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Boundary data on compact Riemannian manifolds

(M, g) compact Riemannian manifold, ∂M 6= ∅

φt geodesic flow on unit tangent bundle SM.

Dg : M ×M → [0,∞), Dg (x , y) = g -distance from x to y

Boundary data:

I Boundary distance
dg := Dg |∂M×∂M

I Lens data (σg , τg )
τg : ∂inSM → [0,∞]
τg (x , v) = length of the geodesic γv

σg : U ⊆ ∂inSM → ∂outSM
σg (x , v) = φτg (x ,v)(x , v)
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Rigidity

Question (boundary rigidity):
does the boundary distance dg determine g?

i.e. if dg1 = dg2 , does there exists φ ∈ Diff(M) such that
φ|∂M = id and φ∗g2 = g1?

Answer: No!

(M, g)

invisible by dg
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Question (lens rigidity):
do the lens data (σg , τg ) determine g?

i.e. if g1|∂M = g2|∂M , σg1 = σg2 , τg1 = τg2 , does there exists
φ ∈ Diff(M) such that φ|∂M = id and φ∗g2 = g1?
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s 1− s
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Lens data of (M, gs) independent of s ∈ [0, 1]
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Simple manifolds

Michel’s conjecture (1981):
Boundary rigidity holds on simple Riemannian manifolds
(i.e. convex balls (Bn, g) without conjugate points).

I Croke-Otal, 1990: True if dim(M) = 2 and g has negative
curvature.

I Pestov-Uhlmann, 2004: True if dim(M) = 2.

I Stefanov-Vasy-Uhlmann, 2017: True if g has negative
sectional curvature.

Remark. On simple manifolds (Bn, g), the scattering map σg and
the boundary distance dg are equivalent.
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Rigidity on non-simple manifolds

I Croke-Herreros, 2014: Lens rigidity holds for flat cylinders, flat
Möbius strips, and negatively curved cylinders with convex
boundary

I Guillarmou, 2015: If (M2, g) compact, convex, Kg < 0, then
σg determines M and the conformal class

{
eρg

∣∣ ρ|∂M ≡ 0
}

I Burago-Ivanov, 2010: Boundary rigidity holds for nearly flat
subdomains of Rn.
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Rigidity on non-simple manifolds

Theorem (Guillarmou, M., Tzou, 2017)
Let (Mi , gi ), i = 1, 2, compact oriented surfaces with no conjugate
points, no trapped set, isometric boundaries, and same scattering
map σg1 = σg2 . Then ∃ φ : M1 → M2 and ρ ∈ C∞(M1) such that
ρ|∂M1 ≡ 0 and φ∗g2 = eρg1.

Proof (ingredients).

I (M, g) as above, X-ray transform:

I : C 0(SM)→ L1(∂in), If (x , v) =
∫ τg (x ,v)
0 f ◦ φt(x , v) dt.

I Im restriction of I to symmetric m tensors
f (x , v) = Fx(v , ..., v︸ ︷︷ ︸

×m

)

I I0 injective, I ∗0 surjective, ker I1 = {exact 1-forms}
I σg determines Hg :=

{
h|∂M

∣∣ h : M → C g -holomorphic
}
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Rigidity on non-simple manifolds

Corollary
Let g1, g2 be Riemannian metrics on B2 with no conjugate points
and dg1 = dg2 . Then ∃ φ ∈ Diff(M) such that φ|∂M = id and
φ∗g2 = g1.

Proof (ingredients).

I Let g be a Riemannian metric as in the statement

I dg determines lens data (σg , τg )

I By our theorem, from σg we determine the conformal class
of g

I Two given points in (B2, g) are joined by at most one
geodesic γ, and such γ is length minimizing

I Croke’s trick: (σg , τg ) determine g within its conformal class
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Rigidity on non-simple manifolds

Corollary
Let (Mi , gi ), i = 1, 2, compact oriented surfaces with no conjugate
points, no trapped set, isometric boundaries, and same lens data
σg1 = σg2 , τg1 = τg2 . Then ∃ φ : M1 → M2 such that φ∗g2 = g1.

Proof (ingredients).

I (M, g) as in the statement. Our theorem implies that σg
determines M and the conformal class of g .

I Zhou: ∀` > 0 ∃ a finite cover (M ′, g ′) of (M, g) with systole
larger than `

I This can be used to show that (σg ′ , τg ′) determine g ′, and
thus g .
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