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Geodesic flows on Finsler manifolds

I (M,F ) Finsler manifold

F : TM → [0,∞) smooth outside 0-section
F (x , λv) = λF (x , v) for all λ ≥ 0, v ∈ TxM
∂vvF

2(x , v) positive definite outside 0-section

Example. F (x , v) =
√

gx(v , v), where g Riemannian metric

I SM =
{

(x , v) ∈ TM
∣∣ F (x , v) = 1

}
unit tangent bundle

I Geodesic flow

φt : SM → SM, φt(γ(0), γ̇(0)) = (γ(t), γ̇(t))

where γ : R→ M is a geodesic of (M,F )

I Closed geodesics = projections of periodic orbits of φt
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The closed geodesics conjecture

Every closed Riemannian manifold (M, g) of dim(M) ≥ 2 has
infinitely many closed geodesics.

Confirmed for:

I Manifolds with large fundamental group
(e.g. tori, hyperbolic manifolds)

I Simply connected manifolds with H∗(M,Q) 6∼= Q[x ]/(xk)
(Gromoll-Meyer 1969 + Vigué Poirrier-Sullivan 1976)

I Manifolds with infinite abelian π1(M), possibly π1(M) ∼= Z
(Bangert-Hingston 1984)

I 2-sphere
(Bangert 1992 + Franks 1992 + Hingston 1993)

Open for manifolds with the rational cohomology of a CROSS:
RPn, Sn for n ≥ 3
CPn for n ≥ 2
HPn for any n
CaP2
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However, there exists a Finsler 2-sphere (the Katok sphere) with
only two closed geodesics!
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Katok counterexample for Finsler spheres
I Unit 2-sphere with round metric (S2, g)

Every geodesic is closed with length 2π

I ρθ : S2 → S2 rotation of angle θ around the z-axis

I α > 0 irrational and small

I there exists a Finsler metric F on S2 whose unit-speed
geodesics have the form

ζ(t) := ραt ◦ γ(t)
where γ is a unit-speed geodesic of (S2, g)

I The only closed geodesics of (S2,F ) are the two the two
oriented equators

I F is non reversible: F (x , v) 6= F (x ,−v) for some (x , v) ∈ TM
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Closed geodesics on reversible Finsler manifolds

Conjecture. Every closed, reversible, Finsler, rational cohomology
CROSS (M,F ) of dimension at least 2 has infinitely many closed
geodesics.

Theorem (De Philippis, Marini, Mazzucchelli, Suhr)
True for M = S2.

The main difficulty was to extend the theorem of the three simple
closed geodesics of Lusternik-Schnirelmann for Riemannian S2.
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Closed geodesics on reversible Finsler manifolds

I Length function

L(γ) =

∫
S1

F (γ, γ̇) dt where γ : S1 → S2

I Simple spectrum
σs(S2,F ) =

{
L(γ)

∣∣ γ simple closed geodesic of (S2,F )
}

The following theorem, in the Riemannian case, was claimed by
Lusternik.

Theorem (De Philippis, Marini, Mazzucchelli, Suhr). On every
reversible (S2,F ), one of the following conditions is verified:

(i) #σs(S2,F ) ≥ 3

(ii) σs(S2,F ) = {`1, `2} and, for some ` ∈ σs(S2,F ), every point
of S2 lies on a simple closed geodesic of length `

(iii) σs(S2,F ) = {`} and every geodesic is closed and simple
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Closed geodesics on reversible Finsler manifolds

Theorem (De Philippis, Marini, Mazzucchelli, Suhr). On every
reversible (S2,F ), one of the following conditions is verified:

(i) #σs(S2,F ) ≥ 3

(ii) σs(S2,F ) = {`1, `2} and, for some ` ∈ σs(S2,F ), every point
of S2 lies on a simple closed geodesic of length `

(iii) σs(S2,F ) = {`} and every geodesic is closed and simple

(i) (ii) (iii)



Finsler curve shortening flow

(S2,F ) reversible

Ω :=
Emb(S1,S2)

Diff(S1)
= space of smooth embedded circles in S2

Ω<` := {γ ∈ Ω | L(γ) < `}

We will need a curve shortening flow: a continuous deformation
φt : Ω→ Ω, t ≥ 0, such that

(i) φ0 = id

(ii) t 7→ L(φt(γ)) is non-increasing

(iii) for all W ⊂ Ω C 1-small neighborhood of the simple closed
geodesics of length ` > 0, there exists ε > 0 and t > 0 such
that

φt(Ω<`+ε) ⊂ Ω<` ∪W
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Finsler curve shortening flow

[Grayson 1989] In the Riemannian case (i.e. F (x , v) =
√

gx(v , v))
γt := φt(γ0) : S1 ↪→ S2 solution of the PDE

∂tγt(s) = κt(s)nt(s)

κt = signed curvature of γt
nt = unit normal vector field to γt

Remark. φt is the L2 anti-gradient flow of the length functional
L : Emb(S1,S2)→ [0,∞), i.e.

d
dtφt(γ) = −∇L(φt(γ))

dL(γ)η = 〈∇L(γ), η〉

〈η, ξ〉 =

∫
S1

g(η(t), ξ(t)) ‖γ̇(t)‖gdt
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Lusternik-Schnirelmann theory

(S2,F ) reversible, Ω :=
Emb(S1,S2)

Diff(S1)
, Ω<` = {γ ∈ Ω | L(γ) < `}

ε > 0 smaller than length of any closed geodesic of (S2,F )

I If τ 6= 0 in H∗(Ω,Ω<ε), then
c(τ) := inf

{
` > 0

∣∣ τ 6= 0 in H∗(Ω<`,Ω<ε)
}
∈ σs(S2,F )

I If τ1 ^ τ2 6= 0 in H∗(Ω,Ω<ε) and c(τ1) = c(τ1 ^ τ2), then
τ2|U 6= 0 in H∗(U) for all neighborhoods U ⊂ Ω of the simple
closed geodesics of length `
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Topology of Ω = Emb(S1,S2)
Diff(S1)

G := {great circles} ⊂ C := {circles}

G ∼= RP2, C ∼= tautological bundle over RP2

H∗(Ω,Ω<ε;Z2) = H∗(C ,C \ G ;Z2) = 〈τ1, τ2, τ3〉, where

τ1 = Thom class of C → G
τ2 = τ1 ^ κ
τ3 = τ1 ^ κ2

κ = generator of H1(C ;Z2) = H1(Ω;Z2)
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Simple closed geodesics on (S2,F )

H∗(Ω,Ω<ε;Z2) = 〈τ1, τ2, τ3〉
τ2 = τ1 ^ κ, τ3 = τ1 ^ κ2, κ ∈ H1(Ω;Z2)

Theorem. If ` := c(τi ) = c(τi+1) for some i ∈ {1, 2}, then every
point of S2 lies on a simple closed geodesic of length `.

Proof.

I Assume some x ∈ S2 does not lie on a simple closed geodesic
of length `.

I U := {γ ∈ Ω | x 6∈ γ}∼=
Emb(S1,B2)

Diff(S1)
contractible

I U contains all simple closed geodesics of length `

I Since ` := c(τi ) = c(τi+1), Lusternik-Schnirelmann theorem
implies that κ|U 6= 0. Impossible since U is contractible!



Simple closed geodesics on (S2,F )

H∗(Ω,Ω<ε;Z2) = 〈τ1, τ2, τ3〉
τ2 = τ1 ^ κ, τ3 = τ1 ^ κ2, κ ∈ H1(Ω;Z2)

Theorem. If ` := c(τi ) = c(τi+1) for some i ∈ {1, 2}, then every
point of S2 lies on a simple closed geodesic of length `.

Proof.

I Assume some x ∈ S2 does not lie on a simple closed geodesic
of length `.

I U := {γ ∈ Ω | x 6∈ γ}∼=
Emb(S1,B2)

Diff(S1)
contractible

I U contains all simple closed geodesics of length `

I Since ` := c(τi ) = c(τi+1), Lusternik-Schnirelmann theorem
implies that κ|U 6= 0. Impossible since U is contractible!



Simple closed geodesics on (S2,F )

H∗(Ω,Ω<ε;Z2) = 〈τ1, τ2, τ3〉
τ2 = τ1 ^ κ, τ3 = τ1 ^ κ2, κ ∈ H1(Ω;Z2)

Theorem. If ` := c(τi ) = c(τi+1) for some i ∈ {1, 2}, then every
point of S2 lies on a simple closed geodesic of length `.

Proof.

I Assume some x ∈ S2 does not lie on a simple closed geodesic
of length `.

I U := {γ ∈ Ω | x 6∈ γ}∼=
Emb(S1,B2)

Diff(S1)
contractible

I U contains all simple closed geodesics of length `

I Since ` := c(τi ) = c(τi+1), Lusternik-Schnirelmann theorem
implies that κ|U 6= 0. Impossible since U is contractible!



Simple closed geodesics on (S2,F )

H∗(Ω,Ω<ε;Z2) = 〈τ1, τ2, τ3〉
τ2 = τ1 ^ κ, τ3 = τ1 ^ κ2, κ ∈ H1(Ω;Z2)

Theorem. If ` := c(τi ) = c(τi+1) for some i ∈ {1, 2}, then every
point of S2 lies on a simple closed geodesic of length `.

Proof.

I Assume some x ∈ S2 does not lie on a simple closed geodesic
of length `.

I U := {γ ∈ Ω | x 6∈ γ}

∼=
Emb(S1,B2)

Diff(S1)
contractible

I U contains all simple closed geodesics of length `

I Since ` := c(τi ) = c(τi+1), Lusternik-Schnirelmann theorem
implies that κ|U 6= 0. Impossible since U is contractible!



Simple closed geodesics on (S2,F )

H∗(Ω,Ω<ε;Z2) = 〈τ1, τ2, τ3〉
τ2 = τ1 ^ κ, τ3 = τ1 ^ κ2, κ ∈ H1(Ω;Z2)

Theorem. If ` := c(τi ) = c(τi+1) for some i ∈ {1, 2}, then every
point of S2 lies on a simple closed geodesic of length `.

Proof.

I Assume some x ∈ S2 does not lie on a simple closed geodesic
of length `.

I U := {γ ∈ Ω | x 6∈ γ}∼=
Emb(S1,B2)

Diff(S1)
contractible

I U contains all simple closed geodesics of length `

I Since ` := c(τi ) = c(τi+1), Lusternik-Schnirelmann theorem
implies that κ|U 6= 0. Impossible since U is contractible!



Simple closed geodesics on (S2,F )

H∗(Ω,Ω<ε;Z2) = 〈τ1, τ2, τ3〉
τ2 = τ1 ^ κ, τ3 = τ1 ^ κ2, κ ∈ H1(Ω;Z2)

Theorem. If ` := c(τi ) = c(τi+1) for some i ∈ {1, 2}, then every
point of S2 lies on a simple closed geodesic of length `.

Proof.

I Assume some x ∈ S2 does not lie on a simple closed geodesic
of length `.

I U := {γ ∈ Ω | x 6∈ γ}∼=
Emb(S1,B2)

Diff(S1)
contractible

I U contains all simple closed geodesics of length `

I Since ` := c(τi ) = c(τi+1), Lusternik-Schnirelmann theorem
implies that κ|U 6= 0. Impossible since U is contractible!



Simple closed geodesics on (S2,F )

H∗(Ω,Ω<ε;Z2) = 〈τ1, τ2, τ3〉
τ2 = τ1 ^ κ, τ3 = τ1 ^ κ2, κ ∈ H1(Ω;Z2)

Theorem. If ` := c(τi ) = c(τi+1) for some i ∈ {1, 2}, then every
point of S2 lies on a simple closed geodesic of length `.

Proof.

I Assume some x ∈ S2 does not lie on a simple closed geodesic
of length `.

I U := {γ ∈ Ω | x 6∈ γ}∼=
Emb(S1,B2)

Diff(S1)
contractible

I U contains all simple closed geodesics of length `

I Since ` := c(τi ) = c(τi+1), Lusternik-Schnirelmann theorem
implies that κ|U 6= 0. Impossible since U is contractible!



Simple closed geodesics on (S2,F )

H∗(Ω,Ω<ε;Z2) = 〈τ1, τ2, τ3〉
τ2 = τ1 ^ κ, τ3 = τ1 ^ κ2, κ ∈ H1(Ω;Z2)

G = {great circles} ⊂ Ω

Theorem. If ` := c(τ1) = c(τ2) = c(τ3), then every geodesic is
closed and simple.

Proof.

I E = {(γ, x) ∈ Ω× S2 | x ∈ γ}
π : E → Ω, π(γ, x) = γ is a circle bundle

I ev : E → PTS2, ev(γ, x) = Txγ

I E |G �
� ι̃ //

π

��

E
ev //

π

��

PTS2

G �
� ι // Ω

ev ◦ ι̃ homeomorphism

I κ2 = π∗ ◦ ev∗µ, where µ generator H3(PTS2;Z2)
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τ2 = τ1 ^ κ, τ3 = τ1 ^ κ2, κ ∈ H1(Ω;Z2)

Theorem. If ` := c(τ1) = c(τ2) = c(τ3), then every geodesic is
closed and simple.

Proof.
...

I κ2 = π∗ ◦ ev∗µ, where µ generator H3(PTS2;Z2)

I Assume some t 7→ expx(tv) is not closed and simple

I U = {γ ∈ Ω | v 6∈ Tγ} nbhd of simple closed geodesics

I By Lusternik-Schnirelmann, κ2|U 6= 0 in H2(U;Z2)

I E |U �
� ι̃ //

π
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E
ev //

π

��

PTS2

U �
� ι // Ω

ev ◦ ι̃ not surjective

I κ2|U = 0 in H2(U;Z2)
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Open questions

I Does any non-reversible (S2,F ) have a simple closed
geodesic?

I If a non-reversible (S2,F ) has more than two closed geodesics,
does it necessarily have infinitely many closed geodesics?

Yes if F is non-degenerate; true even for general non-degenerate
Reeb flows on closed contact 3-manifolds
[Cristofaro Gardiner - Hutchings - Pomerleano 2017]

I If Σ ⊂ T ∗S2 is a fiberwise starshaped hypersurface equipped
with the Liouville contact form λ = p dq and invariant with
respect to (q, p) 7→ (q,−p), does its Reeb flow have three
closed orbits?
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Thank you for your attention!


