Géométrie différentielle 2020-2021

TD1/2, lundi 25 janvier et mercredi 27 janvier

1 a) On définit le ruban de Möbius (abstrait) comme

$$M = (\mathbb{R} \times \mathbb{R})_{(x,u) \sim (x+1,-u)},$$

et on note $\pi: M \to \mathbb{R}/\mathbb{Z}$ la projection canonique. On munit chaque fibre d'une structure linéaire par $\lambda[x, u] + \mu[x, v] = [x, \lambda u + \mu v]$. Montrer que π est un fibré vectoriel de rang 1.

b) Montrer que ce fibré est non trivial.

Soit $r \in \mathbb{N}^*$. On veut classer les fibrés de rang r sur \mathbb{R}/\mathbb{Z} (ou sur S^1).

c) On note U_0 et U_1 les images dans \mathbb{R}/\mathbb{Z} de]0,1[et de]-1/2,1/2[. Montrer qu'il existe des trivialisations

$$\tau_i: \pi^{-1}(U_i) \to \mathbb{R} \ , \ i = 0, 1,$$

c'est-à-dire que pr₁ × τ_i est un difféomorphisme de $\pi^{-1}(U_i)$ sur $U_i \times \mathbb{R}$ qui est linéaire sur chaque fibre. (on peut appeler "trivialisation" τ ou $\pi \times \tau$ suivant ce qui est le plus commode).

- d) On note $g: U_0 \cap U_1 \to \operatorname{GL}(r,\mathbb{R})$ l'application de transition telle que $\tau_1 = (g \circ \pi)\tau_0$. Noter que $U_0 \cap U_1$ a deux composantes connexes C_1 et C_2 . Montrer que E est trivial si et seulement si $g(C_1)$ et $g(C_2)$ sont dans la même composante connexe de $\operatorname{GL}(r,\mathbb{R})$.
- e) Pour tout r > 0, écrire un fibré de rang r non trivial sur \mathbb{R}/\mathbb{Z} (unique à isomorphisme près d'après d)).

On remplace maintenant S^1 par S^k avec $k \in \mathbb{N}^*$. Soit E un fibré de rang r > 0 sur S^k .

- f) Écrire $S^k = U_0 \cup U_1$ avec U_0 et U_1 difféomorphes à \mathbb{R}^k et $U_0 \cap U_1$ difféomorphe à $S^{k-1} \times]-1, 1[$. Définir $\tau_i : \pi^{-1}(U_i) \to \mathbb{R}^r$ et $g : U_0 \cap U_1 \to \operatorname{GL}(r, \mathbb{R})$ comme en c), d).
- g)* Si r=1, montrer que E est toujours trivial. Si $r\geq 2$, montrer que E est trivial si et seulement si g est homotope à l'identité, et que ceci est équivalent à : $g_{|S^{k-1}|}: S^{k-1} \to \mathrm{GL}(r,\mathbb{R})$ est homotope à l'identité. Pour tout $\gamma \in [S^{k-1},\mathrm{GL}(r,\mathbb{R})] = \pi_{k-1}\mathrm{GL}(r,\mathbb{R})$, construire un fibré de rang r sur S^k tel que $[g_{|S^{k-1}}] = \gamma$.
- **2** On peut penser à un fibré vectoriel de rang r sur une variété B comme une famille d'espaces vectoriels de dimension r, "dépendant de façon lisse d'un point de B". On va voir qu'on peut imposer que ces espaces soient des sous-espaces de \mathbb{R}^m pour m assez grand (dépendant de dim B).

Soient r et m deux entiers tels que 0 < r < m. On rappelle que la grassmannienne Gr(r, m), ensemble des sous-espaces vectoriels de \mathbb{R}^m de rang r, a une structure naturelle de variété (compacte) de dimension r(m-r): soit en l'identifiant au sous-ensemble de $M(n,\mathbb{R})$ formé des projecteurs symétriques, soit en l'identifiant à $O(m)/O(r) \times O(m-r)$, ou encore via l'atlas

$$U_P = Q \in \operatorname{Gr}(r, m) \mid Q \cap P^{\perp} \}$$
, $\varphi_P(Q) = u \in \operatorname{L}(P, P^{\perp})$ tel que $Q = \{x + u(x) \mid x \in P\}$.

En particulier, $Gr(1, m) = \mathbb{RP}^{m-1}$.

a) On définit

$$E_{r,m} = \{ (P, x) \in Gr(r, m) \mid x \in P \}.$$

Montrer que E est une variété de dimension r(m-r)+r.

b) On définit $\pi: E_{r,m} \to Gr(r,m)$ par $\pi(P,x) = P$. On munit chaque fibre $\pi^{-1}(\{P\}) = \{P\} \times P \approx P$ de la structure linéaire de P. Montrer que π est un fibré vectoriel de rang r (appelé fibré tautologique).

c) Soit B une variété, et soit f une application lisse de B dans Gr(r, m). On pose

$$E_f = \bigcup_{x \in B} \{x\} \times f(x) \subset B \times Gr(r, m) , \ \pi_f(x, P) = x.$$

Montrer que $\pi_f: E \to B$ est un fibré de rang r.

d) On note dim B = n et on suppose que B est la réunion d'un nombre fini $U_1 \cdots, U_k$ d'ouverts dont toutes les composantes connexes sont difféomorphes à \mathbb{R}^n .

Remarque. C'est évidemment le cas si B et compact, et en fait c'est tout le temps vrai avec k = n + 1 (idée : on triangule M, et on prend U_0 un voisinage convenable des sommets et U_{i+1} un voisinage convenable du i-squelette privé de U_{i-1}).

- e) Soit $\pi: E \to B$ un fibré de rang r. Montrer qu'il existe une trivialisation $\tau_i: \pi^{-1}(U_i) \to \mathbb{R}^r$. Soit (χ_i) une partition de l'unité de B subordonnée à (U_i) . à partir de (τ_i, χ_i) , construire une application lisse $T: E \to (\mathbb{R}^r)^k$ qui est inective sur les fibres.
- f) Pour $x \in B$, on pose $f(x) = T(E_x)$. Montrer que f est une application lisse de B dans Gr(r,m), et que E est isomorphe à E_f .

Remarque. La construction de f est analogue à celle d'un plongement d'une variété compacte dans un \mathbb{R}^N . D'ailleurs, un tel plongement se construit presque de la même façon pour une variété non compacte si l'on a un recouvrement (U_i) comme ci-dessus.

3. Soit $\pi: E \to B$ un fibré vectoriel sur une variété. Un champ de vecteurs $X \in \mathcal{X}(E)$ est dit linéaire si pour toute trivialisation $\Phi: \pi^{-1}(U) \to U \times \mathbb{R}^r$, on a

$$(\Phi_*X)(b,v) = (\xi(x),A(b)v),$$

où $\xi \in \mathcal{X}(U)$ et $A \in C^{\infty}(U, M(r, \mathbb{R}))$.

- a) Montrer qu'il suffit que ce soit vrai pour un ensemble de trivialisations au-dessus d'ouverts qui recouvrent M.
- b) Montrer que si X est linéaire, il se projette en un champ $\xi \in \mathcal{X}(B)$ (soit $d\pi_e(X(e)) = \xi(\pi(e))$, cf l'examen de Géométrie avancée).
- c) Montrer que X est linéaire si et seulement si son flot φ_X^t envoie fibre dans fibre et est linéaire sur chaque fibre.
- d) Soit $e \in E$, on note I l'intervalle maximal de définition de $\gamma(t) = \varphi_{\xi}^t(\pi(e))$. Montrer que $\varphi_X^t(e)$ est défini sur I. (On rappelle qu'une équation différentielle linéaire x' = A(t)x sur \mathbb{R}^r avec $A \in C^0(I, M(r, \mathbb{R}))$ a toutes ses solutions définies sur I).
- e) Soit maintenant $\pi: E \to [0,1] \times B$ un fibré vectoriel, induisant les fibrés i_0^*E et i_1^*E sur B. On veut donner une autre preuve de l'isomorphisme $i_0^*E \approx i_0^*E$.

Définir un champ de vecteurs $X \in \mathcal{X}(E)$ linéaire se projetant sur $\xi = \frac{\partial}{\partial t} \in \mathcal{X}([0,1] \times B)$. Montrer que φ_X^1 est bien défini sur $\pi^{-1}(\{0\} \times B)$ et est un isomorphisme de fibré sur $\pi^{-1}(\{1\} \times B)$. en déduire l'isomorphisme $i_0^*E \approx i_0^*E$.

- **4** On donne une autre définition d'un champ de vecteurs linéaire sur un fibré vectoriel $pi: E \to B$: cest un champ de vecteurs $X \in \mathcal{X}(E) = \Gamma(E, TE)$ qui est invariant par multiplication et addition :
- 1) Pour tout $\lambda \in R$,
onn ote $h_{\lambda}: E \to E$ la multiplication par λ dans les fibres, qui est un difféomorphisme si $\lambda \neq 0$. On demande

$$(\forall \lambda \in \mathbb{R})(\forall e \in E)dh\lambda(e).X(e) = X(\lambda e).$$

De façon équivalente;

$$(\forall \lambda \in \mathbb{R})(h_{\lambda})(X) = X.$$

2) Pour $(e_1, e_2) \in E \oplus E$, on définit $\sigma(e_1, e_2) = e_1 + e_2 \in E$. On demande

$$(\forall (e1, e2) \in E \oplus E)(d\sigma(e_1, e_2).(X(e1)X(e2)) = X(e_1 + e_2).$$

Montrer que ceci est équivalent à la premi'ere définition : dans toute trivialisation $\Phi = \pi \times \tau$: $\pi^{-1}(U) \to U \times \mathbb{R}^r$, on a

$$(\Phi X)(b, v) = (\xi(x), A(b)v),$$

où $\xi \in \mathcal{X}(U)$ et $A \in C^{\infty}(U, M(r, \mathbb{R}))$.

- **5** On donne une définition «géométrique» d'une connexion linéaire ∇ sur un fibré vectoriel $pi: E \to B$.
- a) On définit d'abord le sous-fibré vertical $V \subset TE$ par $V_e = T_e E_{\pi(e)}$ (canoniquement isomorphe à $E_{\pi(e)}$. Montrer que cest bien un sous-fibré vectoriel (à moins que ça nait été vu en cours).
- 2) On dit qu'un sous-fibré $H\subset TE$ est horizontal si $TE=H\oplus V$ (H est un supplémentaire de V dans TE, cest-à-dire

$$(\forall e \in E)T_eE = H_e \oplus V_e.$$

Un tel sous-fibré équivaut à la donnée dune projection fibrée $pH: TE \to V, T_eE \to E_{\pi(e)}$. On définit alors, si $s \in \Gamma(B, E)$:

$$\nabla_H s = p_H \circ ds : TB \to E, T_bB \to E_b.$$

Montrer que ceci est une connexion linéaire si et seulement si H est invariant par multiplication et par addition :

$$(\forall \lambda \in \mathbb{R})(\forall e \in E)dh_{\lambda}(H_e) = H_{\lambda e}$$
$$(\forall (e_1, e_2) \in E \oplus E)(d\sigma(e_1, e_2)H_{e_1} \oplus H_{e_2}) = H_{e_1 + e_2}.$$

Ceci équivaut aussi (clairement ?) à : tout champ de vecteurs horizontal (cest-à-dire $X \in \Gamma(B,H)$) est linéaire.

6. Soit (M,g) une variété riemannienne. On suppose quil existe un plongement isométrique $(M,g) \to (R^n, g_{can})$. En fait, par un théor'eme de JF Nash 1956 (simplifié par M. Günther 1989), un tel plongement existe toujours si N est assez grand. À' isométrie près, on peut supposer que $M \subset \mathbb{R}^N$ et que g est la restriction du produit scalaire sur \mathbb{R}^N :

$$(\forall (v, w) \in TM \oplus TM) q(v, w) = \langle v, w \rangle.$$

Si $s \in \Gamma(M, TM)$, on définit

$$\nabla s = \pi_{TM} \circ ds$$
, cest-à-dire $\nabla s(x) = T_{xM} \circ ds(x)$.

où π_{T_xM} est la projection orthogonale de \mathbb{R}^N sur T_xM et s est considérée comme une application de M dans \mathbb{R}^N .

- a) Montrer que ∇ est une connexion lijnéaire sur TM.
- b) Montrer que ∇ est compatible avec la métrique riemannienne, soit $\nabla g=0$ ou olus concrètement :

$$(\forall X, Y, Z \in \mathcal{X}) \quad X.\langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle X, \nabla_X Z \rangle.$$

c) Montrer que ∇ est symétrique (condition qui n'a de sens que sur le fibré tangent ou unfibré associé), c'est-à-dire

$$(\forall X, Y \in \mathcal{X}) \quad \nabla_X Y - \nabla_Y X = [X, Y].$$