Surfaces of section for geodesic flows of closed surfaces

Marco Mazzucchelli (CNRS and École normale supérieure de Lyon)

Joint work with:

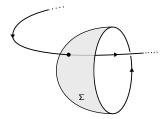
- Gonzalo Contreras
- Gonzalo Contreras, Gerhard Knieper, Benjamin Schulz

N closed 3-manifold, X nowhere vanishing vector field, $\phi_t: N \to N$ flow of X

N closed 3-manifold, X nowhere vanishing vector field, $\phi_t:N\to N$ flow of X

A surface of section is a compact immersed surface $\Sigma \hookrightarrow N$ such that:

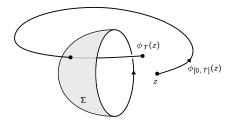
- ▶ $\partial \Sigma$ is tangent to X,
- ▶ $int(\Sigma)$ is embedded in $N \setminus \partial \Sigma$ and transverse to X,



N closed 3-manifold, X nowhere vanishing vector field, $\phi_t: N \to N$ flow of X

A global surface of section is a compact immersed surface $\Sigma \hookrightarrow N$ such that:

- $ightharpoonup \partial \Sigma$ is tangent to X,
- lacksquare $\operatorname{int}(\Sigma)$ is embedded in $N\setminus\partial\Sigma$ and transverse to X,
- ▶ for some T > 0, any orbit segment $φ_{[0,T]}(z)$ intersects Σ.

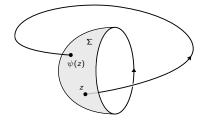


N closed 3-manifold, X nowhere vanishing vector field, $\phi_t: N \to N$ flow of X

A global surface of section is a compact immersed surface $\Sigma \hookrightarrow N$ such that:

- ▶ $\partial \Sigma$ is tangent to X,
- lacksquare $\operatorname{int}(\Sigma)$ is embedded in $N\setminus\partial\Sigma$ and transverse to X,
- ▶ for some T > 0, any orbit segment φ_[0,T](z) intersects Σ.

First return map: $\psi : \operatorname{int}(\Sigma) \to \operatorname{int}(\Sigma)$



▶ Notion was introduced by Poincaré in celestial mechanics

- Notion was introduced by Poincaré in celestial mechanics
- ightharpoonup (Birkhoff, \sim 1917) Existence of global surfaces of sections for Riemannian geodesic flows of
 - Positively curved 2-spheres
 - Negatively curved closed surfaces

- Notion was introduced by Poincaré in celestial mechanics
- ightharpoonup (Birkhoff, \sim 1917) Existence of global surfaces of sections for Riemannian geodesic flows of
 - Positively curved 2-spheres
 - Negatively curved closed surfaces
- (Fried, 1981) Existence of global surfaces of sections for transitive Anosov flows

- Notion was introduced by Poincaré in celestial mechanics
- ightharpoonup (Birkhoff, \sim 1917) Existence of global surfaces of sections for Riemannian geodesic flows of
 - Positively curved 2-spheres
 - Negatively curved closed surfaces
- (Fried, 1981) Existence of global surfaces of sections for transitive Anosov flows
- ▶ (Hofer-Wysocky-Zehnder, 1998) Contact hypersurfaces $N \subset \mathbb{C}^2$ admit a global surface of section $\Sigma \cong B^2$ for their Reeb flow

- Notion was introduced by Poincaré in celestial mechanics
- ightharpoonup (Birkhoff, \sim 1917) Existence of global surfaces of sections for Riemannian geodesic flows of
 - Positively curved 2-spheres
 - Negatively curved closed surfaces
- (Fried, 1981) Existence of global surfaces of sections for transitive Anosov flows
- ▶ (Hofer-Wysocky-Zehnder, 1998) Contact hypersurfaces $N \subset \mathbb{C}^2$ admit a global surface of section $\Sigma \cong B^2$ for their Reeb flow
-

 \triangleright (N, λ) closed contact 3-manifold, X Reeb vector field

 \triangleright (N, λ) closed contact 3-manifold, X Reeb vector field

 λ 1-form on N $\lambda \wedge d\lambda$ volume form $\lambda(X) \equiv 1, \ d\lambda(X, \cdot) \equiv 0$

 \triangleright (N, λ) closed contact 3-manifold, X Reeb vector field

 λ 1-form on N $\lambda \wedge d\lambda$ volume form $\lambda(X) \equiv 1, \ d\lambda(X, \cdot) \equiv 0$

 \blacktriangleright (M,g) closed Riemannian surface

 $ightharpoonup (N, \lambda)$ closed contact 3-manifold, X Reeb vector field

 λ 1-form on N $\lambda \wedge d\lambda$ volume form $\lambda(X) \equiv 1, \ d\lambda(X, \cdot) \equiv 0$

 \blacktriangleright (M,g) closed Riemannian surface

N = SM unit tangent bundle $\lambda = \text{Liouville contact form},$ X is the geodesic vector field

 $ightharpoonup (N, \lambda)$ closed contact 3-manifold, X Reeb vector field

 λ 1-form on N $\lambda \wedge d\lambda$ volume form $\lambda(X) \equiv 1, \ d\lambda(X, \cdot) \equiv 0$

 \blacktriangleright (M,g) closed Riemannian surface

N = SM unit tangent bundle $\lambda = \text{Liouville contact form},$ X is the geodesic vector field

 $\phi_X^t(\dot{\gamma}(0))=\dot{\gamma}(t)$, where γ is a geodesic with $\|\dot{\gamma}\|_{\mathcal{g}}\equiv 1$

X Reeb vector field of a closed 3-manifold (N, λ)

X Reeb vector field of a closed 3-manifold (N, λ)

There always exists a closed orbit (Taubes 2007), indeed even two (Cristofaro G., Hutchings 2016)

X Reeb vector field of a closed 3-manifold (N, λ)

There always exists a closed orbit (Taubes 2007), indeed even two (Cristofaro G., Hutchings 2016)

Theorem (Contreras, Mazzucchelli) If X satisfies the Kupka-Smale condition, then it has a global surface of section.

X Reeb vector field of a closed 3-manifold (N, λ)

There always exists a closed orbit (Taubes 2007), indeed even two (Cristofaro G., Hutchings 2016)

Theorem (Contreras, Mazzucchelli) If X satisfies the Kupka-Smale condition, then it has a global surface of section.

Theorem (Colin, Dehornoy, Hryniewicz, Rechtman) If X has equidistributed closed orbits, then it has a global surface of section.

X Reeb vector field of a closed 3-manifold (N, λ)

There always exists a closed orbit (Taubes 2007), and indeed even two (Cristofaro G., Hutchings 2016)

Theorem (Contreras, Mazzucchelli) If X satisfies the Kupka-Smale condition, then it has a global surface of section.

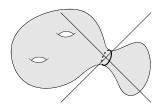
Theorem (Colin, Dehornoy, Hryniewicz, Rechtman) If X has equidistributed closed orbits, then it has a global surface of section.

(M,g) closed orientable surface of genus G $\phi_t:SM \to SM$ geodesic flow

(M,g) closed orientable surface of genus G $\phi_t:SM\to SM$ geodesic flow

Theorem (Contreras-Mazzucchelli-Knieper-Schulz)

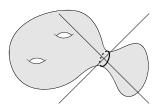
If (M,g) has no contractible simple closed geodesics without conjugate points, there there exists a global surface of section of genus one and 8G-4 boundary components



(M,g) closed orientable surface of genus G $\phi_t:SM\to SM$ geodesic flow

Theorem (Contreras-Mazzucchelli-Knieper-Schulz)

If (M,g) has no contractible simple closed geodesics without conjugate points, there there exists a global surface of section of genus one and 8G-4 boundary components



Remark. There are no contractible simple closed geodesics provided

$$\max K_g \leq \frac{2\pi}{\operatorname{area}(M,g)}$$

Theorem (Contreras-Knieper-Mazzucchelli-Schulz) If (M,g) has no contractible simple closed geodesics without conjugate points, there there exists a global surface of section of genus 1 and 8G-4 boundary components

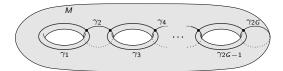
Proof

Theorem (Contreras-Knieper-Mazzucchelli-Schulz)

If (M,g) has no contractible simple closed geodesics without conjugate points, there there exists a global surface of section of genus 1 and 8G-4 boundary components

Proof

$$\Gamma = \gamma_1 \cup ... \cup \gamma_{2G}$$

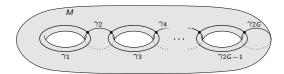


Theorem (Contreras-Knieper-Mazzucchelli-Schulz)

If (M,g) has no contractible simple closed geodesics without conjugate points, there there exists a global surface of section of genus 1 and 8G-4 boundary components

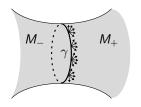
Proof

 $\Gamma = \gamma_1 \cup ... \cup \gamma_{2G}$

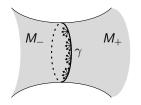


No geodesic ray is trapped in M \ Γ (otherwise M \ Γ would contain a simple closed geodesic without conjugate points)

$$A_+(\gamma) := \{ v \in SM|_{\gamma} \mid v \text{ points inside } M_+ \}$$



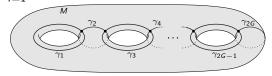
$$A_{-}(\gamma) := \{ v \in SM|_{\gamma} \mid v \text{ points inside } M_{-} \}$$



$$A_{\pm}(\gamma) := \left\{ v \in SM|_{\gamma} \mid v \text{ points inside } M_{\pm} \right\}$$

$$A_{\pm}(\gamma) := \left\{ v \in SM|_{\gamma} \mid v \text{ points inside } M_{\pm}
ight\}$$

$$\Sigma = \bigcup_{i=1}^{2G} A_{+}(\gamma_{i}) \cup A_{-}(\gamma_{i})$$

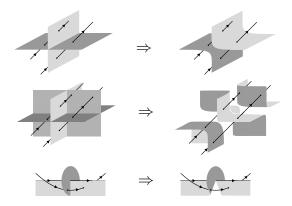


Birkhoff annuli of a simple closed geodesic γ :

$$A_{\pm}(\gamma) := \left\{ v \in SM|_{\gamma} \mid v \text{ points inside } M_{\pm}
ight\}$$

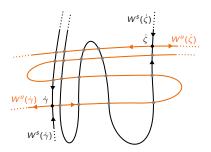
 Σ is almost global surface of section, except that is has self-intersections.

▶ (Fried) Resolve self-intersections of Σ with surgery:



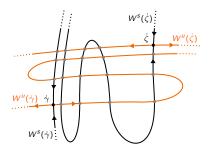
A weak Kupka-Smale condition

We require all the contractible simple closed geodesics without conjugate points γ, ζ to be hyperbolic, and $W^s(\dot{\gamma}) \pitchfork W^u(\dot{\zeta})$:



A weak Kupka-Smale condition

We require all the contractible simple closed geodesics without conjugate points γ, ζ to be hyperbolic, and $W^s(\dot{\gamma}) \pitchfork W^u(\dot{\zeta})$:



Theorem (Contreras-Paternain)

Weak Kupka-Smale holds for a C^{∞} -generic Riemannian metric.

Main theorem

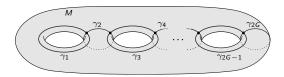
Theorem (Contreras-Knieper-Mazzucchelli-Schulz). Any weak Kupka-Smale geodesic flow admits a global surface of section.

Main theorem

Theorem (Contreras-Knieper-Mazzucchelli-Schulz). Any weak Kupka-Smale geodesic flow admits a global surface of section.

Proof.

▶ $\Gamma = \gamma_1 \cup ... \cup \gamma_{2G}$ simple closed geodesics considered before



Theorem (Contreras-Knieper-Mazzucchelli-Schulz). Any weak Kupka-Smale geodesic flow admits a global surface of section.

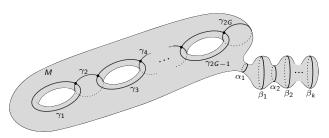
Proof.

- ▶ $\Gamma = \gamma_1 \cup ... \cup \gamma_{2G}$ simple closed geodesics considered before
- ▶ Assume some geodesic ray is trapped in $M \setminus \Gamma$

Theorem (Contreras-Knieper-Mazzucchelli-Schulz). Any weak Kupka-Smale geodesic flow admits a global surface of section.

Proof.

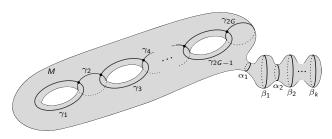
- ▶ $\Gamma = \gamma_1 \cup ... \cup \gamma_{2G}$ simple closed geodesics considered before
- ▶ Assume some geodesic ray is trapped in $M \setminus \Gamma$



Theorem (Contreras-Knieper-Mazzucchelli-Schulz). Any weak Kupka-Smale geodesic flow admits a global surface of section.

Proof.

- ▶ $\Gamma = \gamma_1 \cup ... \cup \gamma_{2G}$ simple closed geodesics considered before
- ▶ Assume some geodesic ray is trapped in $M \setminus \Gamma$



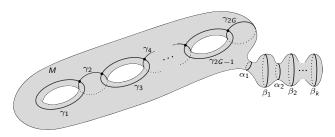
$$A = \alpha_1 \cup ... \cup \alpha_k$$
, $B = \beta_1 \cup ... \cup \beta_k$

No complete geodesic is contained in $M \setminus (\Gamma \cup A \cup B)$

Theorem (Contreras-Knieper-Mazzucchelli-Schulz). Any weak Kupka-Smale geodesic flow admits a global surface of section.

Proof.

- ▶ $\Gamma = \gamma_1 \cup ... \cup \gamma_{2G}$ simple closed geodesics considered before
- Assume some geodesic ray is trapped in $M \setminus \Gamma$

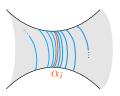


$$A = \alpha_1 \cup ... \cup \alpha_k$$
, $B = \beta_1 \cup ... \cup \beta_k$

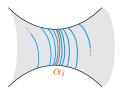
No complete geodesic is contained in $M \setminus (\Gamma \cup A \cup B)$

Geodesic rays in $M \setminus (\Gamma \cup A \cup B)$ are asymptotic to some α_i

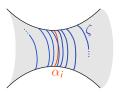
▶ Some α_i has homoclinics on both sides:



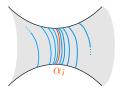
▶ Some α_i has homoclinics on both sides:



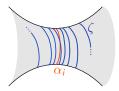
The shadowing lemma provides a closed geodesic ζ close to the homoclinics.



▶ Some α_i has homoclinics on both sides:



The shadowing lemma provides a closed geodesic ζ close to the homoclinics.



No geodesic ray in $M \setminus (\Gamma \cup A \cup B \cup \zeta)$ is asymptotic to α_i .

▶ Repeat if needed for the other α_j 's.

- ▶ Repeat if needed for the other α_j 's.
- ▶ We obtained a finite collection of closed geodesics Z such that $M \setminus (\Gamma \cup A \cup B \cup Z)$ does not contain geodesic rays.

- ▶ Repeat if needed for the other α_j 's.
- We obtained a finite collection of closed geodesics Z such that $M \setminus (\Gamma \cup A \cup B \cup Z)$ does not contain geodesic rays.
- ▶ Build a global surface of section by doing surgery on the Birkhoff annuli of $\Gamma \cup A \cup B \cup Z$.

Theorem (Contreras-Mazzucchelli). Let X be the Reeb vector field of a closed contact 3-manifold such that:

- $ightharpoonup \overline{\operatorname{Per}(X)}$ is hyperbolic,
- $W^u(\gamma_1) \pitchfork W^s(\gamma_2)$ for all closed Reeb orbits $\gamma_1, \gamma_2 \subset \operatorname{Per}(X)$.

Then the Reeb flow is Anosov.

Theorem (Contreras-Mazzucchelli). Let X be the Reeb vector field of a closed contact 3-manifold such that:

- $ightharpoonup \overline{\operatorname{Per}(X)}$ is hyperbolic,
- $W^u(\gamma_1) \pitchfork W^s(\gamma_2)$ for all closed Reeb orbits $\gamma_1, \gamma_2 \subset \operatorname{Per}(X)$.

Then the Reeb flow is Anosov.

Corollary. On any closed surface, there exists an C^2 -open dense subset $\mathcal U$ of the space of Riemannian metrics such that any $g\in \mathcal U$ is Anosov or has an elliptic closed geodesic.

Theorem (Contreras-Mazzucchelli). Let X be the Reeb vector field of a closed contact 3-manifold such that:

- $ightharpoonup \overline{\operatorname{Per}(X)}$ is hyperbolic,
- $W^u(\gamma_1) \pitchfork W^s(\gamma_2)$ for all closed Reeb orbits $\gamma_1, \gamma_2 \subset \operatorname{Per}(X)$.

Then the Reeb flow is Anosov.

Corollary. On any closed surface, there exists an C^2 -open dense subset $\mathcal U$ of the space of Riemannian metrics such that any $g \in \mathcal U$ is Anosov or has an elliptic closed geodesic.

This corollary extends a theorem of Contreras-Oliveira for S^2 , which extended a theorem of Herman for positively curved S^2 , which in turn was first claimed (with a slightly wrong statement and an incomplete proof) by Poincaré in 1905.

Theorem (Contreras-Mazzucchelli). Let X be the Reeb vector field of a closed contact 3-manifold such that:

- $ightharpoonup \overline{\operatorname{Per}(X)}$ is hyperbolic,
- $W^u(\gamma_1) \pitchfork W^s(\gamma_2)$ for all closed Reeb orbits $\gamma_1, \gamma_2 \subset \operatorname{Per}(X)$.

Then the Reeb flow is Anosov.

Corollary. On any closed surface, there exists an C^2 -open dense subset $\mathcal U$ of the space of Riemannian metrics such that any $g \in \mathcal U$ is Anosov or has an elliptic closed geodesic.

Corollary². The geodesic flow of a closed Riemannian surface is C^2 -structurally stable if and only if it is Anosov.

Thank you for your attention!