Géométrie différentielle 2020-2021

Corrigé du TD6

1 1) Fixons $x_0 \in M$, et soit $\gamma : [0, a[\to N \text{ une courbe de longueur finie issue de } f(x_0)$. Montrons que γ se relève en une courbe $\widetilde{\gamma} : [0, a[\to M \text{ telle que } f \circ \widetilde{\gamma} = \gamma \text{ et } \widetilde{\gamma}(0) = x_0$.

D'abord, df_x est toujours injective, donc puisque dim $M=\dim N,\ f$ est un difféomorphisme local. Donc $\widetilde{\gamma}$ existe sur $[0,\varepsilon[$ pour $\varepsilon>0$ assez petit.

Ensuite, si $\widetilde{\gamma}_1$ et $\widetilde{\gamma}_2$ sont deux relèvements de γ tels que $\widetilde{\gamma}_1(0) = x_0 = \widetilde{\gamma}_2(0)$, alors l'ensemble des points de $I = \text{dom}(\widetilde{\gamma}_1) \cap \text{dom}(\widetilde{\gamma}_2)$ est fermé dans I par continuité et séparation, et ouvert car f est un homéomorphisme local. Donc $\widetilde{\gamma}_1 = \widetilde{\gamma}_2$ sur I.

Donc il existe un relèvement $\widetilde{\gamma}: [0, b[\to M \text{ maximal tel que } \widetilde{\gamma}(0) = x_0. \text{ Montrons par l'absurde que } a = b.$ Si au contraire b < a, alors $\widetilde{\gamma}([0, b[) \text{ a une longueur } \le \log(\gamma_{|[0, b[)}) \le \log(\gamma) < +\infty.$

Comme M est complète, $\widetilde{\gamma}(t)$ converge quand $t \to b^-$. En effet, si (t_n) est une suite croissant dans [0,b[tendant vers b la série $\sum_{n=0}^{\infty} d(\widetilde{\gamma}(t_n),\widetilde{\gamma}(t_{n+1}))$ est majorée par $\log(\widetilde{\gamma}_{|[0,b[}))$, donc est uniformément bornée. Donc $(\widetilde{\gamma}(t_n))$ est de Cauchy, donc converge vers un point x_1 par complétude de M. Et comme la suite (t_n) est arbitraire, $\widetilde{\gamma}(t)$ converge vers x_1 quand $t \to b^-$.

Comme f est un homéomorphisme local en x_1 , $\widetilde{\gamma}$ de prolonge à $[0, b + \varepsilon[$, contredisant la maximalité de b. Donc $\widetilde{\gamma}$ existe sur [0, a[.

Enfin, comme $\log(\widetilde{\gamma}) \leq \log(\gamma) < +\infty$, $\widetilde{\gamma}$ se prolonge continûment en a. Donc γ reste dans le compact $f \circ \gamma([0, a])$, cqfd.

Remarques. a) L'argument de prolongement est très semblable au critère de maximalité d'une solution d'une équation différentielle. En fait, dans le cas où $M=N=\mathbb{R}^n_{eucl}$, on a le théorème de Hadamard : si $f\in C^1(\mathbb{R}^n,\mathbb{R}^n)$ vérifie $||df(x).v||\geq ||v||$ pour tout $(x,v)\in\mathbb{R}^n\times\mathbb{R}^n$, alors f est un difféomorphisme global. Si f est de classe C^2 , ceci peut se prouver en étudiant l'équation différentielle $x'=df(x)^{-1}.(y-f(x_0))$, qui permet de relever une demi-droite $f(x_0)+\mathbb{R}_+(y-f(x_0))$.

- b) La question 2) montrera que la restriction à γ de longueur finie est inutile pour le relèvement.
- 2) Montrons l'indication. Si $v \in T_x M$, la courbe $t \in \mathbb{R}_+ \mapsto \exp_x(tv)$ est de longueur finie donc se relève de façon unique en $\widetilde{\gamma}_v : \mathbb{R}_+ \to N$ issue de x. Comme f est un homéomorphisme local, en recouvrant $[0, t_0]v_0$ par un nombre fini d'ouverts connexes U_i où f est un homéomorphisme d'inverse g_i , on voit que $\widetilde{\gamma}_v(t) = g_i(\exp_x(tv))$ si $tv \in U_i$, donc $\widetilde{\gamma}_v(t)$ est continue en (t, v).

Posant $E_x(v) = \widetilde{\gamma}_v(1)$, on obtient une application continue de T_xM dans N telle que $f \circ E_x(v) = v$, ce qui prouve l'indication.

Notons $f^{-1}(\{u_0\}) = \{x_i \mid i \in I\}$, nous voulons montrer que pour ε assez petit on a

$$f^{-1}(B_h(y_0,\varepsilon)) = \coprod_{i \in I} U_i$$

avec $U_i \ni x_i$ et $f_{|U_i}$ un difféomorphisme sur $B_h(y_0, \varepsilon)$.

D'abord, l'application \exp_x induit un homéomorphisme

$$B_{T_{y_0}N}(0, \operatorname{rayinj}_h(y_0)) \to B_h(y_0, \operatorname{rayinj}_h(y_0)),$$

et $f \circ E_{x_i} = \exp_{x_i}$, donc $s_i = E_{x_i} \circ \exp_{x_i}^{-1}$ est une section de f définie sur $B_h(y_0, \operatorname{rayinj}_h(y_0))$ et telle que $s_i(y_0) = x_i$.

Posons $U_i = s_i(B_h(y_0, \frac{1}{2}\text{rayinj}_h(y_0)))$. Alors $U_i \ni x_i$ et $f_{|U_i}$ est un homéomorphisme sur $B_h(y_0, \frac{1}{2}\text{rayinj}_h(y_0))$. De plus les U_i sont disjoints comme images de sections distinctes.

Reste à montrer que $f^{-1}(B_h(y_0, \frac{1}{2}\text{rayinj}_h(y_0))) \subset \coprod_{i \in I} U_i$. Si ce n'est pas le cas, il existe $x \in$

$$M \setminus (\coprod_{i \in I} U_i)$$
 tel que $f(x) = y \in B_h(y_0, \frac{1}{2} \operatorname{rayinj}_h(y_0))$. On a

$$\operatorname{rayinj}_h(y) \ge \operatorname{ryinj}_h(y_0) - d(y_0, y) \ge \frac{1}{2} \operatorname{rayinj}_h(y_0),$$

donc il existe une section s de f définie sur $B_h(\frac{1}{2}\text{rayinj}_h(y_0)))$ et telle que s(y) = x. alors s est différente des s_i , donc $s(x_0)$ est différent des x_i , or $s(x_0) \in f^{-1}(\{y_0\})$, d'où une contradiction. Ceci achève la preuve que f est un revêtement.

3) a) D'après 2), l'application $\exp_x : T_x M \to M$ est un revêtement pour tout $x \in M$. Puisque M est connexe et $T_x M$ est simplement connexe, c'est le revêtement universel.

Soit $\gamma:[0,1]\to M$ un lacet géodésique. On a $\gamma(t)=\exp_x(tv)$ avec $v\in T_XM$ non nul et $\exp_x(v)=x$. Donc γ se relève en le chemin $t\mapsto tv\in T_xM$, qui n'est pas un lacet : donc γ n'est pas homotope à zéro par théorie des revêtements (on n'utilise pas le fait que le revêtement soit universel).

b) Soit \mathcal{C} une classe d'homotopie non triviale de lacets de M, disons paramétrés par [0,1], et soit $\gamma \in \mathcal{C}$. On peut le supposer γ de classe C^{∞} (même comme application de \mathbb{R}/\mathbb{Z} dans M), donc il a une longueur finie L > 0. Il suffit de montrer que l'ensemble

 $\mathcal{C}_L = \{ \gamma \in \mathcal{C} \mid \log(\gamma) \leq L \text{ et } \gamma \text{ est paramétrée proportionnellement à la longueur d'arc} \}$

a un élément de longueur minimale.

Tout élément de \mathcal{C}_L est L-Lipschitz. Par Ascoli, comme M est compacte il existe une suite $(\gamma_n \in \mathcal{C}_L)$ telle que $\inf(\gamma_n) \to \ell = \inf_{\mathcal{C}_L} \log(\gamma)$ et γ_n converge uniformément vers un lacet γ .

On a $\ell > 0$, sinon $\log(\gamma_n)$ serait majoré par rayinj(M) pour n assez grand, donc γ_n serait à valeurs dans une boule contractile et serait homotope à zéro. Cet argument est inutile ici mais servira dans la question suivante.

Le lacet γ_{∞} est homotope à γ_n pour n assez grand (ceci est vrai plus généralement pour toute suite d'applications continues $P \to Q$ où P et Q sont des variétés et P est compacte) : en effet, $\gamma_n(t)$ sera dans la boule $B_g(\gamma_{\infty}(t), \varepsilon)$, $\varepsilon = \min_{t \in [0,1]} \operatorname{rayinj}_{\gamma(t)}(g)$. Une homotopie de γ_{∞} à γ_n est

$$H_n(s,t) = \exp_{\gamma(t)} \left(s \exp_{\gamma_{\infty}(t)}^{-1} (\gamma_n(t)) \right).$$

(Une autre preuve sans géométre riemannienne est via une partition de l'unité).

Donc $\gamma_{\infty} \in \mathcal{C}$, de plus γ_{∞} est L_n -Lipschitz pour tout n, où $L_n = \log(\gamma_n)$. Donc γ est L_{∞} -Lipschitz, avec $L_{\infty} = \inf L_n = \inf_{\gamma \in \mathcal{C}_L} \log(\gamma)$. Puisque $\gamma \in \mathcal{C}_L$, cet inf est un mimum et $\log(\gamma_{\infty}) = L_{\infty}$.

Enfin, paramétrons γ_{∞} par \mathbb{R}/\mathbb{Z} . Alors, si $t < u < t + \frac{1}{2}$, pour la distance sur \mathbb{R}/\mathbb{Z} induite par celle de \mathbb{R} , on a

$$d(\gamma_{\infty}[t]), \gamma_{\infty}([u])) \le \log(\gamma_{\infty|[t,u]}) \le L_{\infty}(u-t) = L_{\infty}d([t], [u]).$$

Ces inégalités sont des égalités sinon on pourrait remplacer γ_{∞} par un lacet homotope plus court. Donc γ_{∞} minimise localement la longueur et est paramétrée par longueur d'arc, cqfd.

c) Soit \mathcal{C} l'ensemble de tous les lacets non homotopes à zéro. Cet ensemble est non vide car il contient $\exp_x \circ \widetilde{\gamma}$ où $\widetilde{\gamma}$ est un chemin joignant x à $x' \in \exp_x^{-1}(\{x\}) \setminus \{x\} : x'$ existe car la fibre $\exp_x^{-1}(\{x\})$ est infinie puisque \exp_x est un revêtement, T_xM est non compact et M est compacte et connexe.

Le raisonnement de b) montre que \mathcal{C} contient un élément γ_{∞} de longueur L_{∞} minimale : l'homotopie de γ_{∞} à γ_n n'utilise pas le fait que les γ_n sont homotopes.

Posons

$$r = \operatorname{rayinj}(M, g) = \min_{x \in M} \operatorname{rayinj}_x(g)$$
.

Montrons que $L_{\infty} \geq 2r$: sinon, $\gamma_{\infty}([0,1]] = \gamma_{\infty}([0,\frac{1}{2}]) \cup \gamma_{\infty}([\frac{1}{2},1])$ serait contenu dans $B_g(\gamma_{\infty}(0),r)$ qui est contractile. Cet argument n'utilise pas d'hypothèse sur \exp_x , seulement l'existence d'un lacet non homotope à zéro.

Montrons enfin que $L_{\infty} \leq 2r$: soit $x \in M$ tel que rayinj $_x(g) = r$, donc l'application $\exp_x : B'_{T_xM}(0,r) \to M$ (boule fermée) n'est pas un plongement. Puisque \exp_x est un difféomorphisme local, il existe $v_1, v_2 \in B'_{T_xM}(0,r)$ distincts (en fait dans la sphère $B'_{T_xM}(0,r)$) tels que $\exp_x(v_1) = \exp_x(v_2)$. Alors $\exp_x((1-2t)v_1)$) suivi de $\exp_x(2t-1)v_2$ donne un lacet continu γ de longueur 2r, qui se relève en un chemin de v_1 à $v_2 \neq v_1$ donc n'est pas homotope à zéro. Donc $2r \geq L_{\infty}$.

Finalement, on a $L_{\infty} = 2r$.

2. 1) Les géodésiques de $S^n(1)$, qui sont des grands cercles, sont minimisantes jusqu'à la moitié de la longueur d'un grand cercle soit π (incluse), donc rayinj $_x(S^n) = \pi$ pour tout $x \in S^n$, donc rayinj $_x(S^n) = \pi$.

Pour les exercices 2-3-4, on a un revêtement $\pi:\widehat{M}\to M$, galoisien de groupe $\Gamma\subset \mathrm{Isom}(\widehat{M})$. Si $x\in\widehat{M}$, l'exponentielle $\exp_{\pi(x)}=T_{\pi(x)}M\to M$ se relève en $\exp_x:T_x\widehat{M}\to\widehat{M}$. La première est un difféomorphisme de $B_{\pi(x)}(0,r)$ sur $B(\pi(x),r)$ si

- $d \exp_x$ est un difféomorphisme de $B_x(0,r)$ sur B(x,r) soit $r \leq \operatorname{rayinj}_x(\widehat{M})$,
- il n'existe pas de points $y, \gamma(y) \in B(x,r)$ tels que $\gamma \in \Gamma \setminus \{1\}$: ceci équivaut à

$$r \le \frac{1}{2} \inf_{\gamma \in \Gamma \setminus \{\text{Id}\}} d(x, \gamma(x)).$$

En fait, l'inf est un min car Γ agit proprement. Donc

$$\operatorname{rayinj}_{\pi(x)}(M) = \min \big(\operatorname{rayinj}_x(\widehat{M}), \frac{1}{2} \min_{\gamma \in \Gamma \backslash \{\operatorname{Id}\}} d(x, \gamma(x)) \big).$$

- 2) Ici $\widehat{M} = S^n$, $\Gamma = \{\pm \mathrm{Id}\}$, $\mathrm{rayinj}_x(S^n) = \pi$ pour tout x. Puisque $d(y, -y) = \pi$ pour tout $y \in S^n$, il vient
 - $\operatorname{rayinj}_{\overline{x}}(\mathbb{RP}^n) = \frac{\pi}{2} \text{ pour tout } \overline{x} \in \mathbb{RP}^n$
 - rayinj(\mathbb{RP}^n) = $\frac{\pi}{2}$.
- 3) Ici $\widehat{M} = S^3$, $\Gamma = \{R^k \mid 0 \le k \le q-1\}$ où $R(z_1, z_2) = (e^{\frac{2\pi i p}{q}} z_1, e^{\frac{2\pi i p}{q}} z_2)$. De plus, rayinj_x $(S^3) = \pi$ pour tout $X = (x_1, x_2) \in S^3$. Donc

$$\operatorname{rayinj}_{X}(L(p,q)) = \frac{1}{2} \min_{1 \le k \le q-1} ||X - R^{k}X||.$$

Explicitons un peu : avec $\langle .,. \rangle$ le produit scalaire dans \mathbb{C} , on a

$$||X - R^k X|| = \arccos(\langle x_1, \omega^k x_1 \rangle + \langle x_2, \omega^{kp} x_2 \rangle)$$
$$= \arccos(|x_1|^2 \cos \frac{2\pi k}{q} + |x_2|^2 \cos \frac{2\pi kp}{q}).$$

Donc:

- Si $k(p\pm 1)\equiv 0$ mod. $q, ||X-R^kX||$ est constant égal à $2\pi\frac{\overline{k}}{q}$ où $k\equiv \pm k$ mod q et $1\leq \overline{k}\leq \frac{q-1}{2}$.
- Sinon, $||X R^k X||$ n'est pas constant, et son minimum est $2\pi \frac{\min(\overline{k}, \overline{kp})}{q}$ où $\overline{kp} \equiv kp \mod 2$ q et $1 \leq \overline{kp} \leq \frac{q-1}{2}$. Le rayin d'injectivité en un point de L(p,q) dépend donc du point.

Finalement, on a

$$\begin{aligned} \operatorname{rayinj}(L(p,q)) &= \pi \frac{\min(\overline{k}, \overline{kp})}{q} \;,\; \overline{k} \equiv \pm k \; \operatorname{mod.} \; q \;,\; \overline{kp} \equiv kp \; \operatorname{mod} \; q \;,\; 1 \leq \overline{k}, \overline{kp} \leq \frac{q-1}{2} \\ \overline{k} &= \overline{k}p \Leftrightarrow (p \pm 1) \equiv 0 \; \operatorname{mod.} \; q. \end{aligned}$$

4) Ici
$$\widehat{M} = \mathbb{R}^2_+$$
, rayinj $(\mathbb{R}^2 +) + nfty$, $\Gamma = \{T^k \mid k \in \mathbb{Z}\}$ avec $T(x,y) = (\lambda x, \lambda y)$. Donc

$$\operatorname{rayinj}_{\pi(x,y)}(M) = \min_{k \in \mathbb{Z}^*} \frac{1}{2} d((x,y), (\lambda^k x, \lambda^k y).$$

Le calcul explicite de $d((x,y),(\lambda^k x,\lambda^k y)$ est assez pénible, mais il suffit de trouver son minimum sur \mathbb{R}^2_+ : l'isométrie T^k laisse invariante la géodésique $D=\{0\}\times]0,+\infty[$ sur laquelle elle agit par une translation de longueur $|k|\log |\lambda|$. Or la projection orthogonale sur D est 1-Lipschitz (cei se prouve par trigonométrie hyperbolique d'un quadrilatère à deux angles droits ou par convexité de la fonction distance), donc

$$\min_{(x,y)\in\mathbb{R}^2_+}d((x,y),T^k(x,y))=|k|\log\lambda.$$

Donc

$$rayn(M) = log \lambda$$
.