Section 2.9: DIMENSION AND RANK

Outline:

1. Coordinate Systems

You're all familiar with, say, the $\{x, y, z\}$ coordinate system. We can use a basis to define other, more convenient coordinate systems.
2. Dimension of a Subspace

Just the number of vectors you need in the basis.
3. Rank

Dimension of the column space.
4. Other Stuff
(a) The Rank Theorem
(b) The Basis Theorem
(c) Even more of the Invertible Matrix Theorem.

Coordinate Systems

Consider the $\{x, y, z\}$ coordinate system for \Re^{3}. It has basis vectors in those directions:

$$
\vec{i}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) ; \quad \vec{j}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) ; \quad \vec{k}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

Any vector \vec{x} in \Re^{3} can be represented as a linear sum of $\{\vec{i}, \vec{j}, \vec{k}\}$.
This notion generalizes: Consider a subspace H. And let $B=$ $\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{p}\right\}$ be a basis for H. Then the coordinates of any vector \vec{x} in H are the coefficients that describe \vec{x} relative to this basis. So, the coordinates are the numbers $\left\{c_{1}, c_{2}, \ldots, c_{p}\right\}$, such that

$$
\vec{x}=c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}+\ldots c_{p} \vec{b}_{p},
$$

and we say that relative to the basis B,

$$
[\vec{x}]_{B}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
\cdot \\
c_{p}
\end{array}\right)
$$

Note: the basis comprises linearly independent vectors. It has just the right amount of vectors you need - not too many (then they would be linearly dependent); not too few (then they would not allow for coordinates for all possible vectors.

Example 1 (\#1)

Find the vector \vec{x} determined by the given coordinate vector $[\vec{x}]_{B}$ and the given basis B.

$$
B=\left\{\binom{1}{1},\binom{2}{-1}\right\}, \quad[\vec{x}]_{B}=\binom{3}{2} .
$$

Example 2 (\#6)

Find the vector \vec{x} in a subspace H with a basis $B=\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$. Find the B-coordinate vector of \vec{x}.

$$
\vec{b}_{1}=\left(\begin{array}{c}
-3 \\
1 \\
-4
\end{array}\right), \quad \vec{b}_{2}=\left(\begin{array}{c}
7 \\
5 \\
-6
\end{array}\right), \quad \vec{x}=\left(\begin{array}{c}
11 \\
0 \\
7
\end{array}\right) .
$$

Dimension of a Subspace

The dimension of a nonzero subspace $H, \operatorname{dim} H$, is the number of vectors in any basis for H. The dimension of the zero subspace $\{\overrightarrow{0}\}$ is defined to be zero.

Example

Let H be the subspace of \Re^{3} corresponding to $\operatorname{Nul} A$ with

$$
A=\left(\begin{array}{ccc}
-3 & 7 & 11 \\
1 & 5 & 0 \\
-4 & -6 & 7
\end{array}\right) \text { row equivalent to }\left(\begin{array}{ccc}
1 & 0 & -5 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

What is the $\operatorname{dim} H$?
(Note - the dimension of a null space has to be the number of free variables in the null space.)

Rank

The $\mathbf{r a n k}$ of a matrix $A, \operatorname{rank} A$, is the dimension of the $\operatorname{Col} A$. (i.e. it's the number of pivot columns in A.)

Example

Consider the matrix:

$$
A=\left(\begin{array}{ccc}
-3 & 7 & 11 \\
1 & 5 & 0 \\
-4 & -6 & 7
\end{array}\right) \text { row equivalent to }\left(\begin{array}{ccc}
1 & 0 & -5 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

What is the rankA? TWO! (The dimension of $\operatorname{Col} A$ is two. There are two pivot columns.)

Note: The Rank Theorem

If a matrix A has n columns, then $\operatorname{rank} A+\operatorname{dim} N u l A=\mathrm{n}$.

* $\operatorname{rank} A$ is same as the number of pivot columns.
* $\operatorname{dim} N u l A$ is the same as the number of free variables, or the number of non-pivot columns.
* So, the theorem....

Basis Theorem

Let H be a p-dimensional subspace of \Re^{n}. Any linearly independent set of exactly p elements in H is automatically a basis for H. Said differently, any set of p elements of H that spans H is automatically a basis for H.

Example (\#14)

Find a basis for the subspace spanned by the given vectors. What is the dimension of the subspace.

$$
A=\left(\begin{array}{c}
1 \\
-1 \\
-2 \\
5
\end{array}\right),\left(\begin{array}{c}
2 \\
-3 \\
-1 \\
6
\end{array}\right),\left(\begin{array}{c}
0 \\
2 \\
-6 \\
8
\end{array}\right),\left(\begin{array}{c}
-1 \\
4 \\
-7 \\
7
\end{array}\right),\left(\begin{array}{c}
3 \\
-8 \\
9 \\
-5
\end{array}\right) .
$$

Invertible Matrix Theorem (continued)

Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.
m . The columns of A form a basis of \Re^{n}.
n. $\operatorname{Col} A=\Re^{n}$.
o. $\operatorname{dim} \operatorname{Col} A=n$.
p. $\operatorname{rank} A=n$.
q. $N u l A=\{\overrightarrow{0}\}$.
r. $\operatorname{dim} N u l A=0$.

