Cup-product

Exercise 1.

Let R be a commutative ring and let X be a path-connected topological space. Describe the cupproduct

$$
\smile: \mathrm{H}^{0}(X, R) \times \mathrm{H}^{i}(X, R) \rightarrow \mathrm{H}^{i}(X, R)
$$

Exercise 2.

Let R be a commutative ring. Compute the ring $\mathrm{H}^{*}\left(S^{n}, R\right)$ (with multiplication the cup-product).

Exercise 3.

A Δ-complex structure on a topological space X is a family of maps $\sigma_{\alpha}: \Delta^{n} \rightarrow X$, with n depending on the index α such that

- For any index α, the restriction of the map σ_{α} to the interior of Δ^{n} is injective.
- For any index α, each restriction of σ_{α} to one of the faces of Δ^{n} is one of the maps $\sigma_{\beta}: \Delta^{n-1} \rightarrow X$. Here we are identifying the face of Δ^{n} with Δ^{n-1} by the canonical linear homeomorphism between them that preserves the ordering of the vertices.
- A subset U of X is open if and only if for any index α, the subset $\sigma_{\alpha}^{-1}(U)$ is open in Δ^{n}.

This notion generalizes the notion of simplicial complex that we introduced in exercise sheet 7 .
As in sheet 7, we can show the following facts (that we will use without proofs):
(i) Show that Δ-complexes are CW complexes.
(ii) Let X be a Δ-complex. Let $C_{*}^{\text {simp }}(X)$ be the associated cellular complex. The complex $C_{*}^{\text {simp }}(X)$ is a sub-complex of the singular complex $C_{*}(X)$.

1. Denote by $C_{\mathrm{simp}}^{*}(X, R)$ the complex $\operatorname{Hom}_{\mathbb{Z}}\left(C_{*}^{C W}(X), R\right)$ describe this complex explicitly.
2. Show that $C_{\text {simp }}^{*}(X, R)$ is a sub-complex of the singular complex $C^{*}(X, R)$.
3. Deduce that to compute the cup-product:

$$
\mathrm{H}^{n}(X, R) \times \mathrm{H}^{m}(X, R) \rightarrow \mathrm{H}^{n+m}(X, R)
$$

it suffices to describe the map

$$
C_{\text {simp }}^{n}(X, R) \times C_{\text {simp }}^{m}(X, R) \rightarrow C_{\text {simp }}^{n+m}(X, R)
$$

Exercise 4.

Let g be a positive integer. The goal of this exercise is to understand the cup-product over the cohomology with integral coefficients of the orientable surface of genus g (denoted by Σ_{g}).

1. Recall the value of the cohomology groups of Σ_{g} with integral coefficients.
2. Explain why the only "interesting" product is the product

$$
\smile: \mathrm{H}^{1}\left(\Sigma_{g}, \mathbb{Z}\right) \times \mathrm{H}^{1}\left(\Sigma_{g}, \mathbb{Z}\right) \rightarrow \mathrm{H}^{2}\left(\Sigma_{g}, \mathbb{Z}\right)
$$

3. Recall that the surface of genus g can be described as a $4 g$-gone $a_{1}, b_{1}, a_{1}^{-1}, b_{1}^{-1}, \ldots a_{g}, b_{g}, a_{g}^{-1}, b_{g}^{-1}$. Show that we can endow Σ_{g} with a Δ-complex structure by considering the $4 g$ triangles with vertices the center of the $4 g$-gone and the two vertices of an edge.
4. Construct cocycles ϕ_{i} and ψ_{i} in $C_{\text {simp }}^{1}\left(\Sigma_{g}, \mathbb{Z}\right)$ such that $\phi_{i}\left(a_{j}\right)=\delta_{i, j}, \phi_{i}\left(b_{j}\right)=0, \psi_{i}\left(a_{j}\right)=0$ et $\psi_{i}\left(b_{j}\right)=\delta_{i, j}$.
5. Deduce a description of the cup-product over the cohomology of Σ_{g} with integral coefficients.

Exercise 5.

Apply the techniques of Exericise 4 to compute the cup-product over the cohomology of the nonorientable surface of genus g with coefficients $\mathbb{Z} / 2 \mathbb{Z}$.

