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Closed geodesics of Riemannian manifolds

The closed geodesics of (M, g) are the periodic orbits of the
geodesic flow

φt : SM → SM, φt(γ(0)) = γ(t)
where γ = (x , ẋ), and x : R → M is a geodesic with ‖ẋ‖g = 1.



Closed geodesics of Riemannian manifolds

Σ ⊂ SM cross section at a closed geodesic γ

ψ : Σ→ Σ, ψ(y) = φτ(y)(y) first-return map

Σ

y

ψ(y)

z = ψ(z)
γ

The Floquet multipliers of γ are the eigenvalues of dψ(z).



Closed geodesics of Riemannian manifolds

A closed geodesic γ is

I elliptic when its Floquet multipliers are in S1 ⊂ C
γ

I hyperbolic when its Floquet multipliers are in R \ {1,−1}

γ

I non-degenerate when its Floquet multipliers are in C \ {1}.



Some history

I (Poincaré’s claim, 1905) Every convex 2-sphere S2 ⊂ R3 has an
elliptic simple closed geodesic.

I (Grjuntal, 1979) There exists a Riemannian S2 all of whose
simple closed geodesics are hyperbolic.

I (Herman, 2000) A C 2 generic positively-curved Riemannian
metric on S2 has an elliptic closed geodesic.

I (Contreras-Oliveira, 2004) A C 2 generic Riemannian metric on S2

has an elliptic closed geodesic.
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I (Poincaré’s claim, 1905) Every convex 2-sphere S2 ⊂ R3 has an
elliptic simple closed geodesic.

I (Grjuntal, 1979) There exists a Riemannian S2 all of whose
simple closed geodesics are hyperbolic.

I (Herman, 2000) A C 2 generic positively-curved Riemannian
metric on S2 has an elliptic closed geodesic.

I (Contreras-Oliveira, 2004) A C 2 generic Riemannian metric on S2

has an elliptic closed geodesic.



Some history
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Hyperbolicity
φt : N → N flow of a vector field X

A compact invariant subset Λ ⊆ N is hyperbolic when there exists
a φt-invariant splitting

TN|Λ = E s ⊕ Eu ⊕ span{X}

such that, for some b, c > 0,

I ‖dφt · v‖ ≤ b e−ct‖v‖ for all v ∈ E s , t ≥ 0,

I ‖dφ−t · v‖ ≤ b e−ct‖v‖ for all v ∈ Eu, t ≥ 0.

W u

W s
Λ

φt : N → N is Anosov when the whole N is hyperbolic.



Main result

Theorem (Contreras-Mazzucchelli) On any closed surface, there
exists a C 2-open and dense subset U of smooth Riemannian
metrics such that, for each g ∈ U , the associated geodesic flow is
Anosov or has an elliptic closed orbit.

Remark. For Finsler geodesic flows, the analogous theorem follows
from a more general result of Newhouse.

Remark. Surfaces of genus ≤ 1 do not admit Anosov geodesic
flows (Margulis). Therefore, for these surfaces, each g ∈ U has an
elliptic closed orbit.
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Consequences

A geodesic flow φg0
t is C 2-structurally stable when g0 has a

C 2-open neighborhood V and, for each g1 ∈ V, there is a
homeohorphism

κ : Sg0M → Sg1M

mapping orbits of φg0
t to orbits of φg1

t .

The theorem implies a version of Palis-Smale’s stability conjecture
for geodesic flows:

Theorem (Contreras, Mazzucchelli). A C 2-structurally stable
geodesic flow of a closed surface must be Anosov.

Remark. Anosov himself showed that Anosov geodesic flows are
C 2-structurally stable.
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Consequences
Theorem (Contreras, Mazzucchelli). A C 2-structurally stable
geodesic flow of a closed surface must be Anosov.

Proof.

I Assume that φg0
t is structurally stable within the neighborhood

V of g0.

I A geodesic flow with an elliptic periodic orbit is not
C 2-structurally stable. Therefore no g ∈ V has elliptic closed
geodesics.

I (Contreras-Paternain) Per(φgt ) is hyperbolic, for all g ∈ V.

I By the theorem, there exists a dense subset U ⊂ V such that
any g ∈ U has Anosov geodesic flow φgt . In particular
Per(φgt ) = SgM.

I By the structural stability, Per(φg0
t ) ∼= Per(φgt ) = SgM.

Therefore φg0
t is Anosov.
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Consequences

A geodesic flow φg0
t is C 2-stably ergodic when g0 has a C 2-open

neighborhood W and, for each g1 ∈ W, the geodesic flow φg1
t is

ergodic: its invariant subsets have either full measure or zero
measure.

Theorem (Knieper, Schulz). A C 2-stably ergodic geodesic flow of a
closed surface must be Anosov.
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Reeb flows

Closed contact manifold:

N closed manifold of odd dimension 2n + 1
λ 1-form on N such that λ ∧ (dλ)n is nowhere vanishing

The Reeb vector field X of (N, λ) is defined by

dλ(X , ·) ≡ 0, λ(X ) ≡ 1.

Its flow φt : N → N preserves the contact form, i.e. φ∗tλ = λ.

Geodesic flows of Riemannian manifolds (M, g) are examples of
Reeb flows:

N = SM =
{

(x , v) ∈ TM
∣∣ ‖v‖g = 1

}
λ(x ,v) = g(v , dπ(x , v) · ), where π : SM → M, π(x , v) = x .



Reeb flows

Closed contact manifold:

N closed manifold of odd dimension 2n + 1
λ 1-form on N such that λ ∧ (dλ)n is nowhere vanishing

The Reeb vector field X of (N, λ) is defined by

dλ(X , ·) ≡ 0, λ(X ) ≡ 1.

Its flow φt : N → N preserves the contact form, i.e. φ∗tλ = λ.

Geodesic flows of Riemannian manifolds (M, g) are examples of
Reeb flows:

N = SM =
{

(x , v) ∈ TM
∣∣ ‖v‖g = 1

}
λ(x ,v) = g(v , dπ(x , v) · ), where π : SM → M, π(x , v) = x .



Reeb flows

Closed contact manifold:

N closed manifold of odd dimension 2n + 1
λ 1-form on N such that λ ∧ (dλ)n is nowhere vanishing

The Reeb vector field X of (N, λ) is defined by

dλ(X , ·) ≡ 0, λ(X ) ≡ 1.

Its flow φt : N → N preserves the contact form, i.e. φ∗tλ = λ.

Geodesic flows of Riemannian manifolds (M, g) are examples of
Reeb flows:

N = SM =
{

(x , v) ∈ TM
∣∣ ‖v‖g = 1

}
λ(x ,v) = g(v , dπ(x , v) · ), where π : SM → M, π(x , v) = x .



A characterization of Anosov Reeb flows

(N, λ) closed contact manifold of dimension 3.
X Reeb vector field
φt : N → N, t ∈ R, Reeb flow

Per(X ) =
⋃
t>0

Fix(φt) subspace of closed Reeb orbits

Theorem (Contreras-Mazzucchelli). Assume that:

I Per(X ) is hyperbolic,

I (Kupka-Smale condition) W u(γ1) t W s(γ2) for all closed Reeb
orbits γ1, γ2 ⊂ Per(X ).

Then the Reeb flow φt is Anosov.
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Surfaces of section

Long-standing open question. Does any closed contact 3-manifold
(N, λ) admit a global surface of section for its Reeb flow φt?

i.e. an immersed compact surface Σ ⊂ N such that

I int(Σ) is injectively immersed and transverse to the Reeb
vector field X

I ∂Σ is a union of closed Reeb orbits

I There exists T > 0 such that every segment of Reeb orbit
φ[0,T ](z) intersects Σ.

Σ

φ[0,T ](z)
z

φT (z)
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Broken book decompositions

Long-standing open question. Does any closed contact 3-manifold
(N, λ) admit a global surface of section for its Reeb flow φt?

Known answers:

I (Fried 1981) Yes if φt is Anosov.

I (Hofer-Wysocki-Zehnder 1998) Yes if (N, λ) is a convex 3-sphere.



Broken book decompositions (Colin-Dehornoy-Rechtman)
A broken book decomposition of (N3, λ) is given by:

I A family of pages F . Each page Σ ⊂ F is a (not necessarily
global) surface of section for the Reeb flow.

I The binding K =
⋃

Σ∈F
∂Σ.

These data are required to satisfy:

I The family of interiors int(Σ) of all Σ ∈ F foliates N \ K .

I Any connected component γ ⊂ K can be radial:

γ

or broken:

γ
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Broken book decompositions

Theorem (Colin-Dehornoy-Rechtman 2020) Every closed contact
3-manifold (N, λ) with a non-degenerate Reeb flow admits a
broken book decomposition.

The proof requires Hutchings’ embedded contact homology, which
provides surfaces of section through any given point of the contact
manifold N as projections of suitable holomorphic curves in the
symplectization R× N.
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A characterization of Anosov Reeb flows
Theorem (Contreras-Mazzucchelli). Let (N, λ) be a closed contact
3-manifold such that:

I Per(X ) is hyperbolic,

I (Kupka-Smale condition) W u(γ1) t W s(γ2) for all closed Reeb
orbits γ1, γ2 ⊂ Per(X ).

Then the Reeb flow φt is Anosov.

Sketch of proof.

I There are infinitely many closed Reeb orbits.
(Colin-Dehornoy-Rechtman + Cristofaro G.-Hryniewicz-Hutchings-Liu)

I Smale’s spectral decomposition:

Per(X ) = Λ1 ∪ ... ∪ Λn,

where each Λi is a basic set (compact, locally maximal,
invariant subset containing a dense orbit and a dense subset
of periodic orbits).

I One such Λ = Λi contains infinitely many closed Reeb orbits.
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A characterization of Anosov Reeb flows

I We proceed by contradiction, assuming that the Reeb flow is
not Anosov, and therefore Λ ( N.

I Λ has measure zero (Bowen-Ruelle)

I W s(Λ) ∪W u(Λ) has measure zero (Poincaré recurrence)

I W s(Λ) ∩W u(Λ) = Λ

I We consider a broken book decomposition of (N, λ), and a
page Σ such that Λ ∩ int(Σ) 6= ∅.

I We fix a small heteroclinic rectangle R ⊂ int(Σ):

z , z ′ ∈ Λ

Σ

R

W s(Λ)

W u(Λ)
z

z ′
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A characterization of Anosov Reeb flows
I R ∩
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W s(Λ) ∪W u(Λ)

)
is compact and connected

I D ⊂ R \
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)
connected component

I (Poincaré recurrence) ∃z0 ∈ D, t0 > 0 such that
z1 := φt0(z0) ∈ D.
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φt(z0)

z1

I We extend the map z0 7→ z1 to a smooth return map
ψ : U → Σ on a maximal open subset U ⊆ D.
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connected component

Return map ψ : U → Σ extending z0 7→ z1.
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φt(z0)

z1

I Since ∂D ⊂ (W s(Λ) ∪W u(Λ)), D ∩ (W s(Λ) ∪W u(Λ)) = ∅,
we must have ψ(U) ⊂ D.

I Using the broken book, we can show that U = D.

I ψ : D → D preserves the area form dλ|D .

I (Brower translation theorem) ψ has a fixed point z .

I Thus z ∈ D ∩ Per(X ). But D ∩ Per(X ) ⊂ D ∩ Λ = ∅.
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Thank you for your attention!


