Géométrie différentielle 2020-2021

TD 12, mercredi 28 avril

1. 1) Soit $\gamma:[0,\ell]\to M$ une géodésique paramétrée par longueur d'arc. On rappelle la forme d'indice, définie sur l'espace $\mathcal V$ des champs de vecteurs C^1 par morceaux le long de γ qui s'annulent en 0 et en ℓ :

$$I_{\ell}(X,Y) = \int_{0}^{\ell} (\langle \dot{X}, \dot{Y} \rangle - \langle R(X, \dot{\gamma}) \dot{\gamma}, Y \rangle) dt = -\int_{0}^{\ell} \langle \ddot{X} + R(X, \dot{\gamma}) \dot{\gamma}, Y \rangle dt.$$

- 1) Montrer que le noyau de I_ℓ est formé des champs de Jacobi qui s'annulent en 0 et en ℓ . En particulier, si γ n'a pas de point
- 2) Montrer que si $I(X) \ge 0$ pour tout champ normal dans \mathcal{V} , alors $I(X) \ge 0$ pour tout champ dans \mathcal{V} .

On suppose que γ n'a pas de points conjugués dans $[0,\ell]$.

3) Montrer qu'un champ de vecteurs X le long de γ s'écrit de façon unique

$$Y(t) = \exp_{\gamma(t)} Y(t) , Y(t) \in T_p M , p = \gamma(0),$$

Y étant de même différentiabilité que X.

- 4) Si X est normal, montrer que Y est normal.
- 5) Soit $X \in \mathcal{V}$ normal, de classe C^2 par morceaux. On définit Y comme en 3), puis $\widetilde{Y} = Y/t$ (qui est de classe C^1 par morceaux) et on pose

$$f(t,u) = \exp_p t \frac{tv + uY(t)}{||tv + uY(t)||} = \exp_p t \frac{v + u\widetilde{Y}(t)}{||v + u\widetilde{Y}(t)||}.$$

Montrer que

$$I_{\ell}(X,X) = \int_{0}^{\ell} \frac{d}{du}_{|u=0} \frac{1}{2} \left| \left| \frac{\partial f}{\partial t}(t,u) \right| \right|^{2} dt.$$

6) Montrer qu'il existe C > 0 tel que pour $u \to 0$ on a

$$\left|\left|\frac{\partial f}{\partial t}(t,u)\right|\right|^2 \ge 1 + Cu^2 ||\dot{Y}(t)||^2.$$

Indication: utiliser le lemme de Gauss.

7) Montrer que I_{ℓ} est définie positive.