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Abstract

In this report, we explain the result we proved during the internship. We provide a contact
analogue of the symplectic camel theorem that holds in R2n × S1, and indeed generalize the
symplectic camel. Our proof is based on the generating function techniques introduced by
Viterbo, extended to the contact case by Bhupal and Sandon, and builds on Viterbo’s proof of
the symplectic camel. The submitted article is available on arXiv [2] and is reproduced here.
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1 Introduction

In 1985, Gromov made a tremendous progress in symplectic geometry with his theory of J-
holomorphic curves [12]. Among the spectacular achievements of this theory, there was his famous
non-squeezing theorem: if a round standard symplectic ball B2n

r of radius r can be symplectically
embedded into the standard symplectic cylinder B2

R × R2n−2 of radius R, then r ≤ R (here and
elsewhere in the report, all balls will be open). Other proofs were given later on by the means
of other symplectic invariants [1, Chap. 4]. In 1991, Eliashberg and Gromov discovered a more
subtle symplectic rigidity result: the camel theorem [8, Lemma 3.4.B]. In order to remind its
statement, let us first fix some notation. We denote by q1, p1, . . . , qn, pn the coordinates on R2n, so
that its standard symplectic form is given by ω = dλ, where λ = p1 dq1 + · · ·+ pn dqn = p dq. We
consider the hyperplane P := {qn = 0} ⊂ R2n, and the connected components P− := {qn < 0} and
P+ := {qn > 0} of its complement R2n \P . We will denote by B2n

r = B2n
r (x) the round Euclidean

ball of radius r in R2n centered at some point x ∈ R2n, and by PR := P \ B2n
r (0) the hyperplane

P with a round hole of radius R > 0 centered at the origin. The symplectic camel theorem claims
that, in any dimension 2n > 2, if there exists a symplectic isotopy φt of R2n and a ball B2n

r ⊂ R2n

such that φ0(B2n
r ) ⊂ P−, φ1(B2n

r ) ⊂ P+, and φt(B
2n
r ) ⊂ R2n \ PR for all t ∈ [0, 1], then r ≤ R.

The purpose of this report is to prove a contact version of this theorem.
We consider the space R2n × S1, where S1 := R/Z. We will denote the coordinates on this

space by q1, p1, . . . , qn, pn, z, and consider the 1-form λ defined above also as a 1-form on R2n ×
S1 with a slight abuse of notation. We denote by α := λ − dz the standard contact form on
R2n × S1. The set of contactomorphisms of (R2n × S1, α) will be denoted by Cont(R2n × S1) and
the subset of compactly supported contactomorphisms isotopic to the identity will be denoted by
Cont0(R2n × S1). As usual, by a compactly supported contact isotopy of (R2n × S1, α) we will
mean a smooth family of contactomorphisms φt ∈ Cont(R2n × S1), t ∈ [0, 1], all supported in a
same compact subset of R2n×S1. In 2006, Eliashberg, Kim and Polterovich [9] proved an analogue
and a counterpart of Gromov’s non-squeezing theorem in this contact setting; given any positive
integer k ∈ N and two radii r,R > 0 such that πr2 ≤ k ≤ πR2, there exists a compactly supported
contactomorphism φ ∈ Cont(R2n × S1) such that φ

(
B2n
R × S1

)
⊂ B2n

r × S1 if and only if r = R;
however, if 2n > 2 and R < 1/

√
π, then it is always possible to find such a φ. In 2011, Sandon

[13] extended generating function techniques of Viterbo [19] and deduced an alternative proof of
the contact non-squeezing theorem. In 2015, Chiu [7] gave a stronger statement for the contact
non-squeezing: given any radius R ≥ 1/

√
π, there is no compactly supported contactomorphism

isotopic to identity φ ∈ Cont0(R2n × S1) such that φ(Closure(B2n
R × S1)) ⊂ B2n

R × S1. The
same year, an alternative proof of this strong non-squeezing theorem was given by Fraser [10] (the
technical assumption “φ is isotopic to identity” is no longer needed in her proof).

Our main result is the following contact analogue of the symplectic camel theorem:

Theorem 1.1. In dimension 2n + 1 > 3, if πr2 < ` < πR2 for some positive integer ` and
B2n
R ×S1 ⊂ P−×S1, there is no compactly supported contact isotopy φt of (R2n×S1, α) such that

φ0 = id, φ1(B2n
R × S1) ⊂ P+ × S1, and φt(B

2n
R × S1) ⊂ (R2n \ Pr)× S1 for all t ∈ [0, 1].

Notice that the squeezing theorem of Eliashberg-Kim-Polterovich implies that Theorem 1.1
does not hold if one instead assumes that πR2 < 1.

Theorem 1.1 implies the symplectic camel theorem. Indeed, suppose that there exists a sym-
plectic isotopy ψt of R2n and a ball B2n

R ⊂ R2n such that ψ0(B2n
R ) ⊂ P−, ψ1(B2n

R ) ⊂ P+, and
ψt(B

2n
R ) ⊂ R2n \ Pr for all t ∈ [0, 1], and assume by contradiction that r < R. Without loss of

generality, we can assume that ψ0 = id (see [15, Prop. on page 14]) and that the isotopy ψt is
compactly supported. By conjugating ψt with the dilatation x 7→ νx, we obtain a new compactly
supported symplectic isotopy ψ′t with ψ′0 = id and a ball B2n

νR ⊂ P− such that ψ′1(B2n
νR) ⊂ P+, and

ψ′t(B
2n
νR) ⊂ R2n\Pνr for all t ∈ [0, 1]. If we choose ν > 0 large enough, we have π(νr)2 > ` > π(νR)2

for some ` ∈ Z, and the contact lift of ψ′t to R2n × S1 contradicts our Theorem 1.1.
Our proof of the contact camel theorem is based on Viterbo’s proof [19, Sect. 5] of the symplectic

version, which is given in terms of generating functions. Viterbo’s proof is rather short and
notoriously difficult to read. For this reason, in the report we provide a self-contained complete
proof of Theorem 1.1, beside quoting a few lemmas from the recent work of Bustillo [4]. The
generalization of the generating function techniques to the contact setting is largely due to Bhupal
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[3] and Sandon [13]. In particular, the techniques from [13] are crucial for our work.

Organization of the report

In Section 2, we introduce the reader to symplectic and contact concepts needed in the report.
In Section 3, we provide the background on generating functions and the symplectic and contact
invariants constructed by means of them. In Section 4, we prove additional properties of symplectic
and contact invariants that will be key to the proof of Theorem 1.1. In Section 5, we prove
Theorem 1.1.

Acknowledgments

I thank Jaime Bustillo who gives me helpful advices and a better understanding of reduction
inequalities. I am especially grateful to my advisor Marco Mazzucchelli. He introduces me to
generating function techniques and gives me lots of advice and suggestion during the writing
process of the associated article.

2 Symplectic and contact geometry

2.1 Hamilton equations in classical mechanics

We briefly explain how physics motivates symplectic geometry. Taking N particules x1, . . . , xN ∈
R3, we will note q = (x1, . . . , xN ) ∈ R3N . We will assume that this is a conservative system: it
is globally conserving energy. Hamiltonian formulation of classical mechanics asserts that in most
cases there exists an identification between the tangent space TR3N and the phase space T ∗R3N

such that the dynamics of the system are given by a system of ordinary differential equations called
the Hamilton equations:

q̇ = ∂pHt(q, p) and ṗ = −∂qHt(q, p), (1)

where (q(t), p(t)) ∈ T ∗R3N . (t, q, p) 7→ Ht(q, p) is a numerical function called the Hamiltonian of
the system, it usually represents the energy of the system at time t and position (q, p) in the phase
space. The choice of an Ht is equivalent to the choice of the dynamics (but identification between
TR3N and T ∗R3N could change). Let φt(q0, p0) := (q(t), p(t)) be the Hamiltonian flow associated
to the Hamilton equations and Xt(q, p) := d

dt (φt(q, p)) be the infinitesimal generator.
We can reformulate (1) as follow:

dHt =
∑
i

−ṗi dqi + q̇i dpi = −Xtyω = ω(·, Xt), (2)

where ω :=
∑
i dpi ∧ dqi =: dp ∧ dq.

2.2 symplectic geometry of cotangent bundles

Definition 2.1. A symplectic manifold is a couple (M,ω) where M is a manifold and ω is a closed
non-degenerated 2-form on M . We say that ω is the symplectic form of M .

One can prove that M must be even-dimensionnal by non-degeneracy of ω.
For instance, if Σ2 is an oriented surface of volume form µ, (Σ, µ) is symplectic. We will be

interested in the case where M2d is the cotangent bundle of some base space Bd: M = T ∗B. In
this special case, one can associate to M a canonical 1-form called the Liouville form λ. If (q, p)
are local coordinates of T ∗B, then,

λ =
∑
i

pi dqi =: pdq.

One can check this definition does not depend of the choice of local coordinates. Otherwise, one
can give an intrinsic definition of λ:

∀x ∈M, ∀ξ ∈ TxM, λx(ξ) := x · dπx(ξ)
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where dπ : TM → TB is the differential of the canonical projection π : M → B, and x · v = x(v)
is the evaluation at v ∈ Tπ(x)B of x ∈ T ∗B viewed as a linear form on Tπ(x)B. We define ω := dλ
which is an exact 2-form (thus closed). The 2-form ω is non-degenerated since in local coordinates

ωd = ω ∧ · · · ∧ ω︸ ︷︷ ︸
d terms

= d! dp1 ∧ · · · ∧ dpd ∧ dq1 ∧ · · · ∧ dqd 6= 0.

Thus ω is a symplectic form and we will refer to it as the natural symplectic structure of T ∗B.
A symplectomorphism is a diffeomorphism between two symplectic spaces (M1, ω1) and (M2, ω1):

ψ : M1 →M2 such that ψ∗ω2 = ω1.
An important class of submanifolds associated to a symplectic structure ω is the following:

Definition 2.2. A submanifold Ld ⊂M2d is said to be a Lagrangian submanifold of the symplectic
manifold (M,ω) if 2dim(L) = dim(M) and i∗Lω = 0 where iL : L ↪→M denotes the inclusion map.

2.3 Hamiltonian flow

The formulation (2) of Hamilton equations gives a generalization of Hamitlonian flow. Given a
smooth function H : [0, 1] ×M → R, the Hamiltonian map, the non-degeneracy of ω defines a
unique time-dependent vector field Xt by

ω(·, Xt) = dHt.

Definition 2.3. Given a time-dependent Hamiltonian map Ht, let φ : [0, 1] ×M → M, (t, x) 7→
φt(x) be the flow associated to the vector field Xt. φ is called a Hamiltonian flow and we denote
by Hamc(M) the set of compactly supported hamiltonian diffeomorphisms: that is the set of all
time-one hamiltonian flows φ1 : M →M associated to a compactly supported Hamiltonian map.

Let H : [0, 1]×T ∗B → R be a compactly supported Hamiltonian of the cotangent bundle of B
endowed by its natural symplectic structure. For 0 ≤ t0 ≤ t1 ≤ 1, let the family of φt1t0 : T ∗B →
T ∗B be the hamiltonian flow associated to H, of associated vector field Xt =

dφst0
ds

∣∣∣
t
. Then

Proposition 2.4.
(φt1t0)∗λ− λ = dAt1t0

where At1t0 : T ∗B → R is the action along the hamiltonian flow from the base point at t0 to t1:

∀x ∈ T ∗B, At1t0(x) =

∫
t 7→φtt0

λ−Ht dt =

∫ t1

t0

(〈p(t), q̇(t)〉 −Ht(q(t), p(t))) dt

with (q(t), p(t)) = φtt0(x).

Proof. We use Cartan formula:

d

ds

∣∣∣∣
t

((φst0)∗λ) = (φtt0)∗
d

ds

∣∣∣∣
t

((φst )
∗λ) = (φtt0)∗

 Xty dλ︸ ︷︷ ︸
ω(Xt,·)=−dHt

+ d(Xtyλ)


= (φtt0)∗ dAt

where At = Xtyλ−Ht. The formula is then given by integration of this equality from t0 to t1.

Let ϕ = φ1
0 a Hamiltonian diffeomorphism and let us consider a Lagrangian submanifold L ⊂

T ∗B. Then i∗Lλ is closed (where iA : A ↪→ T ∗B is the inclusion map of A ⊂ T ∗B). Then,

i∗ϕ(L)λ = i∗Lϕ
∗λ = i∗L dA1

0 + i∗Lλ

is also a closed form, hence ϕ(L) is a Lagrangian.
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2.4 Contact geometry

Definition 2.5. A contact manifold is a couple (M, ξ) where M is a manifold and ξ is a distribution
of hyperplanes satisfying: for all 1-form α such that ξ = kerα, dαx is non-degenerated on ξx for
x ∈M . Such 1-form α is said to be a contact form.

The non-degeneracy condition is equivalent to the fact that α ∧ dαn is a volume form where
2n+ 1 is the dimension of M (one can prove that it is necessarily odd).

We will be interested in contact manifold of the form M = T ∗B×R or M = T ∗B×S1 endowed
with the contact structure induced by α = λ− dz, where dz is the differential of the last coordinate
and λ is the Liouville form of T ∗B (by a slight abuse of notation, we identify λ and p∗1λ where
p1 : M → T ∗B is the canonical projection).

A contactomorphism is a diffeomorphism between two contact maniflods (M1, ξ1) and (M2, ξ2)
φ : M1 → M2 such that φ∗ξ1 = ξ2. Equivalently, diffeomorphism must satisfy φ∗α2 = λα1, where
kerαi = ξi and λ : M1 → R is non-vanishing.

An important class of submanifolds associated to a symplectic structure ω is the following:

Definition 2.6. A submanifold Ld ⊂ M2d+1 is said to be a Legendrian submanifold of (M, ξ) if
2dim(L) + 1 = dim(M) and TxL ⊂ ξx.

Given a contact form α, one can define the following vector field:

Proposition 2.7 ([11, Lemma 1.1.9]). There exists a unique vector field Rα satisfying

• α(Rα) = 1,

• Rαy dα = 0.

Rα is called the Reeb vector field associated to α.

2.5 Contact Hamiltonians

We refer to section 2.3 of [11] for proofs and additional pieces of information about this general-
ization of Hamiltonians to contact geometry.

A smooth family of contactomorphisms t 7→ φt will be called a contact isotopy. Any such family
is encoded by its value at t = 0 and a numerical function H : R×M → R, the so-called (contact)
Hamitlonian of the isotopy:

Proposition 2.8. Let Xt := dφs
ds

∣∣∣
s=t

and let us fix a contact form α of (M, ξ). There exists

a smooth function H : R × M → R such that the time-dependent vector field Xt is uniquely
determined by

• α(Xt) = Ht,

• Xty dα = dHt(Rα)α− dHt,

where Rα designates the Reeb vector field associated to α.

We will denote by Cont0(M) the set of time-one flows associated to some compactly supported
contact Hamiltonian, one can prove that it is exactly the set of any compactly supported contac-
tomorphisms isotopic to identity.

In the case M = T ∗B × R or T ∗B × S1 and α = λ − dz, contact Hamiltonians generalize
Hamiltonians of T ∗B. Let t 7→ ψt be the Hamiltonian flow associated to the compactly supported
H : R× T ∗B → R. As ψ∗t λ− λ = dat,

ψ̂t(x, z) := (ψt(x), z + at(x))

is a contactomorphism called contact lift of ψt. Let Xt = dψs
ds

∣∣∣
s=t

, X̂t = dψ̂s
ds

∣∣∣
s=t

and Ĥt(x, z) :=

Ht(x). In this setting, Rα = ∂
∂z so dĤt(Rα) = 0 and Xtyω = −dHt gives X̂ty dα = dĤt(Rα)α−

dĤt. Moreover ȧt = Xtyλ −Ht, thus α(X̂t) = Xtyλ − ȧt = Ht = Ĥt. Thus, when a choice of a
contact form will be needed, we will use α = λ− dz.
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3 Generating functions

In this section, we remind to the reader some known results about generating functions that we
will need.

3.1 Generating functions

Let B be a closed connected manifold. We will usually write q ∈ B points of B, (q, p) ∈ T ∗B for
the cotangent coordinates, (q, p, z) ∈ J1B for the 1-jet coordinates and ξ ∈ RN for vectors of some
fiber space. A generating function on B is a smooth function F : B × RN → R such that 0 is a
regular value of the fiber derivative ∂F

∂ξ . Then,

ΣF :=

{
(q, ξ) ∈ B ×RN | ∂F

∂ξ
(q; ξ) = 0

}
,

is a smooth submanifold called the level set of F .
Generating functions give a way of describing Lagrangians and Legendrians of T ∗B and J1B

respectively. Indeed,
ιF : ΣF → T ∗B, ιF (q; ξ) = (q, ∂qF (q; ξ))

and
ι̂F : ΣF → J1B, ι̂F (q; ξ) = (q, ∂qF (q; ξ), F (q; ξ))

are respectively Lagrangian and Legendrian immersions. We say that F generates the immersed
Lagrangian L := ιF (ΣF ) and the immersed Legendrian L1 := ι̂F (ΣF ). In the report, we will only
consider embedded Lagrangians and Legendrians.

We must restrict ourselves to a special category of generating functions:

Definition 3.1. A function F : B × RN → R is quadratic at infinity if there exists a quadratic
form Q : RN → R such that the differential dF − dQ is bounded. Q is unique and called the
quadratic form associated to F .

In the following, by generating function we will always implicitly mean generating function
quadratic at infinity. In this setting, there is the following fundamental result:

Theorem 3.2 ([14, Sect. 1.2],[19, Lemma 1.6]). If B is closed, then any Lagrangian submanifold
of T ∗B Hamiltonian isotopic to the 0-section has a generating function, which is unique up to
fiber-preserving diffeomorphism and stabilization.

The existence in this theorem is due to Sikorav, whereas the uniqueness is due to Viterbo (the
reader might also see [16] for the details of Viterbo’s proof). The contact analogous is the following
(with an additional statement we will need later on):

Theorem 3.3 ([5, Theorem 3],[6, Theorem 3.2],[17, Theorems 25, 26]). If B is closed, then any
Legendrian submanifold of J1B contact isotopic to the 0-section has a generating function, which
is unique up to fiber-preserving diffeomorphism and stabilization. Moreover, if L1 ⊂ J1B has a
generating function and φt is a contact isotopy of J1B, then there exists a continuous family of
generating functions F t : B ×RN → R such that each F t generates the corresponding φt(L1).

3.2 Min-max critical values

In the following, F : B×RN → R is a smooth function quadratic at infinity of associated quadratic
form Q (generating functions are a special case). Let q be Morse index of Q (that is the dimension
of its maximal negative subspace). We will denote by E the trivial vector bundle B × RN and,
given λ ∈ R, Eλ the sublevel set {F < λ} ⊂ E.

In the report, H∗ is the singular cohomology with coefficients in R and 1 ∈ H∗(B) will always
denote the standard generator of H0(B) (B is connected). Let C > 0 be large enough so that
any critical point of F is contained in {|F | < C}. A classical Morse theory argument implies that(
EC , E−C

)
is homotopy equivalent to B × ({Q < C}, {Q < −C}) and the induced isomorphism

given by Künneth formula:

T : Hp(B)
'−→ Hp+q

(
EC , E−C

)
(3)
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does not depend on the choice of C. So we define H∗ (E∞, E−∞) := H∗
(
EC , E−C

)
. We also

define H∗
(
Eλ, E−∞

)
:= H∗

(
Eλ, E−C

)
.

Given any non-zero α ∈ H∗(B), we shall now define its min-max critical value by

c(α, F ) := inf
λ∈R

{
Tα 6∈ ker

(
H∗
(
E∞, E−∞

)
→ H∗

(
Eλ, E−∞

))}
.

One can show that this quantity is a critical value of F by classical Morse theory.

Proposition 3.4 (Viterbo [19]). Let F1 : B × RN1 → R and F2 : B × RN2 → R be generating
functions quadratic at infinity normalized so that F1(q0, ξ

′
0) = F2(q0, ξ

′′
0 ) = 0 at some pair of critical

points (q0, ξ
′
0) ∈ crit(F1) and (q0, ξ

′′
0 ) ∈ crit(F2) that project to the same q0. Then:

1. if F1 and F2 generate the same Lagrangian, then c(α, F1) = c(α, F2) for all non-zero α ∈
H∗(B),

2. if we see the sum F1 + F2 as a generating function of the form

F1 + F2 : B ×RN1+N2 → R, (F1 + F2)(q; ξ1, ξ2) = F1(q; ξ1) + F2(q; ξ2),

then
c(α ^ β,F1 + F2) ≥ c(α, F1) + c(β, F2),

for all α, β ∈ H∗(B) whose cup product α ^ β is non-zero.

3. if µ ∈ Hdim(B)(B) denotes the orientation class of B, then

c(µ, F1) = −c(1,−F1).

Proof. Point (1) follows from the uniqueness statement in theorem 3.2 See [19, Prop. 3.3] for point
(2) and [19, cor. 2.8] for point (3).

When the base space is a product B = V ×W , one has the following

Proposition 3.5 ([19, Prop. 5.1], [4, Prop. 2.1]). Let F : V ×W × RN → R be a generating
function and let w ∈ W . Consider the restriction Fw : V × RN → R, Fw(v; ξ) = F (v, w; ξ)
(quadratic at infinity on the base space V ), then

1. if µ2 is the orientation class of W , then for all non-zero α ∈ H∗(V ),

c(α⊗ 1, F ) ≤ c(α, Fw) ≤ c(α⊗ µ2, F ),

2. if F does not depend on the w-coordinate, for all non-zero α ∈ H∗(V ) and non-zero β ∈
H∗(W ),

c(α⊗ β, F ) = c(α, Fw).

3.3 Generating Hamiltonian and contactomorphism

Let Hamc (T ∗M) be the set of time-1-flows of time dependent Hamiltonian vector field. Given
ψ ∈ Hamc (T ∗M), its graph grψ = id × ψ : T ∗M ↪→ T ∗M × T ∗M is a Lagrangian embedding in

T ∗M × T ∗M . In order to see grψ(T ∗M) as the 0-section of some cotangent bundle, let us restrict

ourselves to the case M = Rn × Tk. First we consider the case k = 0 then we will quotient Rn+k

by Zk in our construction. Consider the linear symplectic map

τ : T ∗Rn × T ∗Rn → T ∗R2n, τ(q, p;Q,P ) =

(
q +Q

2
,
p+ P

2
, P − p, q −Q

)
which could also be seen as (z, Z) 7→

(
z+Z

2 , J(z − Z)
)

where J is the canonical complex structure
of R2n ' Cn. The choice of the linear map is not important to deduce results of Subsections 3.1
and 3.4 (in fact, [13], [18] and [19] give different choices). However, we do not know how to show
the linear invariance of Subsection 4.2 without this specific choice.
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The Lagrangian embedding Γψ := τ ◦ grψ defines a Lagrangian Γψ(T ∗M) ⊂ T ∗R2n isotopic
to the zero section through the compactly supported Hamiltonian isotopy s 7→ τ ◦ grψs ◦ τ

−1

where (ψs) is the Hamiltonian flow associated to ψ. As Γψ(T ∗M) coincides with the 0-section
outside a compact set, one can extend it to a Lagrangian embedding on the cotangent bundle of
the compactified space Lψ ⊂ T ∗S2n.

In order to properly define Lψ for ψ ∈ Hamc

(
T ∗(Rn ×Tk)

)
, let ψ̃ ∈ HamZk(T ∗(Rn+k)) be

the unique lift of ψ which is also lifting the flow (ψs) with ψ̃0 = id. The application Γψ̃ gives a

well-defined Γψ : T ∗(Rn × Tk) ↪→ T ∗(R2n × Tk × Rk). We can then compactify the base space:
R2n ×Tk ×Rk ⊂ B where B equals either S2n ×Tk × Sk or S2n ×T2k and define Lψ ⊂ T ∗B.

In order to define Fψ : B ×RN → R, take any generating function of Lψ normalized such that
the set of critical points outside (R2n × Tk ×Rk) ×RN has critical value 0 (the set is connected
since Lψ coincides with 0-section outside T ∗(R2n ×Tk ×Rk)).

We now extend the construction of Lψ to the case of contactomorphisms. Let Cont0(J1M) be
the set of contactomorphisms isotopic to identity through compactly supported contactomorphisms.
Given any ψ ∈ Hamc (T ∗M), its lift

ψ̂ : J1M → J1M, ψ̂(x, z) = (ψ(x), z + aψ(x))

belongs to Cont0(J1M), where aψ : T ∗M → R is the compactly supported function satisfying

ψ∗λ− λ = daψ.

In [3], Bhupal gives a mean to define a generating function Fφ associated to such contactomorphism

φ forM = Rn×Tk in a way which is compatible with ψ 7→ ψ̂ in the sense that Fψ̂(q, z; ξ) = Fψ(q; ξ).

Given any φ ∈ Cont0(J1Rn) with φ∗( dz − λ) = eθ( dz − λ),

ĝrφ : J1Rn → J1Rn × J1Rn ×R, ĝrφ(x) = (x, φ(x), θ(x))

is a Legendrian embedding if we endow J1Rn×J1Rn×R with the contact structure ker(eθ( dz−λ)−
( dZ−Λ)), where (q, p, z;Q,P,Z; θ) denotes coordinates on J1Rn×J1Rn×R and Λ =

∑
i Pi dQi.

For our choice of τ , we must take the following contact identification

τ̂ : J1Rn × J1Rn ×R→ J1R2n+1,

τ̂(q, p, z;Q,P,Z; θ) =

(
q +Q

2
,
eθp+ P

2
, z;P − eθp, q −Q, eθ − 1;

1

2
(eθp+ P )(q −Q) + Z − z

)
so that Γφ := τ̂ ◦ ĝrφ is an embedding of a Legendrian compactly isotopic to the 0-section of

J1R2n+1. The construction of Γφ descends well from Rn+k to Rn × Tk taking the lift of φ ∈
Cont0(J1(Rn ×Tk)) which is contact-isotopic to identity.

In fact we will rather be interested by T ∗M×S1 ' J1M/Z ∂
∂z and φ ∈ Cont0(T ∗M×S1) which

can be identified to the set of Z ∂
∂z -equivariant contactomorphism of J1M isotopic to identity. The

construction descends well to the last quotient and we obtain a well-defined Legendrian embedding
Γφ : T ∗(Rn ×Tk)× S1 ↪→ J1

(
R2n ×Tk ×Rk × S1

)
.

We can then compactify the base space R2n×Tk×Rk×S1 ⊂ B×S1, define Lψ ⊂ J1(B×S1)
and take as Fφ any generating function of Lφ normalized such that the set of critical points outside
(R2n ×Tk ×Rk × S1)×RN has critical value 0.

3.4 Symplectic and contact invariants

The symplectic invariants presented here are due to Viterbo [19]. The generalization to the contact
case is due to Sandon [13].

throughout this subsection, B denotes a compactification of T ∗(Rn × Tk). Given any ψ ∈
Hamc

(
T ∗(Rn ×Tk)

)
and any non-zero α ∈ H∗(B), consider

c(α,ψ) := c (α, Fψ) .

9



Proposition 3.6 (Viterbo, [19, Prop. 4.2, Cor. 4.3, Prop. 4.6]). Let (ψt) be a compactly supported
Hamiltonian isotopy of T ∗(Rn×Tk) with ψ0 = id and ψ := ψ1. Let Ht : T ∗(Rn×Tk)→ R be the
Hamiltonians generating (ψt). Given any non-zero α ∈ H∗(B),

1. There is a one-to-one correspondence between critical points of F and fixed points x of ψ
such that t 7→ ψt(x) is a contractible loop when t ∈ [0, 1] given by (x, ξ) 7→ x. Moreover, if
(xα, ξα) ∈ crit(Fψ) satisfies Fψ(xα, ξα) = c(α, Fψ), then

c(α,ψ) = aψ(xα) =

∫ 1

0

(〈p(t), q̇(t)〉 −Ht(ψt(xα))) dt,

where (q(t), p(t)) := ψt(xα). The value aψ(x) will be called the action of the fixed point x.

2. If Ht ≤ 0, then c(α,ψ) ≥ 0.

3. If (ϕs) is a symplectic isotopy of T ∗(Rn ×Tk), then s 7→ c(α,ϕs ◦ ψ ◦ (ϕs)−1) is constant.

4. If µ is the orientation class of B,

c(1, ψ) ≤ 0 ≤ c(µ, ψ) with c(1, ψ) = c(µ, ψ) ⇔ ψ = id,

c(µ, ψ) = −c(1, ψ−1).

These results were not stated with this generality in [19] but the proofs given by Viterbo
immediately generalize to this setting.

Given any open bounded subset U ⊂ T ∗(Rn × Tk) and any non-zero α ∈ H∗(B), Viterbo
defines the symplectic invariant

c(α,U) := sup
ψ∈Hamc(U)

c(α,ψ).

This symplectic invariant extends to any unbounded open set U ⊂ T ∗(Rn × Tk) by taking the
supremum of the c(α, V ) among the open bounded subsets V ⊂ U .

Proposition 3.7 (Bustillo, Viterbo). For all open bounded sets U, V ⊂ T ∗(Rn × Tk) and any
non-zero α ∈ H∗(B),

1. if (ϕs) is a symplectic isotopy of T ∗(Rn ×Tk), then s 7→ c(α,ϕs(U)) is constant,

2. U ⊂ V implies c(α,U) ≤ c(α, V ),

3. if µ1 and µ2 are the orientation classes of the compactification of T ∗(Rn × Tk) and Rk

respectively, then for any neighborhood W of 0 ∈ Rk,

c(µ1, U) 6 c(µ1 ⊗ µ2 ⊗ 1, U ×W ×Tk).

4. if B2n+2k
r ⊂ T ∗(Rn×Tk) is an embedded round ball of radius r and µ is the orientation class

of B, then c(µ,B2n+2k
r ) = πr2.

Proof. Point (1) is a consequence of Proposition 3.6 (3). Point (2) is a consequence of the definition
as a supremum. Point (3) is proved in the proof of [4, Prop. 2.3]. Indeed, Bustillo makes use of
(3) to deduce his Proposition 2.3 by taking the infimum of c(µ1 ⊗ µ2 ⊗ 1, U × V × Tk) among
neighborhoods U ⊃ X and W ⊃ {0} (using Bustillo’s notations). We refer to [1, Sect. 3.8] for a
complete proof of (4).

Now, we give the contact extension of these invariants. Given any φ ∈ Cont0

(
T ∗(Rn ×Tk)× S1

)
and any non-zero α ∈ H∗(B × S1), consider

c(α, φ) := c (α, Fφ) .

The following Proposition is due to Sandon. Since our setting is slightly different, we provide
precise references for the reader’s convenience.
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Proposition 3.8 (Sandon, [13]). 1. Given any φ ∈ Cont0(T ∗(Rn × Tk)× S1), if µ is the ori-
entation class of B × S1, then

c(µ, φ) = 0 ⇔ c(1, φ−1) = 0.

2. Given any φ ∈ Cont0(T ∗(Rn × Tk) × S1) and any non-zero α ∈ H∗(B × S1), if Fφ is a
generating function of φ, then ⌈

c
(
α, φ−1

)⌉
= dc (α,−Fφ)e .

3. Given any φ ∈ Cont0(T ∗(Rn×Tk)×S1), any non-zero α ∈ H∗(B×S1), if (ψs) is a contact
isotopy of T ∗(Rn ×Tk)× S1, then s 7→ dc(α,ψs ◦ φ ◦ (ψs)−1)e is constant.

4. For each ψ ∈ Hamc(T
∗(Rn × Tk)) for each non-zero cohomology class α ∈ H∗(B), if dz

denotes the orientation class of S1, then

c
(
α⊗ 1, ψ̂

)
= c

(
α⊗ dz, ψ̂

)
= c (α,ψ) .

Proof. Let Fφ be the generating function of φ ∈ Cont0(T ∗(Rn × Tk)× S1). According to duality
formula in Proposition 3.4 (3), c(µ, φ) = −c(1,−Fφ). Points (1) and (2) then follow from [13,
lemmas 3.9 and 3.10] taking L = 0-section and Ψ = τ̂ ◦ ĝrφ−1 ◦ τ̂−1:

c(1, Fφ−1) = 0 ⇔ c(1,−Fφ) = 0

and ⌈
c
(
1, Fφ−1

)⌉
= dc (1,−Fφ)e .

Point (3) is a consequence of [13, lemma 3.15] applied to ct = c(α,ψt ◦ φ ◦ (ψt)−1). Point (4)

is given by the proof of [13, Prop. 3.18]. Indeed, let ia : (Ea, E−∞) ↪→ (E∞, E−∞) and ĩa :

(Ẽa, Ẽ−∞) ↪→ (Ẽ∞, Ẽ−∞) be the inclusion maps of sublevel sets of Fψ and Fψ̂ respectively. Then

Ẽa = Ea × S1 and, after identifying H∗(Ẽa, Ẽ−∞) with H∗(Ea, E−∞) ⊗ H∗(S1), the induced

maps in cohomology ĩa
∗

is given by

ĩa
∗

= i∗a ⊗ id.

Thus ĩa
∗
(α⊗ β) = (i∗aα)⊗ β is non-zero if and only if i∗aα is non-zero, where β ∈ {dz, 1}.

Let µ be the orientation class of B×S1, given any open bounded subset U ⊂ T ∗(Rn×Tk)×S1

and any non-zero α ∈ H∗(B × S1), consider

c(α,U) := sup
φ∈Cont0(U)

dc(α, φ)e

and

γ(U) := inf
{⌈
c
(
µ, φ

)⌉
+
⌈
c
(
µ, φ−1

)⌉
| φ ∈ Cont0

(
T ∗(Rn ×Tk)× S1

)
such that φ(U) ∩ U = ∅

}
,

These contact invariants extend to any unbounded open set U ⊂ T ∗(Rn ×Tk)× S1 by taking the
supremum among the open bounded subsets V ⊂ U .

Proposition 3.9 (Sandon [13]). For all open bounded sets U, V ⊂ T ∗(Rn × Tk) × S1 and any
non-zero α ∈ H∗(B × S1),

1. if (ϕs) is a contact isotopy of T ∗(Rn ×Tk)× S1, then s 7→ c(α,ϕs(U)) is constant,

2. U ⊂ V implies c(α,U) ≤ c(α, V ),

3. given any open subset W ⊂ T ∗(Rn ×Tk), for each non-zero class β ∈ H∗(B), if dz denotes
the orientation class of S1, then

c(β ⊗ dz,W × S1) = dc(β,W )e.

Proof. Point (1) is a direct consequence of Proposition 3.8 (3). Point (2) is a consequence of the
definition as a supremum. Point (3) follows from the proof of [13, Prop. 3.20]. Indeed, inequality
c(β ⊗ dz,W × S1) ≥ dc(β,W )e is due to Proposition 3.8 (4) whereas the other one is due to the

fact that, for all φ ∈ Cont0(W × S1), one can find ψ ∈ Hamc(W ) such that φ ≤ ψ̂ in Sandon’s
notations (see her proof for more details).

11
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Figure 1: Configuration in the plane P

4 Some properties of symplectic and contact invariants

4.1 Estimation of γ
(
T ∗C ×B2n−2

R × S1
)

Here, we will prove the following

Lemma 4.1. Let R > 0 be such that πR2 6∈ Z, b > 0, n > 1 and C := R/dZ. Then

γ
(
T ∗C ×B2n−2

R × S1
)
≤
⌈
πR2

⌉
.

Remark 4.2. This Lemma fails for n = 1. The use of Lemma 4.1 will be the step where we will
need the assumption that 2n+ 1 > 3 in the proof of Theorem 1.1.

In order to prove Lemma 4.1, we will need the following elementary fact:

Lemma 4.3. Let x0 ∈ ∂B2n−2
R , x ∈ B2n−2

R and r := |x− x0|. We set θ(r) ∈ [0, π] to be such that

cos

(
θ(r)

2

)
=

r

2R

Then any rotation ρ : R2n−2 → R2n−2 of angle θ(r) centered at x0 sends x outside B2n−2
R , i.e.

ρ(x) 6∈ B2n−2
R .

Proof. Let x0 ∈ ∂B2n−2
R , x ∈ B2n−2

R and r := |x − x0|. Take any rotation ρ : R2n−2 → R2n−2 of
angle θ(r), where θ(r) is defined as above. Let P ⊂ R2n−2 be the affine plane spanned by x0, x
and ρ(x). The round disk B2n−2

R ∩ P has a radius smaller than R and lies in an open round disk
D of radius R with x0 ∈ ∂D centered at c ∈ P . Therefore, it is enough to show that ρ(x) 6∈ D.
Let a, a′ be the two points of ∂D ∩ ∂B2n−2

r (x0), b be the second point of ∂D ∩ (x0c) and α be the

unoriented angle âx0a′ ∈ [0, π] (see Figure 1). As [x0b] is a diameter of ∂D, the triangle abx0 is

right at a, thus α
2 = âx0b satisfies

cos
(α

2

)
=
ax0

bx0
=

r

2R
.

Hence, α = θ(r) and ρ(x) 6∈ D.

Proof of Lemma 4.1. We exhibit a family of ψε ∈ Hamc(R
2n−2) satisfying

• ψε
(
B2n−2
R

)
∩B2n−2

R = ∅,

• c(1, ψε) = 0,

• ∀ε > 0, c(µ, ψε) ≤ πR2 + ε,
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πR2 + ε

4R2 4R2 + δ

h+ ε
2

hε

0

ε
2

δ 4R2 − δ

Figure 2: Approximating h+ ε
2

by a smooth compactly supported hε.

where µ is the orientation class of the compactified space S2n−2. Consider the radial Hamiltonian
H(x) = −h(r2) where h : [0,+∞)→ R is defined by:

h(u) =
1

2

∫ 4R2

0

θ(
√
v) dv − 1

2

∫ min(u,4R2)

0

θ(
√
v) dv

If ψ designates the time-1-flow associated to H, for all r ∈ [0, R] and any x ∈ B2n−2
R such that

|x| = r, ψ(x) is the image of x by some 0-centered rotation of angle −2h′(r2) = θ(r). Thus
ψ(x) 6∈ B2n−2

R and ψ(B2n−2
R )∩B2n−2

R = ∅. Nevertheless, ψ is not well defined as H is not smooth
in the neighborhood of x = 0 and |x| = 2R. For every small ε > 0, we then construct a family
of smooth hε : [0,+∞) → R approximating h in the following way (see Figure 2): there exists
δ = δ(ε) ∈ (0, 2R2) such that

• hε is compactly supported on [0, 4R2 + δ],

• h′(u) ≤ h′ε(u) ≤ π
2 for all u ∈ [0,+∞),

• hε(u) = πR2 + ε− π
2u for all u ∈

[
0, δ2
]
,

• hε(u) = h(u) + ε
2 for all u ∈ [δ, 4R2 − δ].

Hamiltonians Hε(x) := −hε(|x|2) are smooth functions so their time-1-flow ψε are well defined.
As Hε ≤ 0, c(1, ψε) = 0. The only fixed point with non-zero action is 0 so c(µ, ψ) ≤ −Hε(0) =
−H(0) + ε (0 has action −Hε(0)) and

−H(0) = h(0) =
1

2

∫ 4R2

0

θ(
√
v) dv + ε.

Changing the variable x =
√
v

2R and writing θ(s) = 2 arccos
(
s

2R

)
,

1

2

∫ 4R2

0

θ(
√
v) dv = 8R2

∫ 1

0

x arccos(x) dx

Then, an integration by parts and writing x = sinα give∫ 1

0

x arccos(x) dx =
1

2

∫ 1

0

x2

√
1− x2

dx =
1

2

∫ π
2

0

sin2 α dα =
π

8
,

thus c(µ, ψε) ≤ πR2 + ε as expected.
Now, from the family ψε we deduce a second, ϕε ∈ Hamc(T

∗C ×R2n−2), satisfying:

1. ϕε
(
C ×

(
− 1
ε ,

1
ε

)
×B2n−2

R

)
∩
(
C ×

(
− 1
ε ,

1
ε

)
×B2n−2

R

)
= ∅,
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2. c(1, ϕε) = 0,

3. ∀ε > 0, c(µ, ϕε) ≤ πR2 + ε,

where µ is the orientation class of the compactified space C×S1×S2n−2. Let Uε := C×
(
− 1
ε ,

1
ε

)
×

B2n−2
R and χ : R→ [0, 1] be a smooth compactly supported function with χ|[− 1

ε ,
1
ε ]
≡ 1. We then

introduce the compactly supported negative Hamiltonians Kε : C ×R×R2n−2 → R defined by:

Kε(q1, p1, x) := χ(p1)Hε(x), ∀(q1, p1, x) ∈ C ×R×R2n−2,

so that ϕε(q1, p1, x) = (q1, p1, ψ
ε(x)) for p1 ∈

(
− 1
ε ,

1
ε

)
, thus ϕε(Uε)∩Uε = ∅ as wanted. Moreover,

since Kε is negative, c(1, ϕε) = 0. The function χ can be chosen so that it is even and decreasing
inside suppχ∩ ( 1

ε ,+∞) with an arbitrarily small derivative. For |p1| > 1
ε and (q1, p1, x) ∈ suppϕε,

the q1-coordinate of ϕε(q1, p1, x) is thus slightly different from q1. Thus, the only fixed points with
a non-zero action are the (q1, p1, 0)’s for |p1| ≤ 1

ε . The action is still given by −Kε(0) = h(0) + ε =
πR2 + ε, thus c(µ, ϕε) ≤ πR2 + ε.

Take the contact lift of the previous family: ϕ̂ε ∈ Cont0(T ∗C ×R2n−2 × S1). Property (1) of
ϕε implies

ϕ̂ε
(
C ×

(
−1

ε
,

1

ε

)
×B2n−2

R × S1

)
∩
(
C ×

(
−1

ε
,

1

ε

)
×B2n−2

R × S1

)
= ∅. (4)

On the one hand, Proposition 3.8 (4) and property (2) of ϕε gives

c
(
1, ϕ̂ε

)
= c(1, ϕε) = 0.

Thus, if dz denotes the orientation class of S1, Proposition 3.8 (1) gives

c
(
µ⊗ dz,

(
ϕ̂ε
)−1
)

= 0. (5)

On the other hand, Proposition 3.8 (4) and property (3) of ϕε gives,

c
(
µ⊗ dz, ϕ̂ε

)
= c(µ, ϕε) ≤ πR2 + ε. (6)

Equations (5) and (6) then imply⌈
c
(
µ⊗ dz, ϕ̂ε

)⌉
+
⌈
c
(
µ⊗ dz,

(
ϕ̂ε
)−1
)⌉
≤
⌈
πR2 + ε

⌉
.

Thus, since ϕ̂ε verifies (4),
γ
(
Uε × S1

)
≤
⌈
πR2 + ε

⌉
.

Since πR2 6∈ Z, x 7→ dxe is continuous at πR2 and any open bounded set V ⊂ T ∗C ×B2n−2
R × S1

is included in Uε × S1 for a small ε, we conclude that

γ
(
T ∗C ×B2n−2

R × S1
)
≤
⌈
πR2

⌉
.

4.2 Linear symplectic invariance

A symplectomorphism ϕ : T ∗(Rn×Tk)→ T ∗(Rn×Tk) will be called linear when it can be lifted
to a linear map ϕ̃ : R2(n+k) → R2(n+k). Throughout this subsection, we fix a linear symplecto-
morphism ϕ : T ∗(Rn ×Tk)→ T ∗(Rn ×Tk) of the form

ϕ(q1, q2) = (ϕ1(q1), ϕ2(q2)), ∀(q1, q2) ∈ R2n+k ×Tk,

for some linear maps ϕ1 : R2n+k → R2n+k and ϕ2 : Tk → Tk. Let B be either S2n ×Tk or S2n+k,
such that B ×Tk is a compactification of T ∗(Rn ×Tk). We denote by µ ∈ H∗(B) the orientation
class of B.
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Proposition 4.4. For any open subset U ⊂ T ∗(Rn × Tk) and for any non-zero α ∈ H∗(Tk), we
have

c(µ⊗ α,ϕ(U)) = c(µ⊗ ϕ∗2α,U).

Proposition 4.4 is a consequence of the following statement:

Lemma 4.5. For any ψ ∈ Hamc(T
∗(Rn ×Tk)) and for any non-zero α ∈ H∗(Tk),

c(µ⊗ α,ψ) = c(µ⊗ ϕ∗2α,ϕ−1 ◦ ψ ◦ ϕ).

In order to prove Lemma 4.5, we will need suitable generating functions for ψ and ϕ−1 ◦ψ ◦ϕ:

Lemma 4.6. Let F1 : B × Tk × RN → R be a generating function of ψ ∈ Hamc(T
∗(Rn × Tk)).

There exists a diffeomorphism ϕ′1 : B → B such that, if Φ : B×Tk×RN → B×Tk×RN denotes
the diffeomorphism Φ(q1, q2; ξ) = (ϕ′1(q1), ϕ2(q2); ξ), then F2 := F1 ◦ Φ is a generating function of
ϕ−1 ◦ ψ ◦ ϕ ∈ Hamc(T

∗(Rn ×Tk)).

Proof of Lemma 4.6. Let ψ ∈ Hamc(T
∗(Rn×Tk)) andR > 0 such that suppψ ⊂ B2n+k

R ×Tk. Since
ϕ1 : R2n+k → R2n+k is linear and invertible, one can find a diffeomorphism ϕ′1 : R2n+k → R2n+k

such that ϕ′1(x) = ϕ1(x) for all x ∈ B2n+k
R ∪ ϕ−1

1 (B2n+k
R ) and ϕ′1(x) = (x1, . . . , x2n+k−1,±x2n+k)

outside some compact set, thus ϕ′1 can naturally be extended into a diffeomorphism ϕ′1 : B → B.
Let F1 : B × Tk × RN → R be a generating function of ψ, we then define the diffeomorphism
Φ : B ×Tk ×RN → B ×Tk ×RN by Φ(q1, q2; ξ) := (ϕ′1(q1), ϕ2(q2); ξ). The function F2 := F1 ◦Φ
is a generating function since ∂F2

∂ξ = ∂F1

∂ξ ◦Φ. Let (q; ξ) ∈ ΣF2 and q0 := (ϕ′1 ×ϕ2)(q). First, let us

assume that q ∈ ϕ−1(B2n+k
R ×Tk) (so q0 = ϕ(q)), since (q0; ξ) ∈ ΣF1

, there exists x0 ∈ T ∗(Rn×Tk)
such that

(q0; ∂qF1(q0; ξ) · v) =

(
x0 + ψ(x0)

2
; 〈J(ψ(x0)− x0), v〉

)
, ∀v ∈ R2(n+k).

Let x = ϕ−1(x0). On the one hand, by linearity of ϕ−1,

q =
x+ ϕ−1 ◦ ψ ◦ ϕ(x)

2
,

on the other hand, ∂qF2(q0; ξ) · v = 〈J(ψ(x0)− x0), ϕ(v)〉 for all v ∈ R2(n+k) and ϕ−1 is a linear
symplectomorphism, thus

∂qF2(q0; ξ) · v =
〈
Jϕ−1(ψ(x0)− x0), v

〉
=
〈
J(ϕ−1 ◦ ψ ◦ ϕ(x)− x), v

〉
, ∀v ∈ R2(n+k).

Now, let us assume that q 6∈ ϕ−1(B2n+k
R ×Tk). If q is at infinity, then ∂qF2(q; ξ) = 0 since dF1 = 0

at any point at infinity. If q ∈ R2n+k × Tk, let x0 ∈ T ∗(Rn × Tk) be associated to q0 as above.

Since x0+ψ(x0)
2 6∈ B2n+k

R ×Tk, necessarily, ψ(x0) = x0 6∈ B2n+k
R ×Tk so ∂qF1(q0; ξ) = 0 and (q0; ξ)

is a critical value of F1. Hence (q; ξ) is a critical value of F2 and

(q; ∂qF2(q; ξ)) = (q; 0) =

(
x+ ϕ−1 ◦ ψ ◦ ϕ(x)

2
; J(ψ(x)− x)

)
,

where x = (ϕ′1 × ϕ2)−1(x0) 6∈ supp(ϕ−1 ◦ ψ ◦ ϕ).
Conversely, if x ∈ T ∗(Rn × Tk), the associated (q; ξ) ∈ ΣF2 is given by ((ϕ′1 × ϕ2)−1(q0); ξ)

where (q0; ξ) ∈ ΣF1
is associated to x0 = (ϕ′1 × ϕ2)(x) ∈ T ∗(Rn ×Tk).

Proof of Lemma 4.5. Let F1 : B ×Tk ×RN → R be a generating function of ψ ∈ Hamc(T
∗(Rn ×

Tk)). Let ϕ′1 : B → B and Φ : B × Tk ×RN → B × Tk ×RN be the diffeomorphisms defined by
Lemma 4.6 such that F2 := F1 ◦ Φ is a generating function of ϕ−1 ◦ ψ ◦ ϕ. Let us denote by E1

and E2 the domains of the generating functions F1 and F2 respectively. For all λ ∈ R, Φ gives a
diffeomorphism of sublevel sets Φ : Eλ2 → Eλ1 . In particular, it induces an homology isomorphism
Φ∗ : H∗(E

λ
2 , E

−∞
2 )→ H∗(E

λ
1 , E

−∞
1 ). We thus have the following commutative diagram:

H l(B ×Tk)

(ϕ′1×ϕ2)∗

��

T1 // H l+q(E∞1 , E−∞1 )

Φ∗

��

i∗1,λ // H l+q(Eλ1 , E
−∞
1 )

Φ∗

��
H l(B ×Tk)

T2 // H l+q(E∞2 , E−∞2 )
i∗2,λ // H l+q(Eλ2 , E

−∞
2 )
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where the Tj ’s denote the isomorphisms induced by the Künneth formula (3) and the i∗j,λ’s are the

morphisms induced by the inclusions ij,λ : (Eλj , E
−∞
j ) ↪→ (E∞j , E

−∞
j ). The commutativity of the

right square is clear. As for the left square, it commutes because π ◦ Φ = (ϕ′1 × ϕ2) ◦ π, where
π : B×Tk×RN → B×Tk is the canonical projection. Let α be a non-zero class of H l(Tk) and µ
be the orientation class of H∗(B). Since the vertical arrows are isomorphisms, i∗1,λT1(µ⊗α) is non-
zero if and only if i∗2,λT2(ϕ′1×ϕ2)∗(µ⊗α) is non-zero. Since ϕ′1 is a diffeomorphism, (ϕ′1)∗µ = ±µ,
thus (ϕ′1 × ϕ2)∗(µ⊗ α) = ±µ⊗ ϕ∗2α and i∗1,λT1(µ⊗ α) is non-zero if and only if ±i∗2,λT2(µ⊗ ϕ∗2α)
is non-zero. Therefore,

c(µ⊗ α, F1) = c(µ⊗ ϕ∗2α, F2).

4.3 Reduction lemma

In this subsection, we work on the space T ∗(Rm ×Tl ×Tk)× S1 and the points in this space will
be denoted by (q, p, z), where q = (q1, q2) ∈ (Rm ×Tl)×Tk and p = (p1, p2) ∈ Rm+l ×Rk. Let B
be a compactification of T ∗(Rm ×Tl). Given any open set U ⊂ T ∗(Rm ×Tl ×Tk)× S1 and any
point w ∈ Tk, the reduction Uw ⊂ T ∗(Rm ×Tl)× S1 at q2 = w is defined by

Uw := π(U ∩ {q2 = w}),

where π : T ∗(Rm ×Tl)× {w} ×Rk × S1 → T ∗(Rm ×Tl)× S1 is the canonical projection.

Lemma 4.7. Let µ be the orientation class of B×Sk×S1 and 1 be the generator of H0(Tk). For
any open bounded set U ⊂ T ∗(Rm ×Tl ×Tk)× S1 and any w ∈ Tk,

c(µ⊗ 1, U) ≤ γ(Uw).

It is an extension to the contact case of Viterbo-Bustillo’s reduction lemma [4, Prop. 2.4] and
[19, Prop. 5.2]. We will follow Bustillo’s proof as close as contact structure allows us to do.

Let µ be the orientation class of B × Sk × S1 and 1 be the generator of H0(Tk) and fix an
open bounded set U ⊂ T ∗(Rm × Tl × Tk) × S1 and a point w ∈ Tk. Remark that one can write
µ = µ1 ⊗ µ2, where µ1 and µ2 are the orientation classes of B × S1 and Sk respectively. By
definition of the contact invariants, it is enough to show that, given any ψ ∈ Cont0(U) and any
ϕ ∈ Cont0(T ∗(Rm ×Tl)× S1) such that ϕ(Uw) ∩ Uw = ∅,

dc(µ⊗ 1, ψ)e ≤
⌈
c
(
µ1, ϕ

)⌉
+
⌈
c
(
µ1, ϕ

−1
)⌉
.

Thus, we fix a contact isotopy ψt defined on T ∗(Rm ×Tl ×Tk)× S1 and compactly supported in
U such that ψ0 = id and ψ1 =: ψ ∈ Cont0(U) and we fix a contactomorphism ϕ ∈ Cont0(T ∗(Rm×
Tl)×S1) such that ϕ(Uw)∩Uw = ∅. Let F t : (B×Sk×Tk×S1)×RN → R be a continuous family
of generating functions for the Legendrians Lt := Lψt ⊂ J1(B×Sk×Tk×S1) given by Theorem 3.3,

F := F 1 and K : (B×S1)×RN ′ → R be a generating function of ϕ. By the uniqueness statement
of Theorem 3.3, one may suppose that F 0(x; ξ) = Q(ξ) where Q : RN → R is a non-degenerated
quadratic form without loss of generality. Recall that F tw : (B × Sk × S1) × RN → R denotes

the function F tw(q1, p, z; ξ) := F t(q1, w, p, z; ξ) and let K̃ : (B × Sk × S1) × RN ′ → R be the

generating function defined by K̃(x, y, z; η) := K(x, z; η). In order to prove Lemma 4.7, we will
use the following

Lemma 4.8. Given t ∈ [0, 1], let ct := c(µ, F tw − K̃) which is a continuous R-valued function.
Then we have the following alternative:

• either ∀t ∈ [0, 1], ct 6∈ Z

• or ∃` ∈ Z such that ∀t ∈ [0, 1], ct = `.

In particular, ⌈
c
(
µ,−K̃

)⌉
=
⌈
c
(
µ, Fw − K̃

)⌉
.
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Proof of Lemma 4.8. The reduced function F tw generates Ltw ⊂ J1(B × Sk × S1). Lt is the image
of the immersion (plus points in the 0-section at infinity):

Γψt(q, p, z) =

(
q +Qt

2
,
eθ
t

p+ P t

2
, z;P t − eθ

t

p, q −Qt, eθ
t

− 1;
1

2

(
eθ
t

p+ P t
) (
q −Qt

)
+ Zt − z

)
,

writing ψt(q, p, z) = (Qt, P t, Zt). Therefore, Ltw is the set of points (plus points in the 0-section at
infinity):(

q1 +Qt1
2

,
eθ
t

p+ P t

2
, z;P t1 − eθ

t

p1, q −Qt, eθ
t

− 1;
1

2

(
eθ
t

p+ P t
) (
q −Qt

)
+ Zt − z

)

for points (q, p, z) that verify
q2+Qt2

2 = w. In the remaining paragraphs, we will use notations

p = eθp+P
2 and q = q+Q

2 .
Suppose there exists ` ∈ Z and t0 ∈ [0, 1] such that ct0 = `. Then it is enough to prove that

t 7→ ct is locally constant. In order to do so, we will follow Bustillo’s proof [4, lemma 2.8]. Let(
qt01 , p

t0 , zt0 ; ξt0 , ηt0
)

be the critical point of

(F t0w − K̃)(q1, p, z; ξ, η) = F t0(q1, w, p, z; ξ)−K(q1, p1, z; η)

associated to the min-max value ct0 = `. By continuity of the min-max critical point, we may
suppose that K is a Morse function in some neighborhood of

(
qt01 , p

t0
1 , z

t0 ; ηt0
)

by perturbing K

without changing its value at this point. Writing xt0 :=
(
qt01 , p

t0 , zt0
)
, such a critical point verifies

∂F t0w
∂x

=
∂K̃

∂x
and

∂F t0w
∂ξ

=
∂K̃

∂η
= 0.

These equations define two points (xt0 , ∂xF
t0
w , F

t0
w ) = (xt0 , ∂xK̃, F

t0
w ) ∈ Lt0w and (xt0 , ∂xK̃, K̃) ∈

Lϕ × 0T∗Sk which only differ in the last coordinate by a ` ∂∂a factor:

(
xt0 , ∂xF

t0
w , F

t0
w

)
=
(
xt0 , ∂xK̃, K̃ + `

)
=
(
xt0 , ∂xK̃, K̃

)
+ `

∂

∂a
.

We will denote by (qt0 , pt0 , zt0) ∈ T ∗(Rm×Tk+l)×S1 the point whose image is Γψt0 (qt0 , pt0 , zt0) =

((qt01 , w, p
t0 , zt0 ; ξt0), ∂xF

t0 , F t0) and we will denote (Qt0 , P t0 , Zt0) = ψt0(qt0 , pt0 , zt0). Since (xt0 , ∂xK̃, K̃) ∈
Lϕ × 0T∗Sk , ∂p2K̃ = 0 so qt02 = Qt02 (= w).

Remark that ϕ(Uw)∩Uw = ∅ together with (xt0 , ∂xF
t0
w , F

t0
w ) ∈

(
Lϕ + ` ∂∂a

)
×0T∗Sk implies that

either
(
qt01 , p

t0
1 , z

t0
)
6∈ Uw or

(
Qt01 , P

t0
1 , Zt0

)
6∈ Uw. In order to see it, we go back to the definition of

generating function on T ∗(Rm×Tl)×S1 given in Subsection 3.3. Let π : J1Rm+l → T ∗(Rm×Tl)×
S1 be the quotient projection and consider the Zl × Z-equivariant lift of ϕ: ϕ̃ ∈ Cont(J1Rm+l)

and Ũw := π−1(Uw) ⊂ J1Rm+l. Since ϕ(Uw) ∩ Uw = ∅, we have that ϕ̃(Ũw) ∩ Ũw = ∅ so

Lϕ̃ ∩ τ̂(Ũw × Ũw × R) = ∅. But Ũw + ∂
∂z = Ũw and τ̂(x,X + ∂

∂z , θ) = τ̂(x,X, θ) + ∂
∂a for all

(x,X, a) ∈ J1Rm+l × J1Rm+l ×R, intersection Lϕ̃ ∩ τ̂(Ũw × Ũw ×R) = ∅ is thus equivalent to(
Lϕ̃ + `

∂

∂a

)
∩ τ̂

(
Ũw × Ũw ×R

)
= ∅

(definition of τ̂ : J1Rm+l × J1Rm+l ×R→ J1R2(m+l)+1 is given in Subsection 3.3). Hence, given

any point (u, v, a) ∈ Lϕ̃+` ∂∂a , the corresponding (x,X, θ) = τ̂−1(u, v, a) verifies that either x 6∈ Ũw
or X 6∈ Ũw. This property descends to quotient: (xt0 , ∂xF

t0
w , F

t0
w ) ∈

(
Lϕ + ` ∂∂a

)
× 0T∗Sk implies

that either (qt01 , p
t0
1 , z

t0) 6∈ Uw or (Qt01 , P
t0
1 , Zt0) 6∈ Uw.

Since qt02 = Qt02 = w, it follows that either (qt0 , pt0 , zt0) 6∈ U or (Qt0 , P t0 , Zt0) 6∈ U . Since ψt0
has its support in U , they both imply that(

Qt0 , P t0 , Zt0
)

= ψt0
(
qt0 , pt0 , zt0

)
=
(
qt0 , pt0 , zt0

)
6∈ U.
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Hence, (qt0 , pt0 , zt0) is outside the support of ψt0 , thus, the associated point (qt01 , w, p
t0 , zt0 ; ξt0) ∈

ΣF t0 is critical of value F t0(qt01 , w, p
t0 , zt0 ; ξt0) = 0. Thus, we have seen thatmt0 :=

(
qt01 , p

t0 , zt0 ; ξt0 , ηt0
)

verifies
∂F t0w
∂x

=
∂K̃

∂x
= 0,

∂F t0w
∂ξ

=
∂K̃

∂η
= 0 and F t0w = 0,

so it is a critical point of −K̃, as wished, with the same critical value −K̃ = F t0w − K̃.

Let t 7→ mt be the continuous path of critical value of t 7→ F tw − K̃ obtained by min-max. It

remains to show that ct = (F tw − K̃)(mt) is equal to ` in some neighborhood of t0. Since K̃ does
not depend on ξ,

∂F t

∂ξ

(
qt1, w, p

t, zt; ξt
)

= 0

so the point (qt1, w, p
t, zt; ξt) remains inside the level set ΣF t . If H : [0, 1]× (T ∗(Rm ×Tl ×Tk)×

S1)→ R denotes the compactly supported Hamiltonian map associated to (ψt),

ιF t0
(
qt01 , w, p

t0 , zt0 ; ξt0
)
∈ U c ⊂ (suppH)c,

and (suppH)c is an open set so, for all t in a small neighborhood of t0, ιF t (qt1, w, p
t, zt; ξt) ∈

(suppH)c thus F t (qt1, w, p
t, zt; ξt) = 0 and (qt1, p

t, zt; ξt) remains a critical point of F tw. Thus, in

a small neighborhood of t0, since mt is a critical point of F tw − K̃ and F tw (with a slight abuse
of notation), t 7→ (qt1, p

t
1, z

t; ηt) is a continuous path of critical value for K. But K is a Morse
function in some neighborhood of

(
qt01 , p

t0
1 , z

t0 ; ηt0
)
, thus this continuous path is constant and

K (qt1, p
t
1, z

t; ηt) ≡ −`.
Finally, we have seen that, in some neighborhood of t0, F t (qt1, w, p

t, zt; ξt) ≡ 0 andK (qt1, p
t
1, z

t; ηt) ≡
−`, thus

ct = F t
(
qt1, w, p

t, zt; ξt
)
−K

(
qt1, p

t
1, z

t; ηt
)
≡ `.

In particular, since t 7→ dcte is constant, one has⌈
c
(
µ, F 0

w − K̃
)⌉

=
⌈
c
(
µ, F 1

w − K̃
)⌉
.

But F 0
w(x; ξ) = Q(ξ) where Q is a non-degenerated quadratic form, so F 0

w − K̃ is a stabilization of

the generating function −K̃, thus Proposition 3.4 (1) implies c(µ, F 0
w − K̃) = c(µ,−K̃).

Proof of Lemma 4.7. By Proposition 3.5 (1),

c(µ⊗ 1, ψ) := c(µ⊗ 1, F ) ≤ c(µ, Fw).

The triangular inequality of Proposition 3.4 (2) applied to µ = µ ^ 1 gives us

c
(
µ, Fw

)
≤ c

(
µ, Fw − K̃

)
− c

(
1,−K̃

)
.

By Proposition 3.4 (3) and Proposition 3.5 (2), we have −c(1,−K̃) = c(µ, K̃) = c(µ1,K). Hence

c
(
µ⊗ 1, ψ

)
≤ c

(
µ, Fw − K̃

)
+ c
(
µ1,K

)
,

and thus, ⌈
c
(
µ⊗ 1, ψ

)⌉
≤
⌈
c
(
µ, Fw − K̃

)⌉
+
⌈
c
(
µ1,K

)⌉
.

According Lemma 4.8, dc(µ, Fw − K̃)e = dc(µ,−K̃)e so⌈
c
(
µ⊗ 1, ψ

)⌉
≤
⌈
c
(
µ,−K̃

)⌉
+
⌈
c
(
µ1,K

)⌉
.

Since K generates ϕ, dc(µ1,−K)e = dc(µ1, ϕ
−1)e, according to Proposition 3.8 (2). Thus Propo-

sition 3.5 (2) gives dc(µ,−K̃)e = dc(µ1, ϕ
−1)e. Finally, by definition, c(µ1,K) = c(µ1, ϕ).
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PR

PR + ∂
∂qn

τ1/4

τ3/4

φ1

φ̃−1

Figure 3: Construction of ψ1.

5 Contact camel theorem

In this section, we will prove Theorem 1.1. We work on the space R2n×S1 in dimension 2n+1 > 3,
we denote by q1, p1, . . . , qn, pn, z coordinates on R2n × S1 so that the Liouville form is given by
λ = p dq := p1 dq1 + · · ·+ pn dqn and the standard contact form of R2n × S1 is α = p dq− dz. Let
τt(x) = x+t ∂

∂qn
be the contact Hamiltonian flow of R2n×S1 associated to the contact Hamiltonian

(t, x) 7→ pn.

Lemma 5.1. Let R and r be two positive numbers and B2n
R ×S1 ⊂ P−×S1. If there exists a contact

isotopy (φt) of (R2n × S1, α) supported in [−c/8, c/8]2n × S1 for some c > 0 such that φ0 = id,
φ1(B2n

R × S1) ⊂ P+ × S1 and φt(B
2n
R × S1) ⊂ (R2n \ Pr) × S1 for all t ∈ [0, 1], then there exists

a smooth family of contact isotopy s 7→ (ψst ) with ψst ∈ Cont(R2n × S1) and ψs0 = id associated to
a smooth family of contact Hamiltonians s 7→ (Hs

t ) supported in [−c/8, c/8]2n−2 ×R2 × S1 , such
that, for all s ∈ [0, 1], all t ∈ R and all x ∈ R2n × S1,

ψsc(x) = x+ c
∂

∂qn
, (7)

ψst

(
x+ c

∂

∂qn

)
= ψst (x) + c

∂

∂qn
, ∀t ∈ R (8)

ψst+c = ψsc ◦ ψst . (9)

Moreover, for all t ∈ R, ψ0
t = τt whereas ψt := ψ1

t satisfies

ψt
(
B2n
R × S1

)
⊂

(
R2n \

⋃
k∈Z

(
Pr + kc

∂

∂qn

))
× S1, ∀t ∈ R. (10)

Proof. Assume there exists such a (φt). Let Kt : R× (R2n×S1)→ R be the compactly supported
contact Hamiltonian associated to (φt). By hypothesis, Kt is supported in [−c/8, c/8]2n, thus one
can define its c ∂

∂qn
-periodic extension K ′t : R× (R2n×S1)→ R and the associated contact isotopy

(φ′t). The contactomorphism φ′t : R2n × S1 → R2n × S1 satisfies φ′t

(
x+ c ∂

∂qn

)
= φ′t(x) + c ∂

∂qn
.

For all s ∈ [0, 1], consider the contact isotopy (ψst ) with ψst ∈ Cont(R2n × S1) and ψs0 = id
defined as follow (look also at Figure 3). Given x ∈ R2n, trajectory γ(t) = ψst (x) first follows
t 7→ φ′t(x) from t = 0 to t = s. Then γ follows t 7→ τt(φ

′
s(x)) from t = 0 to t = 1/4. Then

t 7→ φ̃′t(τ1/4 ◦φ′s(x)) from t = 0 to t = s, where (φ̃t) = (τc/4 ◦φ−1
t ◦ τ−1

c/4) is the contact Hamiltonian

flow associated to the translated contact Hamiltonian application K̃ ′t = −K ′s−t ◦ τ−c/4. Finally, γ

follows t 7→ τt(φ̃
′
s ◦ τ1/4 ◦ φ′s(x)) from t = 0 to t = 3/4. We normalize time such that s 7→ ψst gives

an isotopy of smooth contact Hamiltonian flows of c ∂∂t -periodic contact Hamitonians Hs
t .

Identity (7) comes from the fact that ψsc = τ3c/4 ◦ φ̃s ◦ τc/4 ◦ φs and, by definition of (φ̃t),

φ̃s = τc/4 ◦φ−1
s ◦ τ−1

c/4. Identity (8) comes from the fact that contactomorphism ψst is a composition

of c ∂
∂qn

-equivariant contactomorphisms. Identity (9) is implied by c ∂∂t -periodicity of Hamiltonian

Hs
t . Inclusion (10) comes from the hypothesis on the contact isotopy (φt).
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Let r,R > 0 be such that there exists a positive integer ` satisfying πr2 < ` < πR2 and let
B2n
R × S1 ⊂ P− × S1. Suppose by contradiction that there exists a contact isotopy (φt) of (R2n ×

S1, α) supported in [−c/8, c/8]2n × S1 for some c > 0 such that φ0 = id, φ1(B2n
R × S1) ⊂ P+ × S1

and φt(B
2n
R × S1) ⊂ (R2n \ Pr)× S1 for all t ∈ [0, 1]. In order to prove Theorem 1.1, it is enough

to consider r ∈ (` − 1, `). Consider the family of contact isotopy s 7→ (ψst ) given by Lemma 5.1
and denote by (Hs

t ) the associated family of Hamiltonian supported in [−c/8, c/8]2n × R2 × S1.
We define λst : R2n × S1 → R by (ψst )

∗α = λstα. Let us consider:

Ψs : R×R×R2n+1 → R×R×R2n+1,

Ψs(t, h, x) = (t, λst (x)h+Hs
t ◦ ψst (x), ψst (x)).

According to (7), (8) and (9), for all (t, h, x) ∈ R×R×R2n+1,

∀k, l ∈ Z, Ψs

(
t+ lc, h, x+ kc

∂

∂qn

)
= Ψs(t, h, x) + lc

∂

∂t
+ (k + l)c

∂

∂qn
.

Thus Ψs descends to a map Ψs : T ∗C × T ∗(Rn−1 × C) × S1 → T ∗C × T ∗(Rn−1 × C) × S1

where C := R/cZ.

Lemma 5.2. The family s 7→ Ψs is a contact isotopy of the contact manifold (T ∗C × T ∗(Rn−1 ×
C)× S1, ker( dz − p dq + hdt)).

Proof. We write
ψst (q, p, z) = (Qt(q, p, z), Pt(q, p, z), Zt(q, p, z)),

since dZt − Pt dQt = (ψst )
∗( dz − p dq) = λst ( dz − p dq), we have

(Ψs)
∗

( dz − p dq + hdt) = dZt − Pt dQt + Żt dt− PtQ̇t dt+ (λsth+Hs
t ◦ ψst ) dt

= λst ( dz − p dq + hdt) +
(
Żt − PtQ̇t +Hs

t ◦ ψst
)

dt.

But, since Hs
t is the contact Hamiltonian of the isotopy ψst supported in [−c/8, c/8]2n ×R2 × S1,

PtQ̇t − Żt = Hs
t ◦ ψst . Finally,

(Ψs)
∗

( dz − p dq + hdt) = λst ( dz − p dq + hdt).

For technical reasons, we replace T ∗Rn × S1 by its quotient T ∗(Rn−1 × C)× S1 and consider
our B2n

R × S1 inside this quotient (since c can be taken large while R is fixed, this identification is
well defined). Let us consider the linear symplectic map:

L : T ∗C × T ∗(Rn−1 × C)→ T ∗C × T ∗(Rn−1 × C),

L(t, h, x, qn, pn) = (qn − t,−h, x, qn, pn − h)

and denote by L̂ = L× id the associated contactomorphism of T ∗C × T ∗(Rn−1 ×C)× S1. Let us
consider

U := L̂
(
Ψ1
(
T ∗C ×B2n

R × S1
))
.

We compactify the space T ∗C × T ∗(Rn−1 × C) as

C × S1 × S2n−2 × C × S1 ' S2n−2 ×T2 × C2.

Let µ and dz be the orientation class of S2n−2 × T2 and S1 respectively and dqn and dt be the
canonical base of H1(C2).

Lemma 5.3. One has the following capacity inequality:

c (µ⊗ dt⊗ dz,U) ≥
⌈
πR2

⌉
.
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Proof. Let α := µ⊗ dt. Since s 7→ L̂ ◦Ψs is a contact isotopy, Proposition 3.9 (1) implies

c (α⊗ dz,U) = c
(
α⊗ dz, L̂

(
Ψ0
(
T ∗C ×B2n

R × S1
)))

.

But L̂
(
Ψ0
(
T ∗C ×B2n

R × S1
))

= L(Φ0
(
T ∗C ×B2n

R

)
)×S1 where Φ0 : T ∗C×T ∗(Rn−1×C)→

T ∗C × T ∗(Rn−1 × C) is the linear symplectic map:

Φ0(t, h, x, qn, pn) = (t, h+ pn, x, qn + t, pn).

Thus, using Proposition 3.9 (3),

c (α⊗ dz,U) =
⌈
c
(
α,L

(
Φ0
(
T ∗C ×B2n

R

)))⌉
.

In order to conclude, let us show that

c
(
µ⊗ dt, L

(
Φ0
(
T ∗C ×B2n

R

)))
≥ πR2.

By the linear symplectic invariance stated in Proposition 4.4,

c
(
µ⊗ dt, L ◦ Φ0

(
T ∗C ×B2n

R

))
= c

(
µ⊗A∗ dt, T ∗C ×B2n

R

)
,

where A : C2 → C2 is the linear map A(t, qn) = (qn, qn + t). We have A∗ dt = dqn, therefore

c
(
µ⊗ dt, L ◦ Φ0

(
T ∗C ×B2n

R

))
= c

(
µ⊗ dqn, T

∗C ×B2n
R

)
.

The cohomology class µ⊗ dqn can be seen as the tensor product of the orientation class µ1 of the
compactification S2n−2×S1×C of T ∗(Rn−1×C) by the orientation class dh of the compactification
S1 of the h-coordinate and the generator 1 of H0(C) (for the t-coordinate). Indeed, dqn ∈ H1(C2)
can be identify to dqn ⊗ 1 ∈ H1(C)⊗H0(C) (writing also dqn for the orientation class of C by a
slight abuse of notation). Hence, if µS2n−2 and dpn are the orientation classes of S2n−2 and of the
compactification S1 of the pn-coordinate respectively, then

µ⊗ dqn = (µS2n−2 ⊗ dh⊗ dpn)⊗ ( dqn ⊗ 1) = (µS2n−2 ⊗ dqn ⊗ dpn)⊗ dh⊗ 1 = µ1 ⊗ dh⊗ 1.

Now, according to Proposition 3.7 (3),

c
(
1⊗ dh⊗ µ1, C ×R×B2n

R

)
≥ c

(
µ1, B

2n
R

)
.

Finally, Proposition 3.7 (4) implies

c
(
µ⊗ dt, L

(
Φ0
(
T ∗C ×B2n

R

)))
≥ c

(
µ1, B

2n
R

)
= πR2.

Proof of Theorem 1.1. Let us apply Lemma 4.7 with m = n − 1, l = k = 1 and the orienta-
tion class µ ⊗ dt ⊗ dz to the exhaustive sequence of open bounded subsets defined by U (k) :=
L̂
(
Ψ1
(
C × (−k, k)×B2n

R

))
; taking the supremum among k > 0, we find:

c (µ⊗ dt⊗ dz,U) ≤ γ (U0) , (11)

where U0 ⊂ T ∗C × T ∗Rn−1 × S1 is the reduction of U at qn = 0. Now Ψ1
(
T ∗C ×B2n

R × S1
)
⊂

T ∗C ×
⋃
t∈[0,c] ψt(B

2n
R × S1) so

U ⊂ L̂

T ∗C × ⋃
t∈[0,c]

ψt(B
2n
R × S1)

 . (12)

Let V :=
⋃
t∈[0,c] ψt

(
B2n
R × S1

)
∩ {qn = 0} and π : T ∗Rn−1 × {0} × R × S1 → T ∗Rn−1 × S1 be

the canonical projection. Since L̂ does not change the qn-coordinate and coordinates of T ∗Rn−1,
inclusion (12) implies

U0 ⊂ T ∗C × π(V ).
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But (10) implies V ⊂
(
B2n
r (0) ∩ {qn = 0}

)
× S1 and π(B2n

r (0) ∩ {qn = 0}) = B2n−2
r (0), thus

U0 ⊂ T ∗C ×B2n−2
r (0)× S1. (13)

Since πr2 6∈ Z, by Lemma 4.1,

γ
(
T ∗C ×B2n−2

r (0)× S1
)
≤
⌈
πr2
⌉
,

thus, Lemma 5.3, inclusion (13) and inequality (11) gives⌈
πR2

⌉
≤ γ (U0) ≤ γ

(
T ∗C ×B2n−2

r (0)× S1
)
≤
⌈
πr2
⌉
,

a contradiction with πR2 > ` > πr2.
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