3.2 **Properties of Determinants**

THEOREM 3 Let *A* be a square matrix.

- a. If a multiple of one row of A is added to another row of A to produce a matrix B, then det A = det B.
- b. If two rows of *A* are interchanged to produce *B*, then $\det B = -\det A$.
- c. If one row of A is multiplied by k to produce B, then $\det B = k \cdot \det A$.

EXAMPLE: Compute	1 2 3 4 0 5 0 0 2 7 6 10 2 9 7 11
Solution	$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 0 & 0 \\ 2 & 7 & 6 & 10 \\ 2 & 9 & 7 & 11 \end{vmatrix} = 5 \begin{vmatrix} 1 & 3 & 4 \\ 2 & 6 & 10 \\ 2 & 7 & 11 \end{vmatrix} = 5 \begin{vmatrix} 1 & 3 & 4 \\ 0 & 0 & 2 \\ 2 & 7 & 11 \end{vmatrix}$
$= 5 \begin{vmatrix} 1 & 3 & 4 \\ 0 & 0 & 2 \\ 0 & 1 & 3 \end{vmatrix} = -5 \begin{vmatrix} 1 & 3 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{vmatrix} = ____= __\$	
Theorem 3(c) indicates	that $\begin{vmatrix} * & * & * \\ -2k & 5k & 4k \\ * & * & * \end{vmatrix} = k \begin{vmatrix} * & * & * \\ -2 & 5 & 4 \\ * & * & * \end{vmatrix}$.

EXAMPLE: Compute	2 4 6 5 6 7 7 6 10
-------------------------	--------------------------

Solution

$$\begin{vmatrix} 2 & 4 & 6 \\ 5 & 6 & 7 \\ 7 & 6 & 10 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 7 & 6 & 10 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 & 3 \\ 0 & -4 & -8 \\ 0 & -8 & -11 \end{vmatrix}$$

$$= 2(-4) \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -8 & -11 \end{vmatrix} = 2(-4) \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 5 \end{vmatrix}$$

$$= 2(-4)(1)(1)(5) = -40$$
EXAMPLE: Compute
$$\begin{vmatrix} 2 & 3 & 0 & 1 \\ 4 & 7 & 0 & 3 \\ 7 & 9 & -2 & 4 \\ 1 & 2 & 0 & 4 \end{vmatrix}$$
 using a combination of row reduction and cofactor expansion.
Solution
$$\begin{vmatrix} 2 & 3 & 0 & 1 \\ 4 & 7 & 0 & 3 \\ 7 & 9 & -2 & 4 \\ 1 & 2 & 0 & 4 \end{vmatrix} = -2 \begin{vmatrix} 2 & 3 & 1 \\ 4 & 7 & 3 \\ 1 & 2 & 4 \end{vmatrix} = -2 \begin{vmatrix} 2 & 3 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 4 \end{vmatrix}$$

$$= 2 \begin{vmatrix} 2 & 3 & 1 \\ 1 & 2 & 4 \\ 0 & 1 & 1 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 & 4 \\ 2 & 3 & 1 \\ 1 & 2 & 4 \end{vmatrix}$$

$$= -2 \begin{vmatrix} 1 & 2 & 4 \\ 0 & -1 & -7 \\ 0 & 0 & -6 \end{vmatrix} = -2(1)(-1)(-6) = -12.$$

Suppose *A* has been reduced to
$$U = \begin{bmatrix} \bullet & * & * & \cdots & * \\ 0 & \bullet & * & \cdots & * \\ 0 & 0 & \bullet & \cdots & * \\ 0 & 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \bullet \end{bmatrix}$$
 by row replacements and row interchanges, then
$$\det A = \begin{cases} (-1)^r \begin{pmatrix} \text{product of} \\ \text{pivots in } U \end{pmatrix} & \text{when } A \text{ is invertible} \\ 0 & \text{when } A \text{ is not invertible} \end{cases}$$

THEOREM 4 A square matrix is invertible if and only if $\det A \neq 0$.

THEOREM 5 If *A* is an $n \times n$ matrix, then det $A^T = \det A$.

Partial proof $(2 \times 2 \text{ case})$

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc \quad \text{and}$$
$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{T} = \det \begin{bmatrix} a & c \\ b & d \end{bmatrix} = ad - bc$$
$$\Rightarrow \det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \det \begin{bmatrix} a & c \\ b & d \end{bmatrix}.$$

 $(3 \times 3 \text{ case})$

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$
$$\det \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix} = a \begin{vmatrix} e & h \\ f & i \end{vmatrix} - b \begin{vmatrix} d & g \\ f & i \end{vmatrix} + c \begin{vmatrix} d & g \\ e & h \end{vmatrix}$$

$$\Rightarrow \det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \det \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}.$$

Implications of Theorem 5?

Theorem 3 still holds if the word row is replaced

with ______.

THEOREM 6 (Multiplicative Property)

For $n \times n$ matrices A and B, det(AB) = (det A)(det B).

EXAMPLE: Compute $\det A^3$ if $\det A = 5$.

Solution: $det A^3 = det(AAA) = (det A)(det A)(det A)$

= ______ = _____.

EXAMPLE: For $n \times n$ matrices A and B, show that A is singular if det $B \neq 0$ and det AB = 0.

Solution: Since

 $(\det A)(\det B) = \det AB = 0$

and

 $\det B \neq 0,$

then det A = 0. Therefore A is singular.