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Closed geodesics of Riemannian manifolds
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The closed geodesics of (M, g) are the periodic orbits of the
geodesic flow

ge: SM— SM,  6:(+(0)) = (2)
where v = (x,x), and x : R = M is a geodesic with |||z = 1.



Closed geodesics of Riemannian manifolds

¥ C SM cross section at a closed geodesic

YL =X, P(y) = dr(y)(y) first-return map

The Floquet multipliers of 7 are the eigenvalues of di)(z).



Closed geodesics of Riemannian manifolds

A closed geodesic 7 is

» clliptic when its Floquet multipliers are in S c C
—
/‘\
1 \
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» hyperbolic when its Floquet multipliers are in R\ {1, -1}

» non-degenerate when its Floquet multipliers are in C\ {1}.
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Some history

» (Poincaré's claim, 1905) Every convex 2-sphere S> C R3 has an
elliptic simple closed geodesic.

» (Grjuntal, 1979) There exists a Riemannian S? all of whose
simple closed geodesics are hyperbolic.

» (Herman, 2000) A C? generic positively-curved Riemannian
metric on S has an elliptic closed geodesic.

» (Contreras-Oliveira, 2004) A C? generic Riemannian metric on S?
has an elliptic closed geodesic.



Hyperbolicity
¢t : N — N flow of a vector field X

A compact invariant subset A C N is hyperbolic when there exists
a ¢s-invariant splitting

TN|p = E° @ EY @ span{ X}

such that, for some b, c > 0,
> ||dds - v|| < be ct||v]| for all v € E®, t >0,
> || dp_t - v| < be v forall veEY t>0.

¢+ : N — N is Anosov when the whole N is hyperbolic.
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Main result

Theorem (Contreras-Mazzucchelli) On any closed surface, there
exists a C?-open and dense subset U of smooth Riemannian
metrics such that, for each g € U, the associated geodesic flow is
Anosov or has an elliptic closed orbit.

Remark. For Finsler geodesic flows, the analogous theorem follows
from a more general result of Newhouse.

Remark. Surfaces of genus < 1 do not admit Anosov geodesic
flows (Margulis). Therefore, for these surfaces, each g € U has an
elliptic closed orbit.
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A geodesic flow ¢$° is C?-structurally stable when gp has a
C?-open neighborhood V and, for each g1 € V, there is a
homeohorphism

k:S®OM — S&M

mapping orbits of ¢$° to orbits of ¢F'.

The theorem implies a version of Palis-Smale’s stability conjecture
for geodesic flows:

Theorem (Contreras, Mazzucchelli). A C2—structura//y stable

geodesic flow of a closed surface must be Anosov.

Remark. Anosov himself showed that Anosov geodesic flows are
C?-structurally stable.
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Consequences

Theorem (Contreras, Mazzucchelli). A C2-structurally stable
geodesic flow of a closed surface must be Anosov.

Proof.
» Assume that ¢%° is structurally stable within the neighborhood
V of 80-

> A geodesic flow with an elliptic periodic orbit is not
C?-structurally stable. Therefore no g € V has elliptic closed
geodesics.

» (Contreras-Paternain) Per(¢$) is hyperbolic, for all g € V.

» By the theorem, there exists a dense subset &/ C V such that
any g € U has Anosov geodesic flow ¢%. In particular

Per(¢f) = S&EM.

> By the structural stability, Per(¢$°) = Per(¢f) = SEM.
Therefore ¢£° is Anosov. O
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Consequences

A geodesic flow ¢$° is C?-stably ergodic when gy has a C?-open
neighborhood W and, for each g1 € W, the geodesic flow ¢§' is
ergodic: its invariant subsets have either full measure or zero
measure.

Theorem (Knieper, Schulz). A C2-stably ergodic geodesic flow of a
closed surface must be Anosov.
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Reeb flows

Closed contact manifold:

N closed manifold of odd dimension 2n +1
A 1-form on N such that A A (d\)" is nowhere vanishing

The Reeb vector field X of (N, ) is defined by
d\(X,:) =0, AX) =1.

Its flow ¢ : N — N preserves the contact form, i.e. ¢fA = A.

Geodesic flows of Riemannian manifolds (M, g) are examples of
Reeb flows:

N=5SM=/{(x,v) € TM | |lvllg =1}
Axw) = g(v,dm(x,v) ), where m: SM — M, m(x,v) = x.
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A characterization of Anosov Reeb flows

(N, \) closed contact manifold of dimension 3.
X Reeb vector field
¢r: N — N, t € R, Reeb flow

Per(X) = U Fix(¢;) subspace of closed Reeb orbits
t>0

Theorem (Contreras-Mazzucchelli). Assume that:

» Per(X) is hyperbolic,
P (Kupka-Smale condition) W”(’yl) h WS(’)Q) for all closed Reeb
orbits v1,7v2 C Per(X).

Then the Reeb flow ¢ is Anosov.
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Surfaces of section

Long-standing open question. Does any closed contact 3-manifold
(N, \) admit a global surface of section for its Reeb flow ¢;?

i.e. an immersed compact surface ¥ C N such that

» int(X) is injectively immersed and transverse to the Reeb
vector field X

» OY is a union of closed Reeb orbits

» There exists T > 0 such that every segment of Reeb orbit
dpo,11(2) intersects .



Broken book decompositions

Long-standing open question. Does any closed contact 3-manifold
(N, \) admit a global surface of section for its Reeb flow ¢;?

Known answers:
P (Fried 1981) Yes if ¢: is Anosov.
> (Hofer-Wysocki-Zehnder 1998) Yes if (N, A) is a convex 3-sphere.
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Broken book decompositions (Colin-Dehornoy-Rechtman)

A broken book decomposition of (N3, )) is given by:

» A family of pages F. Each page ¥ C F is a (not necessarily
global) surface of section for the Reeb flow.

> The binding K = [ | 0%
YeF
These data are required to satisfy:

» The family of interiors int(X) of all ¥ € F foliates N \ K.
» Any connected component v C K can be radial or broken.

» There exists finitely many pages X1, ..., >, such that:
> Every Reeb orbit t — ¢;(z) intersects X1 U... U X,.

> If ¢p0,00)(2) € 1 U... UL, then z € W*(y) for some v C K.
> If P_oo,0(2) € X1U...UL,, then z € W¥(y) for some v C K.
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Broken book decompositions

Theorem (Colin-Dehornoy-Rechtman 2020) Every closed contact
3-manifold (N, \) with a non-degenerate Reeb flow admits a
broken book decomposition.

The proof requires Hutchings' embedded contact homology, which
provides surfaces of section through any given point of the contact
manifold N as projections of suitable holomorphic curves in the
symplectization R x N.
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A characterization of Anosov Reeb flows

Theorem (Contreras-Mazzucchelli). Let (N, )\) be a closed contact
3-manifold such that:

» Per(X) is hyperbolic,
» (Kupka-Smale condition) W"Y(y1) th W*(y2) for all closed Reeb
orbits v1,7v2 C Per(X).

Then the Reeb flow ¢ is Anosov.

Sketch of proof.
» There are infinitely many closed Reeb orbits.
(Colin-Dehornoy-Rechtman + Cristofaro G.-Hryniewicz-Hutchings-Liu)
» Smale's spectral decomposition:

Per(X) =A1U...UA,,

where each A; is a basic set (compact, locally maximal,
invariant subset containing a dense orbit and a dense subset
of periodic orbits).

» One such A = A; contains infinitely many closed Reeb orbits.
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A characterization of Anosov Reeb flows

» We proceed by contradiction, assuming that the Reeb flow is
not Anosov, and therefore A C N.

N\ has measure zero (Bowen-Ruelle)

We(A) U WH(A) has measure zero (Poincaré recurrence)
WS(A) N WH(A) = A

We consider a broken book decomposition of (N, ), and a
page ¥ such that ANint(X) # 2.

We fix a small heteroclinic rectangle R C int(X):

vvyyy

v

z,Z €N
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> We extend the map zp — z; to a smooth return map
1 U — X on a maximal open subset U C D.
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A characterization of Anosov Reeb flows

> D C R\ (W*(A)U WH"(A)) connected component
Return map ¢ : U — X extending zg +— z3.

¢t(20)

47

» Since 9D C (W*(A\)u WHU(N)), DN (W*S(A)u WHU(N)) = 2,
we must have ¢(U) C D.

Using the broken book, we can show that U = D.

1 : D — D preserves the area form d\|p.

(Brower translation theorem) % has a fixed point z.

Thus z € DN Per(X). But DNPer(X) C DNA= 0. O



Thank you for your attention!



