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Comment on “Dynamically induced heat rectification in quantum systems”
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The article by Riera-Campeny, Mehboudi, Pons, and Sanpera [Phys. Rev. E 99, 032126 (2019)] studies heat
rectification in a network of harmonic oscillators which is periodically driven. Both the title and introduction
stress the quantum nature of the system. Here we show that the results are more general and are equally valid
for a classical system, which broadens the interest of the paper and may suggest further pathways for a basic
understanding of the phenomenon.
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Reference [1] investigates a new mechanism to induce heat
rectification in a physical system. In analogy to electrical
diodes, a thermal diode, which connects two thermal baths at
different temperatures, exhibits different thermal conductiv-
ities if the temperatures of the baths are exchanged. Earlier
studies considered static systems, i.e., systems with time-
independent properties and some nonlinearity in the physics
of the material. Theory has considered classical and quantum
systems. In these static systems the basic origin of heat
rectification can simply be tracked down in some asymmetry
in the design of the device and in the temperature depen-
dence of the thermal conductivity of the material [2]. Heat
rectifiers have been built [3] based on this simple idea. The
concept introduced in Ref. [1] is different because the authors
consider a system under generic linear interactions, but they
introduce some internal dynamics in the device with time-
dependent interactions. This is an interesting idea and Ref. [1]
shows that it is valid in a large variety of configurations.
Dynamic rectification had already been considered in optics
using a spatially and temporarilly modulation of the index
[4]; however, the context was different because integrated
photonics applications work with deterministic signals in a
limited bandwidth. Thermal rectification is more challenging,
and this is why the results of Ref. [1] are significant.

However, in their title and in the Introduction and Con-
clusion of their paper, the authors stress the quantum nature
of their analysis, which gives the impression that the phe-
nomenon that they exhibit is purely quantum. This is mis-
leading. Actually the results are equally valid for a classical
system, as in the optical case [4]. An analytical treatment is
harder in this case but a numerical simulation of the classical
equivalent of the simple example studied in details in Ref. [1]
shows that the results of the article are preserved for the
classical system. This broadens the interest of the article by
showing its generic validity.

To illustrate its general results with a specific case, Ref. [1]
studied a network of two oscillators, which is schematically
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shown in Fig. 1. Its Hamiltonian is
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where X2 and X2 are the positions of the oscillators, P1 and P2

their momenta, C1(t ) = ω2
1 + 2v1 sin ωdt is a time-dependent

parameter which introduces a driving at frequency ωd , while
C2 = ω2

2 and C0 are constants. This system is coupled to two
thermostats, Th1 and Th2, at two different temperatures that
we label Th (for the highest) and Tl (for the lowest). Reference
[1] investigated this system using a quantum formalism and
showed that it does exhibit some thermal rectification when
the temperatures Th and Tl are switched. The results are
displayed in Fig. 3 of the paper for ω2

1 = 2ω2
0 [5], ω2 =

ω0, Th = 1.2 Tl , and v1 = 0.1, for a range of C0 and ωd

values.
To compare the quantum and classical properties of the

system, we investigated it with the same parameters using
numerical simulations in which the oscillators are treated as
Langevin oscillators. This is achieved by adding damping
forces −mγ Ẋi (i = 1, 2) and fluctuating terms m�i(t ) to the
Hamiltonian equations of motions, where Ẋi = dXi/dt and
�i(t ) is a Gaussian random variable such as 〈�i(t )�i(t ′)〉 =
qiδ(t − t ′) [δ(t ) is the Dirac delta function] and qi = 2γ Ti/m,
Ti being the temperature (Th or Tl ) of the thermostat connected
to oscillator i, expressed in energy units. These classical
equations have been integrated with the Greenside-Helfand
numerical scheme for stochastic differential equations [6].
Thermal rectification was investigated with two series of
numerical experiments for each set of system parameters. In
the first series of realizations, thermostat Th1 connected to
oscillator X1 was set to the high temperature Th and thermostat
Th2 was set to Tl . Reverse configurations, marked by the
exponent r, were obtained by switching Th and Tl . Each series
comprised 200 realizations, which were used to compute
averages over the statistical realizations and over more than
2.5 × 105 periods 2π/ωd , designated by 〈·〉.

In the simulations, to compute the heat powers Q̇1 and Q̇2

flowing into the systems from thermostats Th1 and Th2, it is
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FIG. 1. Schematic picture of the simple device studied in Ref. [1].

convenient to introduce the local energies, corresponding to
each of the oscillators, defined as

E1(t ) = P2
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so that HS (t ) = E1 + E2. Using the Hamiltonian equations
of motion and taking into account the exchanges with the
thermostats leads to

dE1

dt
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where Ẇ1 = v1ωd X 2
1 cos ωdt is the power flowing toward

oscillator 1 due to the modulation of C1(t ). From the dy-
namical trajectories of the oscillators, dE1/dt , dE2/dt , Ẇ1,
and 1

2C0(X1 − X2)( dX1
dt + dX2

dt ) are easy to compute, which
determines Q̇1 and Q̇2.

The rectification coefficient defined in Ref. [1] is derived
from the fluxes Q̇1 and Q̇r

1 in the direct and reverse configura-
tions

RQ =
∣∣〈Q̇1〉 + 〈
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Reference [1] also introduces the static quasicurrent Q̇1 =
Q̇1 + Ẇ1. According to (4), we have

Q̇1 = dE1

dt
+ 1
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)
, (7)

so that, when we take the time and statistical averages af-
ter a steady state has been established in the system, i.e.,
〈dE1/dt〉 = 0, we simply get

〈Q̇1〉 =
〈

1

2
C0(X1 − X2)

(
dX1

dt
+ dX2

dt

)〉
. (8)

In this two-oscillator system, 〈Q̇1〉 has a simple inter-
pretation in terms of the power J flowing through the cou-
pling link C0. The force F1 exerted on particle 1 due to the
coupling is F1 = −C0(X1 − X2) and therefore the power P1

transmitted to particle 1 due to the coupling is P1 = F1
dX1
dt =

−C0(X1 − X2) dX1
dt . Similarly, the force F2 due to the coupling

is F2 = C0(X1 − X2) and the power transmitted to particle 2 is
P2 = F2

dX2
dt = C0(X1 − X2) dX2

dt . Therefore the average power

(a)

(b)

FIG. 2. Rectification coefficients versus the modulation fre-
quency ωd for two values of the coupling constant C0: (a) C0/ω0 =
1.0 and (b) C0/ω0 = 0.4. Brown full line, RQ; blue full line with error
bars, RJ ; red dashed line, RQ. The vertical lines show some of the
combination of the eigenfrequencies ν1/ω0, ν2/ω0 of the system of
two oscillators.

transfer from particle 1 to particle 2 is

〈J〉 = −〈P1〉 + 〈P2〉

=
〈
C0(X1 − X2)

(
dX1

dt
+ dX2

dt

)〉
= 2〈Q̇1〉. (9)

Therefore the rectification coefficient of Ref. [1] defined in
terms of the static quasicurrents

RQ =
∣∣〈Q̇1〉 + 〈

Q̇r
1

〉∣∣
max

(|〈Q̇1〉|,
∣∣〈Q̇r

1

〉∣∣) (10)

should coincide with the rectification coefficient RJ defined
from the calculations of the fluxes 〈J〉 and 〈Jr〉 in the simula-
tions

RJ = |〈J〉 + 〈Jr〉|
max(|〈J〉|, |〈Jr〉|) . (11)

Figure 2 shows the rectification coefficients RQ, RJ , and RQ

versus the driving frequency ωd for two values of the coupling
coefficient C0. The calculations have been made with γ = 0.1
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for the Langevin equation, i.e., a moderate strength of the
coupling with the thermostats. Decreasing γ makes the peaks
sharper. The horizontal scale for ωd/ω0 is the same as on
Fig. 3 of Ref. [1] to allow an easier comparison. The coef-
ficients RQ and RQ, which involve the evaluation of the heat
fluxes from the thermostats, show fluctuations which result
from an averaging over 200 realizations only. Their error bars
are not shown to preserve the readability of the figure, but they
are significantly larger than the error bars on RJ . Nevertheless,
the equality between RJ and RQ shows up clearly, giving a
direct meaning to the rectification defined in terms of the static
quasicurrents by showing that, as expected, it is due to the
transfer along the coupling link.

The analogies with the results of Ref. [1] are clear. In
particular, as in the quantum case, the regions with nonzero
rectification correspond to a driving at combinations of the
eigenfrequencies of the system. There are nevertheless some
differences between the classical and quantum cases. In
Ref. [1], the authors point out that the rectification coeffi-
cient RQ computed with the quasistatic heat currents does
not show the regions of high rectification corresponding to

ωd = 2ν1, 2ν2 which are detected with RQ derived from the
fluxes Q̇1 and Q̇r

1. They analyze this in terms of normal
mode interactions. In the classical case, we do find that RQ

is significantly lower than RQ for ωd = 2ν1 [Fig. 2(b)], but it
does not fully vanish, and we do not find a similar effect for
ωd = 2ν2. This suggests that the effect of the classical heat
bath on mode interactions is not the same as in the quantum
case. Moreover, we can also expect different laws for the
temperature dependence of the rectification effect when the
system obeys classical or quantum statistics.

Although there are some differences between the classical
and quantum cases, the results show that the concept of dy-
namically induced heat rectification, introduced in Ref. [1] is
not confined to the quantum case and is instead a phenomenon
of general validity. Therefore its understanding should not be
specifically sought in quantum effects but in general features
of the system. In the classical case the mechanism that leads
to the rectification may be related to a kind of parametric
resonance because the calculation of Ẇ1 also exhibits large
peaks at combinations of the eigenfrequencies of the system
of coupled oscillators.
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