Riemannian manifold,  $\partial M \neq \emptyset$  $\phi_t$  geodesic flow on unit tangent bundle *SM*.

 $D_g: M imes M o [0,\infty), \quad D_g(x,y) = g$ -distance from x to y

Boundary data:

- Boundary distance  $d_g := D_g|_{\partial M \times \partial M}$
- ► Lens data  $(\sigma_g, \tau_g)$   $\tau_g : \partial_{in} SM \to [0, \infty]$  $\tau_g(x, v) = \text{length of the geodesic } \gamma_v$

(M,g) compact Riemannian manifold,  $\partial M \neq \emptyset$  $\phi_t$  geodesic flow on unit tangent bundle *SM*.

 $D_g:M imes M o [0,\infty),$   $D_g(x,y)=g$ -distance from x to y

Boundary data:

• Boundary distance  $d_g := D_g|_{\partial M \times \partial M}$ 

► Lens data 
$$(\sigma_g, \tau_g)$$
  
 $\tau_g : \partial_{in} SM \to [0, \infty]$   
 $\tau_g(x, v) = \text{length of the geodesic } \gamma_v$   
 $\sigma_g : U \subseteq \partial_{in} SM \to \partial_{out} SM$   
 $\sigma_g(x, v) = \phi_{\tau_g(x, v)}(x, v)$ 

Question (boundary rigidity): does the boundary distance  $d_g$  determine g?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

### Question (boundary rigidity):

does the boundary distance  $d_g$  determine g? i.e. if  $d_{g_1} = d_{g_2}$ , does there exists  $\phi \in \text{Diff}(M)$  such that  $\phi|_{\partial M} = \text{id}$  and  $\phi^*g_2 = g_1$ ?

### Question (boundary rigidity):

does the boundary distance  $d_g$  determine g? i.e. if  $d_{g_1} = d_{g_2}$ , does there exists  $\phi \in \text{Diff}(M)$  such that  $\phi|_{\partial M} = \text{id}$  and  $\phi^*g_2 = g_1$ ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Answer: No!

### Question (boundary rigidity):

does the boundary distance  $d_g$  determine g? i.e. if  $d_{g_1} = d_{g_2}$ , does there exists  $\phi \in \text{Diff}(M)$  such that  $\phi|_{\partial M} = \text{id}$  and  $\phi^*g_2 = g_1$ ?

Answer: No!



Question (lens rigidity): do the lens data ( $\sigma_g$ ,  $\tau_g$ ) determine g?



#### Question (lens rigidity):

do the lens data  $(\sigma_g, \tau_g)$  determine g? i.e. if  $g_1|_{\partial M} = g_2|_{\partial M}$ ,  $\sigma_{g_1} = \sigma_{g_2}$ ,  $\tau_{g_1} = \tau_{g_2}$ , does there exists  $\phi \in \text{Diff}(M)$  such that  $\phi|_{\partial M} = \text{id}$  and  $\phi^*g_2 = g_1$ ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Question (lens rigidity):

do the lens data  $(\sigma_g, \tau_g)$  determine g? i.e. if  $g_1|_{\partial M} = g_2|_{\partial M}$ ,  $\sigma_{g_1} = \sigma_{g_2}$ ,  $\tau_{g_1} = \tau_{g_2}$ , does there exists  $\phi \in \operatorname{Diff}(M)$  such that  $\phi|_{\partial M} = \operatorname{id}$  and  $\phi^*g_2 = g_1$ ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Answer: No!

#### Question (lens rigidity):

do the lens data  $(\sigma_g, \tau_g)$  determine g? i.e. if  $g_1|_{\partial M} = g_2|_{\partial M}$ ,  $\sigma_{g_1} = \sigma_{g_2}$ ,  $\tau_{g_1} = \tau_{g_2}$ , does there exists  $\phi \in \operatorname{Diff}(M)$  such that  $\phi|_{\partial M} = \operatorname{id}$  and  $\phi^*g_2 = g_1$ ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Answer: No!



Lens data of  $(M, g_s)$  independent of  $s \in [0, 1]$ 

# Simple manifolds

### Michel's conjecture (1981):

# Boundary rigidity holds on simple Riemannian manifolds (i.e. convex balls $(B^n, g)$ without conjugate points).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Simple manifolds

### Michel's conjecture (1981):

Boundary rigidity holds on simple Riemannian manifolds (i.e. convex balls  $(B^n, g)$  without conjugate points).

Croke-Otal, 1990: True if dim(M) = 2 and g has negative curvature.

- Pestov-Uhlmann, 2004: True if dim(M) = 2.
- Stefanov-Vasy-Uhlmann, 2017: True if g has negative sectional curvature.

# Simple manifolds

### Michel's conjecture (1981):

Boundary rigidity holds on simple Riemannian manifolds (i.e. convex balls  $(B^n, g)$  without conjugate points).

- ► Croke-Otal, 1990: True if dim(M) = 2 and g has negative curvature.
- Pestov-Uhlmann, 2004: True if dim(M) = 2.
- Stefanov-Vasy-Uhlmann, 2017: True if g has negative sectional curvature.

Remark. On simple manifolds  $(B^n, g)$ , the scattering map  $\sigma_g$  and the boundary distance  $d_g$  are equivalent.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

 Croke-Herreros, 2014: Lens rigidity holds for flat cylinders, flat Möbius strips, and negatively curved cylinders with convex boundary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Croke-Herreros, 2014: Lens rigidity holds for flat cylinders, flat Möbius strips, and negatively curved cylinders with convex boundary
- ► Guillarmou, 2015: If  $(M^2, g)$  compact, convex,  $K_g < 0$ , then  $\sigma_g$  determines M and the conformal class  $\{e^{\rho}g \mid \rho|_{\partial M} \equiv 0\}$

- Croke-Herreros, 2014: Lens rigidity holds for flat cylinders, flat Möbius strips, and negatively curved cylinders with convex boundary
- ► Guillarmou, 2015: If  $(M^2, g)$  compact, convex,  $K_g < 0$ , then  $\sigma_g$  determines M and the conformal class  $\{e^{\rho}g \mid \rho|_{\partial M} \equiv 0\}$
- ► Burago-Ivanov, 2010: Boundary rigidity holds for nearly flat subdomains of ℝ<sup>n</sup>.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Guillarmou, M., Tzou, 2017)

Let  $(M_i, g_i)$ , i = 1, 2, compact oriented surfaces with no conjugate points, no trapped set, isometric boundaries, and same scattering map  $\sigma_{g_1} = \sigma_{g_2}$ . Then  $\exists \phi : M_1 \to M_2$  and  $\rho \in C^{\infty}(M_1)$  such that  $\rho|_{\partial M_1} \equiv 0$  and  $\phi^*g_2 = e^{\rho}g_1$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Theorem (Guillarmou, M., Tzou, 2017)

Let  $(M_i, g_i)$ , i = 1, 2, compact oriented surfaces with no conjugate points, no trapped set, isometric boundaries, and same scattering map  $\sigma_{g_1} = \sigma_{g_2}$ . Then  $\exists \phi : M_1 \to M_2$  and  $\rho \in C^{\infty}(M_1)$  such that  $\rho|_{\partial M_1} \equiv 0$  and  $\phi^*g_2 = e^{\rho}g_1$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Proof

Theorem (Guillarmou, M., Tzou, 2017)

Let  $(M_i, g_i)$ , i = 1, 2, compact oriented surfaces with no conjugate points, no trapped set, isometric boundaries, and same scattering map  $\sigma_{g_1} = \sigma_{g_2}$ . Then  $\exists \phi : M_1 \to M_2$  and  $\rho \in C^{\infty}(M_1)$  such that  $\rho|_{\partial M_1} \equiv 0$  and  $\phi^*g_2 = e^{\rho}g_1$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Proof (ingredients).

#### Theorem (Guillarmou, M., Tzou, 2017)

Let  $(M_i, g_i)$ , i = 1, 2, compact oriented surfaces with no conjugate points, no trapped set, isometric boundaries, and same scattering map  $\sigma_{g_1} = \sigma_{g_2}$ . Then  $\exists \phi : M_1 \to M_2$  and  $\rho \in C^{\infty}(M_1)$  such that  $\rho|_{\partial M_1} \equiv 0$  and  $\phi^*g_2 = e^{\rho}g_1$ .

### Proof (ingredients).

• 
$$(M,g)$$
 as above, X-ray transform:  
 $I: C^0(SM) \to L^1(\partial_{in}), \quad If(x,v) = \int_0^{\tau_g(x,v)} f \circ \phi_t(x,v) dt.$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

#### Theorem (Guillarmou, M., Tzou, 2017)

Let  $(M_i, g_i)$ , i = 1, 2, compact oriented surfaces with no conjugate points, no trapped set, isometric boundaries, and same scattering map  $\sigma_{g_1} = \sigma_{g_2}$ . Then  $\exists \phi : M_1 \to M_2$  and  $\rho \in C^{\infty}(M_1)$  such that  $\rho|_{\partial M_1} \equiv 0$  and  $\phi^*g_2 = e^{\rho}g_1$ .

### Proof (ingredients).

• 
$$(M,g)$$
 as above, X-ray transform:  
 $I: C^0(SM) \to L^1(\partial_{in}), \quad If(x,v) = \int_0^{\tau_g(x,v)} f \circ \phi_t(x,v) dt.$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

•  $I_m$  restriction of I to symmetric m tensors  $f(x, v) = F_x(\underbrace{v, ..., v}_{\times m})$ 

#### Theorem (Guillarmou, M., Tzou, 2017)

Let  $(M_i, g_i)$ , i = 1, 2, compact oriented surfaces with no conjugate points, no trapped set, isometric boundaries, and same scattering map  $\sigma_{g_1} = \sigma_{g_2}$ . Then  $\exists \phi : M_1 \to M_2$  and  $\rho \in C^{\infty}(M_1)$  such that  $\rho|_{\partial M_1} \equiv 0$  and  $\phi^*g_2 = e^{\rho}g_1$ .

### Proof (ingredients).

• 
$$(M,g)$$
 as above, X-ray transform:  
 $I: C^0(SM) \to L^1(\partial_{in}), \quad If(x,v) = \int_0^{\tau_g(x,v)} f \circ \phi_t(x,v) dt.$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

►  $I_m$  restriction of I to symmetric m tensors  $f(x, v) = F_x(\underbrace{v, ..., v}_{\times m})$ 

▶ *l*<sub>0</sub> injective, *l*<sup>\*</sup><sub>0</sub> surjective, ker *l*<sub>1</sub> = {exact 1-forms}

#### Theorem (Guillarmou, M., Tzou, 2017)

Let  $(M_i, g_i)$ , i = 1, 2, compact oriented surfaces with no conjugate points, no trapped set, isometric boundaries, and same scattering map  $\sigma_{g_1} = \sigma_{g_2}$ . Then  $\exists \phi : M_1 \to M_2$  and  $\rho \in C^{\infty}(M_1)$  such that  $\rho|_{\partial M_1} \equiv 0$  and  $\phi^*g_2 = e^{\rho}g_1$ .

### Proof (ingredients).

• 
$$(M,g)$$
 as above, X-ray transform:  
 $I: C^0(SM) \to L^1(\partial_{in}), \quad If(x,v) = \int_0^{\tau_g(x,v)} f \circ \phi_t(x,v) dt.$ 

•  $I_m$  restriction of I to symmetric m tensors  $f(x, v) = F_x(\underbrace{v, ..., v}_{\times m})$ 

▶ *l*<sub>0</sub> injective, *l*<sup>\*</sup><sub>0</sub> surjective, ker *l*<sub>1</sub> = {exact 1-forms}

►  $\sigma_g$  determines  $\mathcal{H}_g := \{h|_{\partial M} \mid h : M \to \mathbb{C} \ g$ -holomorphic $\}$ 

#### Theorem (Guillarmou, M., Tzou, 2017)

Let  $(M_i, g_i)$ , i = 1, 2, compact oriented surfaces with no conjugate points, no trapped set, isometric boundaries, and same scattering map  $\sigma_{g_1} = \sigma_{g_2}$ . Then  $\exists \phi : M_1 \to M_2$  and  $\rho \in C^{\infty}(M_1)$  such that  $\rho|_{\partial M_1} \equiv 0$  and  $\phi^*g_2 = e^{\rho}g_1$ .

Proof (ingredients).

►  $\sigma_g$  determines  $\mathcal{H}_g := \{h|_{\partial M} \mid h : M \to \mathbb{C} \text{ g-holomorphic}\}$ 

#### Theorem (Guillarmou, M., Tzou, 2017)

Let  $(M_i, g_i)$ , i = 1, 2, compact oriented surfaces with no conjugate points, no trapped set, isometric boundaries, and same scattering map  $\sigma_{g_1} = \sigma_{g_2}$ . Then  $\exists \phi : M_1 \to M_2$  and  $\rho \in C^{\infty}(M_1)$  such that  $\rho|_{\partial M_1} \equiv 0$  and  $\phi^*g_2 = e^{\rho}g_1$ .

### Proof (ingredients).

- ►  $\sigma_g$  determines  $\mathcal{H}_g := \{h|_{\partial M} \mid h : M \to \mathbb{C} \ g$ -holomorphic $\}$
- ► Calderon's problem (Lassas-Uhlmann, Belishev 2003): H<sub>g</sub> determines M and the conformal class of g

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary

Let  $g_1, g_2$  be Riemannian metrics on  $B^2$  with no conjugate points and  $d_{g_1} = d_{g_2}$ . Then  $\exists \phi \in \text{Diff}(M)$  such that  $\phi|_{\partial M} = \text{id}$  and  $\phi^*g_2 = g_1$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Corollary

Let  $g_1, g_2$  be Riemannian metrics on  $B^2$  with no conjugate points and  $d_{g_1} = d_{g_2}$ . Then  $\exists \phi \in \text{Diff}(M)$  such that  $\phi|_{\partial M} = \text{id}$  and  $\phi^*g_2 = g_1$ .

### Proof (ingredients).

Let g be a Riemannian metric as in the statement

#### Corollary

Let  $g_1, g_2$  be Riemannian metrics on  $B^2$  with no conjugate points and  $d_{g_1} = d_{g_2}$ . Then  $\exists \phi \in \text{Diff}(M)$  such that  $\phi|_{\partial M} = \text{id}$  and  $\phi^*g_2 = g_1$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

### Proof (ingredients).

- Let g be a Riemannian metric as in the statement
- $d_g$  determines lens data  $(\sigma_g, \tau_g)$

#### Corollary

Let  $g_1, g_2$  be Riemannian metrics on  $B^2$  with no conjugate points and  $d_{g_1} = d_{g_2}$ . Then  $\exists \phi \in \text{Diff}(M)$  such that  $\phi|_{\partial M} = \text{id}$  and  $\phi^*g_2 = g_1$ .

### Proof (ingredients).

- Let g be a Riemannian metric as in the statement
- $d_g$  determines lens data  $(\sigma_g, \tau_g)$
- $\blacktriangleright$  By our theorem, from  $\sigma_g$  we determine the conformal class of g

#### Corollary

Let  $g_1, g_2$  be Riemannian metrics on  $B^2$  with no conjugate points and  $d_{g_1} = d_{g_2}$ . Then  $\exists \phi \in \text{Diff}(M)$  such that  $\phi|_{\partial M} = \text{id}$  and  $\phi^*g_2 = g_1$ .

### Proof (ingredients).

- Let g be a Riemannian metric as in the statement
- $d_g$  determines lens data  $(\sigma_g, \tau_g)$
- By our theorem, from σ<sub>g</sub> we determine the conformal class of g

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Two given points in (B<sup>2</sup>, g) are joined by at most one geodesic γ, and such γ is length minimizing

#### Corollary

Let  $g_1, g_2$  be Riemannian metrics on  $B^2$  with no conjugate points and  $d_{g_1} = d_{g_2}$ . Then  $\exists \phi \in \text{Diff}(M)$  such that  $\phi|_{\partial M} = \text{id}$  and  $\phi^*g_2 = g_1$ .

### Proof (ingredients).

- Let g be a Riemannian metric as in the statement
- $d_g$  determines lens data  $(\sigma_g, \tau_g)$
- By our theorem, from σ<sub>g</sub> we determine the conformal class of g
- Two given points in (B<sup>2</sup>, g) are joined by at most one geodesic γ, and such γ is length minimizing
- Croke's trick:  $(\sigma_g, \tau_g)$  determine g within its conformal class

#### Corollary

Let  $(M_i, g_i)$ , i = 1, 2, compact oriented surfaces with no conjugate points, no trapped set, isometric boundaries, and same lens data  $\sigma_{g_1} = \sigma_{g_2}$ ,  $\tau_{g_1} = \tau_{g_2}$ . Then  $\exists \phi : M_1 \to M_2$  such that  $\phi^* g_2 = g_1$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Corollary

Let  $(M_i, g_i)$ , i = 1, 2, compact oriented surfaces with no conjugate points, no trapped set, isometric boundaries, and same lens data  $\sigma_{g_1} = \sigma_{g_2}$ ,  $\tau_{g_1} = \tau_{g_2}$ . Then  $\exists \phi : M_1 \to M_2$  such that  $\phi^* g_2 = g_1$ .

### Proof (ingredients).

 (M,g) as in the statement. Our theorem implies that σ<sub>g</sub> determines M and the conformal class of g.

#### Corollary

Let  $(M_i, g_i)$ , i = 1, 2, compact oriented surfaces with no conjugate points, no trapped set, isometric boundaries, and same lens data  $\sigma_{g_1} = \sigma_{g_2}$ ,  $\tau_{g_1} = \tau_{g_2}$ . Then  $\exists \phi : M_1 \to M_2$  such that  $\phi^* g_2 = g_1$ .

### Proof (ingredients).

- ► (M,g) as in the statement. Our theorem implies that σ<sub>g</sub> determines M and the conformal class of g.
- ► Zhou: ∀ℓ > 0 ∃ a finite cover (M', g') of (M, g) with systole larger than ℓ

#### Corollary

Let  $(M_i, g_i)$ , i = 1, 2, compact oriented surfaces with no conjugate points, no trapped set, isometric boundaries, and same lens data  $\sigma_{g_1} = \sigma_{g_2}$ ,  $\tau_{g_1} = \tau_{g_2}$ . Then  $\exists \phi : M_1 \to M_2$  such that  $\phi^* g_2 = g_1$ .

### Proof (ingredients).

- ► (M,g) as in the statement. Our theorem implies that σ<sub>g</sub> determines M and the conformal class of g.
- ► Zhou: ∀ℓ > 0 ∃ a finite cover (M', g') of (M, g) with systole larger than ℓ
- ► This can be used to show that (\(\sigma\_{g'}, \tau\_{g'}\)) determine g', and thus g.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thank you for your attention!

(日)、(型)、(E)、(E)、(E)、(O)へ(C)