Homologie relative; Mayer-Vietoris

Exercice 1. Compléments sur l'homologie relative

Soit (X, A) une paire topologique.

- 1. Montrer que $H_0(X, A) = 0$ si et seulement si A rencontre toutes les composantes connexes par arcs de X.
- 2. Montrer que $H_1(X, A) = 0$ si et seulement si l'application $H_1(A) \to H_1(X)$ est surjective et toute composante connexe par arcs de X contient au plus une composante connexe par arcs de A.
- 3. On suppose que A est un point. Calculer l'homologie réduite $H_*(X,A)$ en fonction de l'homologie de X.
- 4. On suppose que A est un rétrat de X. Montrer que l'application $H_n(A) \to H_n(X)$ induite par l'inclusion $A \hookrightarrow X$ est injective.

Exercice 2. Suites exactes longues en cohomologie

Soit (X, A, B) un triplet d'espaces topologiques avec $B \subseteq A \subseteq X$.

1. Montrer que la suite suivante est exacte :

$$\cdots \stackrel{d_{k+1}}{\rightarrow} \operatorname{H}_k(A,B) \stackrel{i_{*,k}}{\rightarrow} \operatorname{H}_k(X,B) \stackrel{j_{*,k}}{\rightarrow} \operatorname{H}_k(X,A) \stackrel{d_k}{\rightarrow} \operatorname{H}_{k-1}(A,B) \stackrel{i_{*,k-1}}{\rightarrow} \cdots$$

où les applications $i:(A,B)\to (X,B)$ et $j:(X,B)\to (X,A)$ sont fournies par l'inclusion $A\hookrightarrow X$ et l'identité $X\to X$, respectivement, et d_k est la composition

$$H_k(X,A) \xrightarrow{\delta_k} H_{k-1}(A) \to H_{k-1}(A,B)$$

des morphismes qui proviennent des suites exactes des paires (X, A) et(A, B).

2. En déduire la suite exacte de la paire (X,A) pour les groupes d'homologie réduits.

Exercice 3. Bouquet d'espaces

Soient (X, x) et (Y, y) deux espaces topologiques pointés. On note $X \vee Y$ et on appelle bouquet de (X, x) et (Y, y) le recollement de X et Y selon leurs points bases : $X \coprod Y/(x \sim y)$.

On suppose que x et y admettent des voisinages contractiles dans X et Y respectivement. Calculer l'homologie de $X \vee Y$ en fonction des homologies de X et Y.

Exercice 4. Homologie du parachute

Calculer l'homologie de l'espace obtenu en identifiant les sommets du simplexe standard Δ^2 .

Exercice 5. Cône, Suspension

Soit X un espace topologique pointé. On appelle cône de X et on note CX l'espace quotient $X \times [0,1]/X \times \{1\}$. On appelle suspension de X et on note ΣX l'espace quotient $CX/X \times \{0\}$.

- 1. Montrer que CX est toujours contractile.
- 2. Calculer ΣX pour $X = S^n$.
- 3. Calculer l'homologie de ΣX en fonction de l'homologie de X. En déduire un calcul de l'homologie des sphères.

Exercice 6. Tore et bouquet d'espaces

Montrer que le tore $T^2 = S^1 \times S^1$ et l'espace $S^1 \vee S^1 \vee S^2$ ont les mêmes groupes d'homologie singulière mais ne sont pas homotopiquement équivalents.

Exercice 7. Homologie d'espaces pathologiques

Calculer l'homologie de la droite à deux origines, puis à n origines. Calculer l'homologie de l'adhérence dans \mathbb{R}^2 du graphe de $x \mapsto \sin(1/x)$.