ENS de Lyon TD 5

More on Mayer-Vietoris; Degree and applications; CW-complexes

Exercise 1. Computations of homology groups

Consider the following topological spaces:

- (a) The 2-dimensional torus.
- (b) The Klein bottle.
- (c) The orientable surface of genus 2.

Compute their homology groups using

- 1. the Mayer-Vietoris exact sequence.
- 2. the cellular homology theorem.

Generalize the result of (c) to the orientable surface of genus g using cellular homology.

Exercise 2. Cellular homology is not always the best choice!

Compute the homology groups of the complement of a circle inside the 3-dimensional space.

Exercise 3. On the topology of CW complexes

- 1. Show that a subset of a CW complex is open (resp. closed) if and only if its intersection with the interior of any cell C is open (resp. closed) in the interior of C.
- 2. Show that a CW complex is compact if and only if it has finitely many cells.
- 3. Show that a CW complex is path connected if and only if its 1-skeleton is path connected.
- 4. Endow the product of two CW complexes with a CW complex structure.

Exercise 4. Homology of the surface of genus g using Mayer-Vietoris

- 1. Let X_g be the complement in the 2-sphere of 2g disjoint open discs D_1, \ldots, D_{2g} . Compute the homology groups of X_g .
- 2. Compute the map in homology induced by the inclusion:

$$\bigsqcup_{i=1}^{2g} \partial D_i \to X_g$$

3. Deduce the homology groups of the surface of genus g.

Exercise 5. Fundamental class of the sphere and higher Hurewicz maps

Let $n \ge 1$ be an integer. A fundamental class of the sphere S^n is a generator of the group $H_n(S^n)$.

1. Let (U, V) be a topological cover of a space X. Give a method to compute the connecting map:

$$\partial: H_n(X) \to H_{n-1}(U \cap V)$$

of the Mayer-Vietoris exact sequence.

- 2. Using the first question, find a fundamental class of the sphere S^n .
- 3. Let (X, x) be a pointed topological space, construct a group homomorphism

$$\pi_n(X, x) \to H_n(X)$$

Hint: map $f: S^n \to X$ to the pushforward by f of a fundamental class of S^n .

4. Show that this map is surjective when $X = S^n$.

Exercise 6. The Perron-Frobenius theorem

Use Brower's fixed point theorem to show that a square matrix with nonnegative entries has a real nonnegative eigenvalue.

Exercise 7. Homology of a product of spheres Let $m, n \ge 1$ be integers. Compute the homology groups of $S^n \times S^m$ using

- 1. the Mayer-Vietoris exact sequence.
- 2. the cellular homology theorem.