TD12 - More more curvature

Exercise 1. Let us consider normal coordinates (x^1, \ldots, x^n) around some point p in a Riemannian manifold (M, g). Let us denote as usual (g_{ij}) the matrix of g in these coordinates, (Γ_{ij}^k) the Christoffel symbols of the Levi–Civita connection and (R_{ijkl}) the components of the Riemann tensor (as a $\binom{4}{0}$ -tensor). We admit that the following holds in these coordinates:

$$\forall i, j \in \{1, \dots, n\}, \qquad g_{ij}(x) = \delta_{ij} - \frac{1}{3} \sum_{1 \le k, l \le n} R_{iklj}(0) x^k x^l + O(||x||^3).$$

- 1. Give a two terms expansion of the Riemannian volume dV around 0 in these coordinates.
- 2. Give a two terms expansion of the volume of the geodesic ball of center p and radius ρ as $\rho \to 0$.

Exercise 2. Let (M, g) be a Riemannian manifold and let $f : M \to \mathbb{R}$ be a smooth map. We assume that f vanishes transversally, that $d_x f \neq 0$ whenever f(x) = 0. Let us denote by Z the hypersurface $f^{-1}(0)$ and by II its second fundamental form.

- 1. Show that for any $x \in Z$, $d_x f \circ II_x = -\nabla_x^2 f_{|T_xZ}$.
- 2. Express II only in terms of f.

Exercise 3. Recall that if (M, g) is a Riemannian surface, then its Gauss curvature at p is $\kappa(p) = K(T_pM)$, the sectional curvature of T_pM .

- 1. Is there a metric g on \mathbb{S}^2 such that κ takes a negative value at some point?
- 2. Is there a metric g on the torus \mathbb{T}^2 such that κ does not vanish?
- 3. Is there a 2-dimensional submanifold (without boundary) M of \mathbb{R}^3 such that κ vanishes everywhere?
- 4. Same question assuming that M is not a plane.
- 5. Same question assuming that M is compact without boundary. (*Hint:* Use Sard's theorem: the set of critical values of a smooth map between smooth manifolds has measure 0.)
- 6. Is there a compact surface without boundary M in \mathbb{R}^3 such that κ is negative everywhere?