
CR12: transfer matrix and power iteration

The goal of the work is to approximate a growth rate (physicists sometimes talk about "entropy").
We want to tile the 2D square grid with 3 types of tiles: squares 1×1 , rectangles 2×1 and rectangles

1 × 2 , and we want to estimate how many there are such tilings. Equivalently, it’s the number of (not
necessarily perfect) matchings in the (infinite) square grid graph.

Note that, for the method presented here, the set of tiles is not very important: it works for any finite
set of tiles, with only few adaptations.

We are not very interested in the “theoretical” part here. We will focus on programming and computation.
We denote f(n,m) the number of possible tilings of a rectangle n ×m with these 3 tiles. One can see

that limn→∞
n×n
√
f(n, n) converges to a constant, the growth rate, which we will denote by c, and we want to

approximate this constant. (Note that you have to be careful what happens at the “border” of the rectangle
we want to tile. But here, everything is going pretty well.)

It is generally difficult to find exact growth rates in 2D (there are only few cases where the exact value is
known, more informations at the end of the document if you are interested). We therefore want to approximate
it. To do this, we will use a standard technique of "transfer matrix", and then of power iteration to get the
largest eigenvalue.

• You can use the programming language you want.

• Send me your programs / results / comments / questions to michael.rao@ens-lyon.fr

– at the end of the TD (mostly to get your emails, and to have something if you forgot to send it
after, or if you do not have time to work more on this, or if it is the best you can do :)).

– and you can send “updates” up to Wednesday 24 November.

1 1D world
Note that in one dimension, the problem becomes really easy, so easy that you don’t need a computer...

If you want to tile a strip n× 1 ... with the 3 tiles, the tile 1× 2 cannot be used.
Now we count the number of tilings f(n, i) of n × 1. If the leftmost tile is a , then the remainder

will be a tiling of (n − 2) × 1. Otherwise, the leftmost tile is , and the rest will be a tiling of (n − 1) × 1.
We therefore have f(n, 1) = f(n − 2, 1) + f(n − 1, 1), and we directly have the recurrence of the Fibonacci
sequence. So we know that limn→∞

n
√
f(n, 1) is the golden ratio.

2 Bands
But for fixed height bands, things are not “theoretically” more complicated (but becomes tricky to do it by
hand...)

There are always finitely many cases to handle. For example, for n× 2:

• either the leftmost tile is , and then the rest is a tiling of (n− 1)× 2,

• either there are two on the left, and the rest is also a tiling of (n− 1)× 2,

• if there are two , the rest is a tiling of (n− 2)× 2,

• but if there are is only one (w.l.o.g on the first line), then we have a on the second line, and the
rest is a tiling of (n− 1)× 2 \ (0, 0) (i.e. ...). So one can define f ′(n, 2) to be the number
of tilings of n × 2 \ (0, 0), and find formulas for f ′(n, 2) too. This can be done without adding a new
parameter.

1

But at the end (and for every k), one can always find vectors Ak, Bk and matrix Mk such that f(n, k) =
AT

k × (Mk)
n ×Bk.

Let ck = limn→∞
n
√
f(n, k). Note that ck is the largest eigenvalue of Mk. And we can easily see that

c = limk→∞ k
√
ck.

Your goal now is to write a program which constructs such Mk for every k. (Ak and Bk are
not very important for the following.)

Note that there are several possibilities to “encode” things. Try to find one such that Mk is not too big...

3 Power iteration method
Now that we have a matrix Mk, and we want to find the largest eigenvalue. Note that our matrices are
(almost) Perron-Frobenius matrices. The largest eigenvalue is unique, real and positive. One can easily find
this eigenvalue by the power iteration method. Note also that ck is the largest eigenvalue of (Mk)...

Let v0 be a random positve vector (for example (1, 1, 1..., 1)) and let vk+1 = Mvk

|vk| . vk will naturally
converges to “the” eigenvector associated with the largest eigenvalue, and it’s norm will converges to the
largest eignevalue.

Program the power iteration method.

4 Go as far as possible
Now you know how to compute ck, for every k. The problem is that the complexity is exponential in k.

Try to computes ck for the largest k you can. How far you go ?
How many digits you can guess for c = lim k

√
ck ?

5 Ideas to go faster
• Note that the matrix can be sparse. Can this help you?

• You can also use symetries to reduce the size of the matrix.

• What happens “on the border” can affect the speed of convergence. For example, one can tile all the
strip, but authorizing to bypass the border. Or one can tiles cylinders instead of that stips.

• Note that we do not look too much at the theoretical part. But, nothing tells us how far we are from
the limit. If we manage correctly what happends on the border, on can get lower or upper bounds of c.

6 More information on what we are trying to do
Few of the structures of 2D models are known exactly. Two “ classic ” examples of known models:

• “Dimere model”: This is equivalent to tiling with 1×2 and 2×1 rectangles. Equivalently, it is the number
of perfect matchings in the square grid. Our exercise wanted to estimate the number of matchings (not
necessarily perfect) of a square grid.

• “Hard hexagon model”: number of stable sets in a triangular grid.

• On the other hand, the “hard square model” (stable sets in a square grid) is a long standing open
problem in the field of statistical mechanics.

2

