Variational methods for the study of periodic orbits · Marco Mazzucchelli

## ON THE MORSE INDICES OF FREDHOLM QUADRATIC FORMS

Let  $\mathbb{E}$  be a separable Hilbert space,  $P : \mathbb{E} \to \mathbb{E}$  a positive-definite self-adjoint isomorphism, and  $K : \mathbb{E} \to \mathbb{E}$  a compact self-adjoint linear operator. We consider the quadratic form  $Q : \mathbb{E} \to \mathbb{R}$  given by

$$Q(v) = \langle (P+K)v, v \rangle.$$

We define its nullity  $\operatorname{nul}(Q)$  as the dimension of the kernel of P + K, and its Morse index  $\operatorname{ind}(Q)$  as the maximal dimension of a vector subspace  $\mathbb{E}^- \subset \mathbb{E}$  such that Q(v) < 0 for all non-zero  $v \in \mathbb{E}^-$ .

**Proposition 0.1.** The indices ind(Q) and nul(Q) are both finite.

**Proof.** The operator P + K is Fredholm, since it is a compact perturbation of the isomorphism P (more generally, compact perturbations of Fredholm operators are Fredholm). In particular, the nullity  $nul(Q) = \dim ker(P + K)$  is finite.

We denote by  $\mathbb{E}_{\lambda}$  the eigenspace of K corresponding to the eigenvalue  $\lambda$ , i.e.

$$\mathbb{E}_{\lambda} = \ker(K - \lambda I).$$

The spectral theorem for compact self-adjoint operators tells us that, for  $\lambda \neq 0$ , each eigenspace  $\mathbb{E}_{\lambda}$  is finite dimensional. Moreover, either K has finitely many eigenvalues, or its eigenvalues form an infinite sequence converging to zero. Now, set  $c := \|P^{-1/2}\|^{-2} > 0$ , and notice that  $\langle Pv, v \rangle \geq c \|v\|^2$ . We define the finite dimensional vector subspace

$$\mathbb{F} := \bigoplus_{\lambda < -c} \mathbb{E}_{\lambda},$$

and its orthogonal projector  $\pi : \mathbb{E} \to \mathbb{F}$ . We claim that  $\operatorname{ind}(Q) \leq \dim(\mathbb{F})$ . Indeed, assume by contradiction that there exist linearly independent vectors  $v_1, \ldots, v_n \in \mathbb{E}$  such that  $n > \dim(\mathbb{F})$  and

$$(0.1) Q(v) < 0, \forall v \in \operatorname{span}\{v_1, \dots, v_n\} \setminus \{0\}.$$

If we project these vectors to  $\mathbb{F}$ , we obtain a linearly dependent set. Therefore we can find  $\lambda_1, ..., \lambda_n \in \mathbb{R}$  such that the vector  $v_0 := \lambda_1 v_1 + ... + \lambda_n v_n$  is non-zero and belongs to ker $(\pi)$ . This kernel is the orthogonal complement of  $\mathbb{F}$ , which is

$$\mathbb{F}^{\perp} = \ker(\pi) = \bigoplus_{\lambda \ge -c} \mathbb{E}_{\lambda}.$$

However, notice that  $\langle Kv, v \rangle \geq -c ||v||^2$  for all  $v \in \mathbb{F}^{\perp}$ . This implies

$$Q(v_0) = \langle Pv_0, v_0 \rangle + \langle Kv_0, v_0 \rangle \ge 0,$$

which contradicts (0.1).