3.2 Properties of Determinants

THEOREM 3 Let A be a square matrix.
a. If a multiple of one row of A is added to another row of A to produce a matrix B, then $\operatorname{det} A=\operatorname{det} B$.
b. If two rows of A are interchanged to produce B, then $\operatorname{det} B=-\operatorname{det} A$.
c. If one row of A is multiplied by k to produce B, then $\operatorname{det} B=k \cdot \operatorname{det} A$.

EXAMPLE: Compute $\left|\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 5 & 0 & 0 \\ 2 & 7 & 6 & 10 \\ 2 & 9 & 7 & 11\end{array}\right|$.
Solution

$$
\begin{aligned}
& \left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 5 & 0 & 0 \\
2 & 7 & 6 & 10 \\
2 & 9 & 7 & 11
\end{array}\right|=5\left|\begin{array}{lll}
1 & 3 & 4 \\
2 & 6 & 10 \\
2 & 7 & 11
\end{array}\right|=5\left|\begin{array}{ccc}
1 & 3 & 4 \\
0 & 0 & 2 \\
2 & 7 & 11
\end{array}\right| \\
& =5\left|\begin{array}{lll}
1 & 3 & 4 \\
0 & 0 & 2 \\
0 & 1 & 3
\end{array}\right|=-5\left|\begin{array}{lll}
1 & 3 & 4 \\
0 & 1 & 3 \\
0 & 0 & 2
\end{array}\right|=-
\end{aligned}
$$

Theorem 3(c) indicates that $\left|\begin{array}{ccc}* & * & * \\ -2 k & 5 k & 4 k \\ * & * & *\end{array}\right|=k\left|\begin{array}{ccc}* & * & * \\ -2 & 5 & 4 \\ * & * & *\end{array}\right|$.

EXAMPLE: Compute $\left|\begin{array}{ccc}2 & 4 & 6 \\ 5 & 6 & 7 \\ 7 & 6 & 10\end{array}\right|$

Solution

$$
\begin{gathered}
\left|\begin{array}{ccc}
2 & 4 & 6 \\
5 & 6 & 7 \\
7 & 6 & 10
\end{array}\right|=2\left|\begin{array}{ccc}
1 & 2 & 3 \\
5 & 6 & 7 \\
7 & 6 & 10
\end{array}\right|=2\left|\begin{array}{ccc}
1 & 2 & 3 \\
0 & -4 & -8 \\
0 & -8 & -11
\end{array}\right| \\
=2(-4)\left|\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & -8 & -11
\end{array}\right|=2(-4)\left|\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 5
\end{array}\right| \\
=2(-4)(1)(1)(5)=-40
\end{gathered}
$$

EXAMPLE: Compute $\left|\begin{array}{cccc}2 & 3 & 0 & 1 \\ 4 & 7 & 0 & 3 \\ 7 & 9 & -2 & 4 \\ 1 & 2 & 0 & 4\end{array}\right|$ using a combination of row reduction and cofactor
expansion.
Solution $\left|\begin{array}{cccc}2 & 3 & 0 & 1 \\ 4 & 7 & 0 & 3 \\ 7 & 9 & -2 & 4 \\ 1 & 2 & 0 & 4\end{array}\right|=-2\left|\begin{array}{ccc}2 & 3 & 1 \\ 4 & 7 & 3 \\ 1 & 2 & 4\end{array}\right|=-2\left|\begin{array}{ccc}2 & 3 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 4\end{array}\right|$

$$
\begin{aligned}
& =2\left|\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 4 \\
0 & 1 & 1
\end{array}\right|=-2\left|\begin{array}{lll}
1 & 2 & 4 \\
2 & 3 & 1 \\
0 & 1 & 1
\end{array}\right|=-2\left|\begin{array}{ccc}
1 & 2 & 4 \\
0 & -1 & -7 \\
0 & 1 & 1
\end{array}\right| \\
& =-2\left|\begin{array}{ccc}
1 & 2 & 4 \\
0 & -1 & -7 \\
0 & 0 & -6
\end{array}\right|=-2(1)(-1)(-6)=-12 .
\end{aligned}
$$

Suppose A has been reduced to $U=\left[\begin{array}{ccccc}\square & * & * & \cdots & * \\ 0 & \boldsymbol{\square} & * & \cdots & * \\ 0 & 0 & \square & \cdots & * \\ 0 & 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \boldsymbol{\square}\end{array}\right]$ by row replacements and row
interchanges, then

$$
\operatorname{det} A= \begin{cases}(-1)^{r}\binom{\text { product of }}{\text { pivots in } U} & \text { when } A \text { is invertible } \\ 0 & \text { when } A \text { is not invertible }\end{cases}
$$

THEOREM 4 A square matrix is invertible if and only if $\operatorname{det} A \neq 0$.
THEOREM 5 If A is an $n \times n$ matrix, then $\operatorname{det} A^{T}=\operatorname{det} A$.
Partial proof (2×2 case)

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c \quad \text { and } \\
& \operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{T}=\operatorname{det}\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]=a d-b c \\
& \Rightarrow \operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
\end{aligned}
$$

(3×3 case)

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{cc}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| \\
\operatorname{det}\left[\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right]=a\left|\begin{array}{ll}
e & h \\
f & i
\end{array}\right|-b\left|\begin{array}{ll}
d & g \\
f & i
\end{array}\right|+c\left|\begin{array}{ll}
d & g \\
e & h
\end{array}\right| \\
\Rightarrow \operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=\operatorname{det}\left[\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right] .
\end{gathered}
$$

Implications of Theorem 5?
Theorem 3 still holds if the word row is replaced with \qquad .

THEOREM 6 (Multiplicative Property)

For $n \times n$ matrices A and $B, \operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$.

EXAMPLE: Compute $\operatorname{det} A^{3}$ if $\operatorname{det} A=5$.
Solution: $\quad \operatorname{det} A^{3}=\operatorname{det}(A A A)=(\operatorname{det} A)(\operatorname{det} A)(\operatorname{det} A)$
\qquad $=$ \qquad .

EXAMPLE: For $n \times n$ matrices A and B, show that A is singular if $\operatorname{det} B \neq 0$ and $\operatorname{det} A B=0$.
Solution: Since

$$
(\operatorname{det} A)(\operatorname{det} B)=\operatorname{det} A B=0
$$

and

$$
\operatorname{det} B \neq 0,
$$

then $\operatorname{det} A=0$. Therefore A is singular.

