TD03 - Riemannian metric, isometries

Exercise 1 (Standard metrics). Let g_0 denote the standard Riemannian metric on \mathbb{R}^n , that is for all $x \in \mathbb{R}^n$, $(g_0)_x$ is the standard Euclidean inner product.

- 1. Are the translations isometries of (\mathbb{R}^n, g_0) ? Define a natural Riemannian metric on the flat torus $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.
- 2. Let $i: \mathbb{S}^n \to \mathbb{R}^{n+1}$ denote the canonical inclusion, we set $g = i^*(g_0)$. Do elements of the orthogonal group $O_{n+1}(\mathbb{R})$ induce isometries of (\mathbb{S}^n, g) ? Define a natural Riemannian metric on the real projective space \mathbb{RP}^n .
- **Exercise 2** (Dimension 1). 1. Let M be a connected smooth manifold without boundary of dimension 1. Are any two Riemannian metrics on M conformal to one another?
 - 2. Same question if $\dim(M) \ge 2$.
 - 3. What are the connected Riemannian manifolds without boundary of dimension 1 up to isometries?