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Dependence of kinetic friction on velocity: Master equation approach
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(Received 5 November 2010; revised manuscript received 6 February 2011; published 28 April 2011)

We investigate the velocity dependence of kinetic friction with a model that makes minimal assumptions on the
actual mechanism of friction so that it can be applied at many scales, provided the system involves multicontact
friction. Using a recently developed master equation approach, we investigate the influence of two concurrent
processes. First, at a nonzero temperature, thermal fluctuations allow an activated breaking of contacts that are
still below the threshold. As a result, the friction force monotonically increases with velocity. Second, the aging
of contacts leads to a decrease of the friction force with velocity. Aging effects include two aspects: the delay in
contact formation and aging of a contact itself, i.e., the change of its characteristics with the duration of stationary
contact. All these processes are considered simultaneously with the master equation approach, giving a complete
dependence of the kinetic friction force on the driving velocity and system temperature, provided the interface
parameters are known.
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I. INTRODUCTION

Almost three centuries ago, Charles Coulomb (1736–1806)
discovered that kinetic friction does not depend on the sliding
velocity [1]. Later, more careful experiments showed that this
law is only approximately valid [2–7]. Friction does depend on
the sliding velocity, but this dependence is far from universal:
some measurements find an increase when velocity increases,
while others find a decay [8–10] or even a more complex
nonmonotonous behavior [2]. A logarithmic dependence, often
quoted, has been found for two extreme scales, friction at the
tip of an Atomic Force Microscope (AFM) (see for instance
[8,9,11–13]) or at the scale of a fault in the earth crust [10],
but it is often only approximate and observed in a fairly
narrow velocity range. Therefore, understanding the velocity
dependence of kinetic friction is still an open problem, and
what makes it difficult is that several phenomena contribute:
the thermal depinning of contacts, their aging, and the delay
in contact formation.

In this study, we investigate the velocity dependence of
friction with a model that includes these three contributions
and makes minimal assumptions on the actual mechanism of
friction so that it can be applied at many scales provided the
system involves multicontact friction. Our aim is to elucidate
the respective role of these three contributions to the velocity
dependence of friction and to provide analytical treatments in
some limits, or simple numerical approaches that allow the
investigation of a velocity range that may span many orders of
magnitude.

At the most fundamental level, multicontact friction can be
described as resulting from a succession of breaking and for-
mation of local contacts that possess a distribution of breaking
thresholds. This viewpoint was first applied to describe earth-
quakes [14,15] and then adopted to friction by Persson [16].

We recently developed a master equation (ME) approach to
describe the breaking and attachment events [17,18]. It splits
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the analysis in two independent parts: (i) the calculation of
the friction force, given by the master equation provided the
statistical properties of the contacts are known, and (ii) the
study of the properties of the contact themselves, which is
system dependent. This method is very general and allows us
to calculate the velocity dependence of friction, which results
from the interplay of two concurrent processes. First, at a
nonzero temperature, thermal fluctuations allow an activated
breaking of contacts which are still below their mechanical
breaking threshold. This phenomenon leads to a monotonic
increase of the friction force F with the velocity v. Second,
the aging of contacts [19–21] leads to a decrease of the friction
force with velocity. It includes two processes: the delay in
contact formation, i.e., time lag between contact breaking and
remaking [18,20–23], and the aging of a contact itself, i.e., the
change of its characteristics with the time of stationary contact.
To incorporate the latter effect, the master equation must be
completed by an equation for the evolution of static thresholds.

In earlier studies [17,18], we considered thermal and aging
effects separately to set up the method. However, to relate
the results to experiments, both contributions must be taken
into account simultaneously. This is the aim of the present
paper, which is organized as follows. Section II is a brief
review of the master equation approach. Section III discusses
temperature effects. Whereas our earlier work [18] focused
on time-dependent phenomena to analyze stick-slip, here we
concentrate on the steady-state case (constant velocity). This
allows us to proceed further and derive explicit expressions
for the influence of temperature. Then Sec. IV introduces the
second effect: the aging of the contacts. It first summarizes
the method introduced earlier and its main results [18], which
only considered the T = 0 case, and then studies the combined
influence of aging and temperature fluctuations. Section V
adds the influence of the delay in contact formation after
breaking to get the full picture, allowing us to compute the
velocity dependence of friction. Section VI discusses all those
results in the context of experimental data. The difficulty
of applying the theory to actual experiments is to properly
assess the values of the parameters that enter in the theoretical
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expressions, and not simply try to fit experimental curves,
which would not be very significant owing to the number of
parameters that are involved. Therefore, Sec. VI focuses on
this assessment. Finally, Sec. VII concludes the paper with a
discussion of perspectives for its further development.

II. MASTER EQUATION

The earthquake (EQ) model is the most generic model for
friction due to multiple contacts at an interface. The sliding
interface is treated as a set of Nc “contacts” that deform
elastically with the average rigidity k. The contacts represent,
for example, asperities for the interface of rough surfaces [24],
or patches of lubricant or its domains (“solid islands” [25])
in the case of lubricated friction. The ith contact connects
the slider and the bottom substrate through a spring of elastic
constant ki . When the slider moves, the position of the contact
point changes and the contact’s spring elongates or shortens,
so that the slider experiences the force −F = ∑

fi from the
interface, where fi = kixi and xi(t) is the spring length. The
contacts are coupled frictionally to the slider. Namely, as long
as the force |fi | is below a certain threshold fsi (corresponding
to the onset of plastic flow of the entangled asperity or to
local shear-induced melting of the boundary lubrication layer),
this contact i moves together with the slider. When the force
exceeds the threshold, the contact breaks, and then reattaches
again in the unstressed state after some delay time τ . Thus,
with every contact, we may associate the threshold value fsi ,
which takes random values from a distribution P̃c(f ) having a
mean value fs . The spring constants are related to the threshold
forces by the relationship ki = k (fsi/fs)1/2, because the value
of the static threshold is proportional to the area Ai of the
given contact, while the transverse rigidity ki is proportional
to the contact’s size, ki ∝ √

Ai . When a contact is formed
again (reattached to the slider), new values for its parameters
have to be assigned.

Rather than studying the evolution of the EQ model by
numerical simulation, it is possible to describe it analytically
[17,18]. Let Pc(x) be the normalized probability distribution
of values of the thresholds xsi at which contacts break; it
is coupled with the distribution of threshold forces by the
relationship Pc(x) dx = P̃c(f ) df . To describe the evolution
of the model, we introduce the distribution Q(x; X) of the
stretchings xi when the bottom of the solid block is at a
position X. Let us consider a small displacement �X > 0
of the bottom of the sliding block. It induces a variation of the
stretching xi of the contacts, which has the same value �X

for all contacts (here we neglect the elastic deformation of the
block). The displacement X leads to three kinds of changes
in the distribution Q(x; X): first, there is a shift due to the
global increase of the stretching of the asperities; second, some
contacts break because their stretching exceeds the maximum
value that they can withstand; and third, those broken contacts
form again, at a lower stretching, after a slip at the scale of
the asperities, which locally reduces the tension within the
corresponding asperities. These three contributions can be
written as a master equation for Q(x; X):[

∂

∂x
+ ∂

∂X
+ P (x)

]
Q(x; X) = R(x)�(X), (1)

where P (x) �X describes the fraction of contacts that break
when the slider position changes from X to X + �X. At zero
temperature, P (x) is coupled with the threshold distribution
Pc(x) by the relationship [17,18]

P (x) = Pc(x)/Jc(x), Jc(x) =
∫ ∞

x

dξ Pc(ξ ). (2)

The function �(X) in Eq. (1) describes the contacts that form
again after breaking,

�(X) =
∫ ∞

−∞
dξ P (ξ )Q(ξ ; X) (3)

(the delay time is neglected at this stage), and R(x) is the
(normalized) distribution of stretchings for newborn contacts.
Then the friction force is given by

F (X) = Nck

∫ ∞

−∞
dx xQ(x; X). (4)

The evolution of the system in the quasistatic limit where
inertia effects are neglected shows that, in the long term,
the initial distribution approaches a stationary distribution
Qs(x) and the total force F becomes independent of X. This
statement is valid for any distribution Pc(x) except for the
singular case of Pc(x) = δ(x − xs).

In the present work, we concentrate on the steady state
(smooth sliding). In what follows, we use R(x) = δ(x) for
simplicity. The steady-state solution of Eq. (1) is

Q(x) = �(x)EP (x)/C[P ], (5)

where �(x) is the Heaviside step function [�(x) = 1 for x � 0
and 0 otherwise], EP (x) = exp[−U (x)], U (x) = ∫ x

0 dξ P (ξ ),
and C[P ] = ∫ ∞

0 dx EP (x). Note also that, in the steady state,

� = 1/C[P ], (6)

because
∫ ∞

0 dξ P (ξ )EP (ξ ) = ∫ ∞
0 dU e−U = 1.

The distribution P̃c(f ) can be estimated for the contact of
rough surfaces [18,24] as well as for the contact of polycrystal
substrates [18,26]: its general shape may be approximated by
the function

P̃c(f ) ∝ f n exp(−f/f∗), (7)

where n � 0 depends on the nature of the interface. Then the
distribution Pc(x) can be related to the distribution P̃c(fs)
of the static friction force thresholds of the contacts. If a
given contact has an area A, then it is characterized by the
static friction threshold fs ∝ A and the (shear) elastic constant
k ∝ √

A (assuming that the linear size of the contact and
its height are of the same order of magnitude; see [16] and
Appendix A in [18]). The displacement threshold for the
given contact is xs = fs/k, so that fs ∝ x2

s or dfs/dxs ∝
xs . Then, using Pc(xs) dxs = P̃c(fs) dfs , we obtain Pc(xs) ∝
xsP̃c[fs(xs)] or

Pc(x) ∝ x1+2n exp(−x2/x2
∗), (8)

where x∗ may be estimated from experiments as Nckx∗ ≈ Fs .
In the SFA/B (surface force apparatus/balance) experiments,
where the sliding surfaces are made of mica, the interface may
be atomically flat over a macroscopic area. However, even in
this case, the lubricant film cannot be ideally homogeneous
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throughout the whole contact area—it should be split into
domains, e.g., with different orientations, because this will
lower the system free energy due to the increase of entropy.
Domains of different orientations have different values for the
thresholds fsi , i.e., they play the same role as asperities in the
contact of rough surfaces.

For the normalized distribution of static thresholds given
by Eq. (8) with n = 1,

Pc(x) = (2/x∗)u3e−u2
, (9)

where

u ≡ x/x∗,

we can express the steady-state solution of the master equation
analytically. In this case,

Jc(x) = (1 + u2)e−u2
, (10)

so that, at zero temperature, we have

P (x) = (2/x∗)u3/(1 + u2), (11)

U (x) = u2 − ln(1 + u2), (12)

EP (x) = Jc(x) = (1 + u2)e−u2
, (13)

C[P ] = x∗/C0, (14)
where

C0 = 4

3
√

π
≈ 0.752,

Q(x) = (C0/x∗)(1 + u2)e−u2
, u � 0, (15)

and the kinetic friction is

fk ≡ Fk/ (Nck) = fk0 ≡ C0x∗. (16)

The ME formalism described above can be extended to take
into account various generalizations of the EQ model, such as
temperature effects and contact aging, which are examined in
the following sections.

III. NONZERO TEMPERATURE

Temperature effects enter in the ME formalism through
their effect on the fraction of contacts that break per unit
displacement of the sliding block, P (x), because thermal
fluctuations allow an activated breaking of any contact that
is still below the threshold [16,18,20–23]. For a sliding at
velocity v so that X = vt , the thermally activated jumps can
be incorporated in the master equation, if we use, instead
of the zero-temperature breaking fraction density P (x), an
expression PT (x) defined by (see [18])

PT (x) = P (x) + H (x), (17)

where the temperature contribution is given by

H (x) = ω

v
ekx2/2kBT

∫ ∞

x

dξ Pc(ξ )e−kξ 2/2kBT (18)

for “soft” contacts or by

H (x) = ω

v

∫ ∞

x

dξ Pc(ξ )

(
1 − x

ξ

) 1
2

e
−kξ 2(1− x

ξ
)

3
2 /2kBT (19)

in the case of “stiff” contacts, which have a deep pinning
potential so that their breaking only occurs with a significant

probability when their stretching is close to the threshold. Here
ω is the attempt frequency of contact breaking, ω ∼ 1010 s−1,
according to Refs. [16,21].

For concreteness, in what follows we assume that the
contacts are soft, Eq. (18), and we select n = 1 in Eq. (8),
so that Pc(x) is given by Eq. (9).

At a nonzero temperature the total rate of contact breaking,
Eq. (17), is equal to PT (x) = P (x) + (ω/v) h(x), where for
the soft contacts

h(x) = 1 + (1 + b)u2

(1 + b)2
e−u2

, (20)

with

b(T ) = kx2
∗

2kBT
. (21)

The condition b = 1 defines a crossover temperature

kBT∗ = 1
2kx2

∗ . (22)

Then a straightforward integration gives the function
UT (x) = ∫ x

0 dξ PT (ξ ) = U (x) + �U (x), where

�U (x) = S0(v,T )[erf(u) − S1(T )u e−u2
], (23)

with

S0(v,T ) = ωx∗
C0v

(1 + b/3)

(1 + b)2
(24)

and

S1(T ) = C0

2

(1 + b)

(1 + b/3)
. (25)

The coefficient S1(T ) weakly changes with temperature from
S1(0) = 2/

√
π ≈ 1.128 to S1(∞) = C0/2 ≈ 0.376. On the

other hand, the coefficient S0(v,T ) determines whether the
effect of temperature is essential or not. The temperature-
induced breaking of contacts is essential at low driving veloci-
ties only, when S0(v,T ) 	 1. Thus the equation S0(v∗,T ) = 1
defines the crossover velocity:

v∗(T ) = ωx∗
C0

[1 + b(T )/3]

[1 + b(T )]2
. (26)

We see that v∗ monotonically increases with temperature
as v∗(T ) ≈ 0.443ωx∗T/T∗ at T 
 T∗ and approaches the
maximal value v∗ ≈ 1.33ωx∗ at T 	 T∗.

Then, EPT (x) = e−UT (x) = (1 + u2)e−u2
e−�U (x), and we

can find the kinetic friction force:

fk(v,T ) =
∫ ∞

0
dx xEPT (x)

/ ∫ ∞

0
dx EPT (x). (27)

At a low driving velocity, v 
 v∗, we may set �U (x) ≈
S2u, where

S2(v,T ) = ωx∗
v(1 + b)2

, (28)

and Eq. (27) leads to

fk ≈ x∗/S2 = (v/ω)(1 + b)2. (29)

A linear dependence of the kinetic friction on the driving
velocity at low velocities corresponds to the creep motion
due to temperature-activated breaking of contacts and was
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FIG. 1. (Color online) Friction force fk as a function of the driving
velocity. Dash-dotted blue line shows the low-v approximation (29),
dashed red line shows the high-v approximation (31), and dotted
magenta line shows a logarithmic fitting. k = 1, ω = 1, x∗ = 1, and
kBT = 1.

predicted in several earlier studies [16,21–23], although our
approach allowed us to derive it rigorously. The dependence
(29) may be interpreted as an effective “viscosity” of the
confined interface:

η = fk

v
= 1

ω

(
1 + kx2

∗
2kBT

)2

. (30)

At a high velocity, v 	 v∗, when e−�U (x) ≈ 1 − S2u +
1
2 (S2u)2, we obtain C ≈ 3

√
π/4 − S2 + (5

√
π/16)S2

2 , so that

fk ≈ fk0
(
1 − C1S2 + C2S

2
2

)
, (31)

where C1 = 5
√

π/8 − C0 ≈ 0.356 and C2 = 16/9π − 1/3 ≈
0.233. Equation (31) agrees qualitatively with that found by
Persson [16] in the case of b 	 1.

Approximate expressions (29) and (31) together with the
numerical integration of Eq. (27) are presented in Fig. 1. In
addition, we showed a logarithmic fitting that operates in a
narrow interval of velocities near the crossover velocity only.
Persson [16] showed that the logarithmic dependence may be
obtained analytically, only if the Pc(x) distribution has a sharp
cutoff at some x = xs as, e.g., in simplified versions of the EQ
model with Pc(x) = δ(x − xs).

Although we cannot obtain analytical results for the stiff
contacts, we calculated the fk(v) dependences numerically
(see Fig. 2), which shows that the effect remains qualitatively
the same.

IV. AGING OF CONTACTS

The aging of contacts was considered in our work [18]
where, however, we ignored the temperature-induced breaking
of contacts discussed above in Sec. III. When aging is
taken into account, the master equation for Q(x,X) must be
completed by an equation for the evolution of Pc(x), which in
turn affects P (x). Let the newborn contacts be characterized
by a distribution Pci(x), while at t → ∞, due to aging, the
distribution Pc(x) approaches a final distribution Pcf (x). If we

FIG. 2. (Color online) Friction force fk as a function of the
driving velocity v for soft (dotted) and stiff (solid curves) contacts
at low temperature kBT = 0.01 (blue) and high temperature kBT =
1 (black). k = 1, ω = 1, and x∗ = 1.

assume that the evolution of Pc(x) corresponds to a stochastic
process, then it should be described by a Smoluchowsky
equation,

∂Pc

∂t
= DL̂Pc,

(32)

where L̂ ≡ ∂

∂x

(
B(x) + ∂

∂x

)
,

in which the “diffusion” parameter D describes the rate of ag-
ing, B(x) = dŪ (x)/dx, and the “potential” Ū (x) determines
the final distribution, Pcf (x) ∝ exp

[−Ū (x)
]
, so that we can

write

B(x) = −[dPcf (x)/dx]/Pcf (x). (33)

However, because the contacts continuously break and form
again when the substrate moves, this introduces two extra
contributions in the equation determining ∂Pc/∂X in addition
to the pure aging effect described by Eq. (32): a term
P (x; X)Q(x; X) takes into account the contacts that break,
while their reappearance with the threshold distribution Pci(x)
gives rise to the second extra term in the equation. Thus the
evolution of Pc is described by the equation

∂Pc(x; X)

∂X
−DvL̂Pc(x; X)+P (x; X)Q(x; X) = Pci(x)�(X),

(34)

where Dv = D/v, and v = dX(t)/dt is the driving velocity.
Finally, we come to the set of equations (1)–(3) and (34). For
the steady-state regime, Eq. (34) reduces to

DvC[P ]L̂Pc(x) = P (x)EP (x) − Pci(x), (35)

where we used Eqs. (5) and (6). Taking also into account
the identity P (x)EP (x) = Pc(x) [18], we finally come to the
equation

DvC[P ]L̂Pc(x) = Pc(x) − Pci(x). (36)

046129-4



DEPENDENCE OF KINETIC FRICTION ON VELOCITY: . . . PHYSICAL REVIEW E 83, 046129 (2011)

FIG. 3. (Color online) Kinetic friction force fk as a function of
the driving velocity v for different values of the aging rate: D = ∞
(red dotted), 1 (blue short-dashed), 10−1 (black solid), 10−2 (magenta
dash-dotted), 10−3 (blue short-dotted), and D = 0 (red dotted curve).
k = 1, ω = 1, and kBT = 1; the initial and final Pc(x) distributions
are given by Eq. (9) with x∗i = 0.1 and x∗f = 1 correspondingly.
Dashed curves shows the dependences at T = 0.

It was shown [18] that the kinetic friction monotonically
decreases with the driving velocity as Fk(v) − Fk(0) ∝ −v/D

in the low-velocity limit and Fk(v) − Fk(∞) ∝ D/v in the
high-velocity case. One may expect that at low velocities
this decreasing will compensate the friction increasing due
to temperature-induced jumps. The problem, however, is more
involved.

When the temperature effects are incorporated, Eq. (36) for
the function Pc(x) in the steady state takes the form

Dv C[PT ]L̂Pc(x) = Pc(x) − Pci(x). (37)

Numerical solutions of Eq. (37) are presented in Figs. 3
and 4(a): the initial increase of the kinetic friction F with the
driving velocity v due to the temperature-activated breaking
of contacts is followed by the decrease of F due to contacts
aging. Figure 4(b) shows also the dependence of the effective
“viscosity” η = fk/v on the driving velocity v. It is constant
at low velocity and then decreases; the latter may be approxi-
mately fitted by a power law η(v) ∝ v−α with the exponent α

changing from 1.5 to 1 as D decreases.
Using the definition (32) of the operator L̂ and Eq. (33) for

the function B(x), the left-hand side (LHS) of Eq. (37) may
be rewritten as

DvCL̂Pc(x) = DvC
d

dx

(
Pcf (x)

d

dx

Pc(x)

Pcf (x)

)
, (38)

while the RHS of Eq. (37) may be presented as

Pc(x) − Pci(x) = − d

dx
[Jc(x) − Jci] , (39)

where Jci(x) = ∫ ∞
x

dξ Pci(ξ ). Using Eqs. (38) and (39), we
can find the first integral of Eq. (37):

DvC[PT ]Pcf (x)
d

dx

(
Pc(x)

Pcf (x)

)
= Jci(x) − Jc(x). (40)

FIG. 4. (Color online) (a) Same as in Fig. 3 in log-log scale.
(b) The dependences of the effective “viscosity” η = fk/v on the
velocity v (dashed lines show power-law fits).

Integration of Eq. (40) leads to an integral equation for the
function Pc(x):

Pc(x) = Pcf (x)

{
1 + v

DC[PT ]

∫ x

0

Jci(ξ ) − Jc(ξ )

Pcf (ξ )
dξ

}
. (41)

Substituting Jc(x) ≈ Jcf (x) = ∫ ∞
x

dξ Pcf (ξ ) into the RHS
of Eq. (41), one may analytically find the low-velocity behavior
of the kinetic friction, for example, the decrease of fk with v

for T = 0. At a nonzero temperature, however, aging does
not affect the low-velocity behavior (29) and only reduces the
interval of velocities where Eq. (29) is valid, as demonstrated
in Figs. 3 and 4. Indeed, at v → 0 and T > 0 the main
contribution to PT (x) comes from the function H (x) ∝ ω/v

in Eq. (17), which only weakly depends on Pc(x).
The limit Dv = D/v → 0 may be studied with the help of

Eq. (37) by substituting Pc(x) ≈ Pci(x) into its left-hand side.
For the function (9), this approach gives

Pc(x) − Pci(x) ≈ −16DvC[P ]

x∗ix
2
if

uie
−u2

i

(
1 − 1

2
u2

i

)
(42)

and

Jc(x) − Jci(x) ≈ 4DvC[P ]

x2
if

u4
i e

−u2
i , (43)

where ui = x/x∗i and

1

x2
if

= 1

x2
∗i

− 1

x2
∗f

. (44)

Then, taking the corresponding integrals, we obtain to first
order in v−1

C ≈ x∗i

(
C−1

0 − S2 + C12S3
)

(45)
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FIG. 5. (Color online) Kinetic friction force fk as a function of
the driving velocity v for different values of the aging rate D = 1
(magenta dashed), 10−1 (blue solid), 10−2 (black dash-dotted), and
10−3 (red dotted curve) as compared to approximate expressions
(thin solid curves). k = 1, ω = 1, and kBT = 1; the initial and final
Pc(x) distributions are given by Eq. (9) with x∗i = 0.1 and x∗f = 1
correspondingly.

and

fk ≈ x2
∗i

C
[1 − (C0 + C1)S2 + C̃12S3], (46)

where

S3(v) = 4DvC[P ]/x2
if , (47)

C12 ≈ 1.324, and C̃12 ≈ 1.789 are numerical constants. A
comparison of the exact and approximate expressions is shown
in Fig. 5.

V. DELAY IN CONTACT FORMATION

Finally, let us take into account the delay in contact
formation following the work of Schallamach [22]. Let τ be
the delay time, N be the total number of contacts, Nc be the
number of coupled (pinned) contacts, and Nf = N − Nc be
the number of detached (sliding) contacts. The fraction of
contacts that detach per unit displacement of the sliding block
is �(v,T ) = ∫

dx P (x)Q(x), i.e., when the slider shifts by
�X, the number of detached contacts changes by Nc��X,
so that Nf = �vτNc. Using Nc + Nf = N , we obtain Nc =
N/(1 + �vτ ) and Nf = N�vτ/(1 + �vτ ). If we define x̄ =
1/� and vd = x̄/τ , we can write

Nc = N

1 + v/vd

, Nf = Nv/vd

1 + v/vd

. (48)

The coupled contacts produce the force fk defined above by
the steady-state solution of the master equation. The combined
dependence, which incorporates temperature effects, aging,
and delay in contact formation, is shown in Fig. 6 for different
values of the parameter vd .

However, earlier we assumed that the sliding contacts
experience zero friction, while these contacts may experience
a viscous friction force fl = ηlv, where ηl corresponds to
the (bulk) viscosity of the liquid lubricant. In this case, the

FIG. 6. (Color online) Kinetic friction force fk as a function of
the driving velocity v for different values of the delay time: vd = ∞
(black solid), 10 (red dot-dashed), 1 (magenta dotted), and 0.1 (blue
dashed curve) for D = 0.1 and kBT = 1 (other parameters as in
Fig. 3). The inset shows the same in log-log scale.

kinetic friction should be additionally multiplied by a factor
β(v) = 1 + v2/vηvd , where vη = fk/ηl (vη 	 vd ). Such a
correction may be expected at huge velocities only, e.g., for
v ∼ 1 m/s. In this case, the function Fk(v), after decreasing,
reaches a minimum at a velocity v0 ≈ (vηvd )1/2, and then
increases according to a law fk(v) ∝ ηlv. Note that the viscous
friction that comes from the excitation of phonons in the
substrates, as shown in molecular dynamics simulation [7],
may also depend on the velocity, e.g., as ηl ∝ v4.

VI. MAKING THE LINK WITH EXPERIMENTS

For a real system, the results presented in the previous
sections allow the calculation of the kinetic friction force
Fk(v,T ) provided the parameters of the model are known.
In this section, we examine how they can be evaluated from
experiments.

The contact parameters k and ω may be estimated with the
help of elastic theory [27]. Let us assume that a contact has a
cylinder shape of height h (the thickness of the interface) and
radius rc, so that it is characterized by the section Ai = πr2

c , the
(geometrical) inertial momentum I = πr4

c /4, a mass density
ρ, and a Young modulus E. If the cylinder foot is fixed and
a force �f is applied to its top, the latter will be shifted on
the distance �x = �f h3/3EI (the problem of bending pivot;
see Sec. 20, example 3 in Ref. [27]). Thus the effective elastic
constant of the contact is k = �f/�x = 3EI/h3. The mini-
mal frequency of bending vibration of the pivot with one fixed
end and one free end is given by ω ≈ (3.52/h2)(EI/ρAi)1/2

(see Sec. 25, example 6 in Ref. [27]).
Next, let a be the average distance between the contacts, so

that the total area of the interface is A = Na2, and introduce the
dimensionless parameter γc = rc/a (γc < 0.5). The threshold
distance x∗ may be estimated as follows. At the beginning,
when all contacts are in the unstressed state, the maximal
force the slider may sustain is equal to F∗ ≈ Nkx∗ [this force
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corresponds to the first large stick spike in the F (t) dependence
at the beginning of stick-slip motion at low driving]. Thus we
obtain that kx∗ ≈ a2σ∗, where σ∗ = F∗/A is the maximal shear
stress.

Let us consider a contact of two rough surfaces and assume
that a = h = rc. Then we obtain

ω ≈ 1.76
√

E/ρ

rc

(49)

for the attempt frequency,

k = (3π/4)Erc (50)

for the contact elasticity, and

x∗ = r2
c σ∗/k (51)

for the threshold distance. For steel substrates, we may take
ρ = 104 kg/m3 for the mass density, E = 2 × 1011 N/m2 for
the Young modulus, and σc = 109 N/m2 for the plasticity
threshold. Assuming that σ∗ = σc and rc ≈ 1 μm, we find that
ω ≈ 7.9 × 109 s−1, k ≈ 4.7 × 105 N/m, x∗ ≈ 2.1 × 10−9 m,
and b ≈ 2.7 × 108 for room temperature (i.e., b 	 1), so that
the crossover velocity is quite low: v∗ ≈ 0.03 μm/s.

Now let us consider a lubricated system, e.g., the one
with a few octamethylcyclotetrasiloxane (OMCTS) layers as
studied by Klein [28] and Bureau [29], and assume that the
lubricant consists of solidified islands that melt under stress
as proposed by Persson [25]. In this case, instead of using
the Young modulus, let us assume that x∗ = rc; this allows
us to find the parameter EI = ah3σ∗/3γc. Then the elastic
constant is k = aσ∗/γc, the attempt frequency is

ω ≈ 1.15
√

σ∗/ahργ 3
c , (52)

the parameter b is given by

b ≈ γca
3σ∗/2kBT , (53)

and, in the case of b 	 1, the crossover velocity is

v∗ ≈ γcωa/3C0b ≈ kBT /

√
a5hρσ∗γ 3

c . (54)

For a four-layer OMCTS film [28], one may take ρ =
956 kg/m3, h ≈ 3.5 × 10−9 m, F∗ ≈ 2 × 10−5 N, and A ≈
10−10 m2, so that σ∗ ≈ 2 × 105 Pa. Assuming γc = 0.5
and a ≈ 1 μm, we obtain for room temperature kBT =
4 × 10−21 J, that ω ≈ 8 × 108 s−1 and b ≈ 1.25 × 107, i.e.,
this system is in the low-temperature limit too, although the
crossover velocity is much higher than for rough surfaces:
v∗ ≈ 16 μm/s.

Moreover, we may calculate the dependence fk(v) for
different thicknesses of the lubricant film. If the film consists of
nl layers, then the film thickness is h = nld, where d ≈ 8.75 Å
is the diameter of the OMCTS molecule. Let us assume that
the maximal shear stress exponentially decreases with the
number of layers according to the results of MD simulation [7],
σ∗ = σ0e

−βnl , where β ∼ 1 is a numerical constant. Taking
σ0 = 4 × 106 N/m2 and β = 1.5, we obtain the dependences
of the shear stress σ = Fk/A on the shear rate γ̇ = v/h shown
in Fig. 7, which may be compared with the experimental
dependences [Fig. 2(a)] of Bureau [29].

FIG. 7. Shear stress σ as a function of the shear rate γ̇ for different
values of the OMCTS film thickness from nl = 2 to 6 monolayers.
Inset: the crossover velocity v∗ as a function of the number of layers.

Note that our approach may overestimate the value of
the crossover velocity v∗. First, the crossover will occur
earlier if the delay and/or aging effects play a significant
role. Besides, at low temperatures the stiff contacts lead to
higher “viscosity” and lower values of v∗ than the soft contacts
considered above (see Fig. 2). Second, we completely ignored
the elastic interaction between the contacts. If the latter would
be incorporated, a breaking of one contact may stimulate
neighboring contacts to break as well, i.e., the value of the
parameter a should describe such a cooperative “contact” size
that may be much larger than those of individual ones.

Giving a quantitative evaluation of the influence of aging
on the velocity dependence of the friction coefficient is
harder than for the temperature dependence due to insufficient
experimental data. Aging appears to cause a decrease of
friction as velocity increases and, thus, when such a behavior
is observed experimentally [9,13], it can be considered as
a strong indication of the presence of aging. Our analysis
indicates that the combined effect of temperature and aging
leads to a maximum in the friction coefficient versus velocity.
Therefore, when aging is manifested by a decreasing friction
versus velocity, extending the experiments to lower velocities
and temperatures might detect the maximum and thus provide
some quantitative data to evaluate the aging parameters.

Although the aim of our work was to find the dependence of
the kinetic friction on the driving velocity, our approach allows
us to find the dependence on temperature as well. However,
the behavior of a real tribological system is more involved,
because all parameters may depend on temperature T in a
general case. For example, the delay time τ may exponentially
depend on T if the formation of a new contact is an activated
process [22]; the same may be true for the aging rate D. In this
case one may obtain a nonmonotonic temperature dependence
of friction with, e.g., a peak at cryogenic temperatures [21].

VII. CONCLUSION

In this study, we determined the dependence of the kinetic
friction force in the smooth sliding regime on the driving
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velocity. In a general case, the friction linearly increases
with the velocity (this creep motion may be interpreted as
an effective “viscosity” of the confined film), passes through
a maximum, and then decreases due to delay or aging effects.
The decay may be followed by a new growth in friction
in the case of liquid lubricant. Estimation showed that, for
the contact of rough surfaces, the initial growth of friction
should occur at quite low velocities, v 
 0.1 μm/s, so that
for typical velocities the friction is independent on velocity
in agreement with the Coulomb law. However, for the case of
lubricated friction with a thin lubricant film, which solidifies
due to compression, the fk(v) dependence is essential and
the linear dependence may stay valid up to velocities v ∼
10 ÷ 103 μm/s. At higher velocities, the growth saturates
and the fk(v) dependence may be fitted by a logarithmic
law. The latter velocity interval is narrow if the distribution
of static thresholds is wide; the logarithmic law may be
found analytically for a wide interval of velocities when the
thresholds are approximately identical, i.e., for the singular
distribution Pc(x) = δ(x − xs).

We emphasize that our approach is only valid for a system
with many contacts, for example, N > 20 at least [21]. When
the contact is due to a single atom as it may occur in the
AFM/Friction Force Microscope (FFM) devices, the friction
can be accurately described by the Prandtl-Tomlinson model
and should follow the logarithmic fk(v) dependence: fk(v) ∝
(ln v/v0)2/3 [30]. However, if the AFM/FFM tip is not too
sharp so that the contact is due to more than one atom, the
logarithmic dependence is only approximate and, moreover,
for some systems the friction may decrease with the velocity,
which has to be attributed to the aging or delay effects [8,9,31].

In this work, we had in mind that contacts correspond to
real asperities in the case of the contact of rough surfaces or

to “solid islands” for the lubricated interface. However, the
ME approach also operates when the contact is due to long
molecules that are attached by their ends to both substrates.
Such a system was first studied by Schallamach [22] and
then further investigated by Filippov et al. [20], Srinivasan
and Walcott [23], and Barel et al. [21]. Note that when all
molecules are identical, they are characterized by the same
static threshold, i.e., this system is close to the singular one,
where the logarithmic fk(v) dependence has to have a wide
interval of operation.

Finally, let us discuss restrictions of our approach. First
of all, we assumed the somehow idealized case of wearless
friction; wearing may mask the predicted dependences. Be-
sides, the interface is heated during sliding; this effect is hard
to describe analytically as well as to control experimentally.
Then we did not estimated the delay or aging parameters;
moreover, these parameters, e.g., the delay time τ , may depend
on the driving velocity v. Besides, we assumed the simplest
mechanism of aging described by the Smoluchowsky equation,
while the real situation may be more involved, e.g., it may
correspond to the Lifshitz-Slözov mechanism [18]. Also, we
assumed that the reformed contacts appear in the unstressed
state, R(x) = δ(x) in Eq. (1), which may not be the case in
real systems.

The most important issue, however, is the incorporation of
the elastic interaction between the contacts as well as elastic
deformation of substrates at sliding. This point certainly
deserves a detailed investigation and is the topic of our future
work.
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